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1. Introduction 

The subjective probability theory attempts to derive a probability measure as a (normal-

ized) numerical indicator representing a decision-maker's likelihood relation on the sample 

space.1  In particular, assuming that the sample space is given by the direct product of two 

sample spaces, Luce and Narens (1978) axiomatically derived the subjective probability 

measures, which generically satisfy the multiplicative law with respect to the direct 

product; however, the subjective probability measures are derived within the class of non-

atomic measures.  Because all probability measures in a finite sample space will never be 

non-atomic, the requirement for being a non-atomic measure is restrictive.  This note 

attempts to elaborate on Luce and Narens' (1978, Theorem 5) axiomatic derivation, without 

requiring the derived subjective probability to be non-atomic.2 

In the decision-maker's environment, we assume the presence of two original 

experiments (Experiments 1 and 2) initially.  We then construct a subjctive probability 

measure on each of the sample spaces corresponding to the two experiments.  To consider 

the multiplicative law between the two subjctive probability measures, we introduce the 

third experiment (Experiment 3) in which sample space is defined by the direct product of 

the two sample spaces.  As the fourth experiment (Experiment 4), the auxiliary experiment 

by DeGroot (1970, Section 6.3) and French (1982, 2022) is introduced to determine the 

subjective probability of an event in the other sample spaces above based on the relative 

size of the equally likely event in the auxiliary experiment.   

 
1 For the survey articles, see Fishburn (1986, 1994). 
2 In Savage's scheme, where both the subjective probabilityand the expected utility are derived from 

the preference ordering, Grabisch, Monet and Vergopoulos (2023, Theorem 7) derive the subjective 

probability satisfying the multiplicative law in case of the non-atomic subjective probability.  
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First, we introduce French's (1982, 2022) five conditions for the likelihood relation 

on the events of the four sample spaces, assuming that the decision-maker's likelihood 

comparisons are possible for any pair of events, even if the events are selected from the 

different sample spaces.  As a consequence of French (1982, 2022 Lemma 1), we show that 

the five conditions are necessary and sufficient for the likelihood relation to be 

represented by subjective probability, allowing atoms in the original sample spaces 

(Theorem 1). 

Second, the domain of the likelihood relation is extended by including all of the 

conditional evens in the sample spaces.  This extension is required for defining a condition 

called "Independence of irrelevant events" (IIE), which is a key condition for the main 

theorem stated below.3 We assume that the decision-maker's likelihood comparisons are 

possible for any pair of conditional events, even if the conditioning events are different in 

the pair.  Under the five conditions for Theorem 1, the assumption of three additional 

conditions is shown to be necessary and sufficient for the likelihood relation on the 

extended domain to be represented by the conditional probability, and that each of the 

three additional conditions is indispensable for the axiomatic derivation of the conditional 

probability (Theorem 2). 

As the main result, under the eight conditions for Theorems 1 and 2, the assumption 

of two additional conditions, including the IIE condition on the likelihood relation, is is 

shown to be necessary and sufficient for the subjective probability to satisfy the 

multiplicative law, and that each of the two additional conditions is indispensable for the 

 
3 Based on the condition that A ~ A|B in Luce and Narens (1978, Theorem 3), we define the IIE 

condition in terms of the likelihood relation. The IIE condition is closely related to the stochastic 

independence condition in the subjective expected utility theory such as Grabisch, Monet and 

Vergopoulos (2023, Axiom A7). 
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axiomatic derivation (Theorem 3).  Hence, the subjective probabilities satisfying the 

multiplicative law are axiomatically derived from the full class of finite sample spaces, 

including the repeated coin-tossing experiments.    

Within the class of coin-tossing experiments, we construct an example where 

Theorem 3 does not hold if the IIE condition is dropped in Theorem 3 to prove the 

indispensability of the IIE condition for Theorem 3. Specifically, in the case of the coin- 

tossings where the decision-maker will be informed of the outcome of the first tossing before 

the second tossing, the IIE condition requires that the likelihood of an outcome of the second 

tossing is invariant, whichever outcome occurs at the first tossing.  If the initial belief 

(likelihood) before the first tossing is firm, then the belief may not be modified, and the IIE 

condition holds for such a decision-maker. 

In the next section, we introduce the sample spaces and the likelihood relation on 

the events of the sample spaces.   

  

2.  Sample spaces and likelihood relation 

Suppose that two original experiments exist, Experiments 1 and 2.  For i = 1, 2, let Si be 

the set of possible outcomes, called the sample space of Experiment i.  Let 𝔅i be a s-field of 

subsets of Si, that is, 𝔅i is a set of subsets of Si that is closed under complementation and 

s-additivity.  A set in 𝔅i is called an event in Si.  Specifically, Si is called the total event of 

𝔅i.  For the purpose of convenience, the empty set in 𝔅i is denoted by ∅i.  For a given pair 

of events A and B in 𝔅i, a conditional event is denoted by an ordered pair A|B, where A|B  

represents an event A conditioned on an event B.  The set of all conditional events on Si is 

defined by Gi = { A|B : A ∈ 𝔅i and B ∈ 𝔅i. }. 

To consider the independence between Experiments 1 and 2, we introduce the third 

experiment (Experiment 3) in which sample space S is defined by the direct product, S = 
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S1⨉S2 = { (s1, s2) : s1 ∈ S1 and s2 ∈ S2 }, and denote 𝔅S = 𝔅1⨉𝔅2.4  A set in 𝔅S is called an 

event in S.  Specifically, S is called the total event of 𝔅S, and the empty set in 𝔅S is denoted 

by ∅S.  For a given pair of events A and B in 𝔅S, a conditional event  is denoted by an ordered 

pair A|B, where A|B represents an event A conditioned on an event B.  The set of all 

conditional events on S is defined by GS = { A|B : A ∈ 𝔅S and B ∈ 𝔅S }. 

The fourth experiment, Experiment 4, is introduced as French's auxiliary 

experiment in which sample space is the unit interval T º [0, 1].  Let 𝔅T be the set of all 

Borel subsets in T.  A set in 𝔅T is called an event in T.  Specifically, T is called the total 

event of 𝔅T, the empty set in 𝔅T is denoted by ∅T, and the set of intervals in T is denoted by 

𝔅T*.  We assume that { a } º [a, a] ∈	𝔅T* for all a ∈	T, and we introduce the following two 

transformations for the events in 𝔅T*:    

Translation to the right: Define A+c by A+c = { x ∈ T : x = y + c for some y ∈ A } for all A ∈ 

𝔅T* with sup A < 1 and all c ∈ (0, 1 – sup A].    

Proportional shrink: Define c·A by c·A = { x ∈ T : x = c·y for some y ∈ A } for all A ∈ 𝔅T* and 

all c ∈ (0, 1).   

In the case of sample space T, a conditional event is denoted by an ordered pair A|B for  A, 

B ∈ 𝔅T.  The set of all conditional events on T is defined by GT = { A|B : A ∈ 𝔅T and B ∈ 𝔅T }.         

A likelihood relation is a complete and transitive binary relation ≿ on its domain 𝒟 

⊂ G1⋃G2⋃GS⋃GT.  A likelihood relation is denoted by (𝒟,	 ≿).  For A|B,	C|D ∈	 𝒟, the 

expression A|B ≿ C|D means that the likelihood of A conditioned on B is greater than the 

likelihood of C conditioned on D.  The symmetric and asymmetric parts of ≿ are denoted by 

~  and ≻, respectively.  We assume that 

 
4 𝔅S is the minimal s-field in the class of all s-fields of the subsets of S1⨉S2 containing all the product 

sets A1⨉A2, where Ai ∈ 𝔅i for i = 1, 2. See Itô (1984, Ch.2, Exercise 2.1(viii)) for the definition. 
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 𝒟 = { A|B ∈ G1⋃G2⋃GS⋃GT : B ≻ ∅T }.                                                       

Moreover, to simplify the arguments, we introduce a definition and an assumption: let h be 

a function on 𝔅1⋃𝔅2⋃𝔅S⋃𝔅T defined by  

             h(A) = S1  if A ∈ 𝔅1;  

                     = S2  if A ∈ 𝔅2;  

                     = S   if A ∈ 𝔅S;  

                     = T   if A ∈ 𝔅T.   

Let A be an event in	 𝔅1⋃𝔅2⋃𝔅S⋃𝔅T.  Because the conditional event A|h(A) can be 

recognized as the event A itself, we assume that 

               A = A|h(A) for all A ∈ 𝔅1⋃𝔅2⋃𝔅S⋃𝔅T,                                                

and we use the expression "A ≿ B" instead of "A|h(A) ≿	B|h(B)" when A|h(A), B|h(B) ∈ 𝒟  

in the remainder of this paper.5  

 

3. French's theorem for the existence of subjective probability 

To ensure the existence of the subjective probability, French (1982, 2022 Lemma 1) provides 

the necessary and sufficient conditions for the likelihood relation to be represented by 

the subjective probability.   Concretely, we call the conditions axioms and we introduce 

French's axioms for the likelihood relation (𝒟,	≿) as follows:  

A1(Total events and empty events): S1 ~ S2 ~ S ~ T ≻ ∅1 ~ ∅2 ~ ∅S ~ ∅T  and T ≿ A ≿ ∅T for 

all A ∈ 𝔅1⋃𝔅2⋃𝔅S⋃𝔅T . 

 

5 The set G1⋃G2 can be embedded into G3 by the embedding rule that A⨉S2|S1⨉S2 = A|S1 for all A ∈ 

𝔅1 and S1⨉B|S1⨉S2 = B|S2 for all B ∈ 𝔅2.  Because the embedding rule requires that S1 = S1|S1 = 

S1⨉S2|S1⨉S2 = S2|S2 = S2, we do not embed G1⋃G2 into G3.    
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Because h(A) ≻ ∅T for all A ∈ 𝔅1⋃𝔅2⋃𝔅S⋃𝔅T under A1, we have the following lemma:  

Lemma 1: 𝔅1⋃𝔅2⋃𝔅S⋃𝔅T ⊂ 𝒟, whenever the likelihood relation (𝒟,	≿) satisfies A1.  

The next axiom is the additivity: 

A2(Additivity): For any A, B, C, D ∈ 𝔅1⋃𝔅2⋃𝔅S⋃𝔅T such that h(A) = h(B), h(C) = h(D), A⋂B 

= ∅h(A) and C⋂D = ∅h(C), (A ≿ C, B ≿ D) ⇒ A⋃B ≿ C⋃D holds, and (A ≻ C, B ≿ D) ⇒ A⋃B ≻ 

C⋃D holds. 

A3(Continuity): Let { Bn } be a sequence of events in 	𝔅1⋃𝔅2⋃𝔅S⋃𝔅T.  If Bn+1 ⊂ Bn for all n 

= 1, 2, ⋯ , and if there exists A ∈ 𝔅1⋃𝔅2⋃𝔅S⋃𝔅T such that Bn ≿ A  for all n = 1, 2, ⋯, then  

⋂nBn ≿ A, where	∩nBn ≡	⋂ Bn.	∞
n=1  

A4(Positivity in 𝔅T*): sup A > inf A ⇔ A ≻ ∅T for all A ∈ 𝔅T*. 

A5(Invariance against translations to the right in 𝔅T*): A ~ (A+c) for all A ∈ 𝔅T* with   

sup A < 1 and all c ∈ (0, 1 – sup A].    

The three axioms, A1−A3 are assumed in French (1982, 2022), and this paper introduces 

A4 and A5, each of which is weaker than SP2 in French (1982) and PSW2 in French (2022).6   

We have the following theorem: 

Theorem 1 (French 1982 Theorem, French 2022 Lemma 1b): (A) If a likelihood relation  (𝒟,	

≿) satisfies the axioms A1−A5, then a real-valued function p uniquely exists on  

𝔅1⋃𝔅2⋃𝔅S⋃𝔅T with the following five properties:  

P1(Probability on 𝔅1): The restriction of p on 𝔅1 coincides with a probability measure on S1. 

P2(Probability on 𝔅2): The restriction of p on 𝔅2 coincides with a probability measure on S2. 

P3(Probability on 𝔅S): The restriction of p on 𝔅S coincides with a probability measure on S. 

P4(Uniform distribution on T): The restriction of p on 𝔅T coincides with the Lebesgue 

 
6 The two axioms, SP2 in French (1982) and PSW2 in French(2022) hold under A1-A5, as shown by 

Lemma 2(v) of this paper.  Moreover, SP5 in French (1982) and PSW6 in French(2022) hold under 

A1-A5, as shown by Lemma 2(viii, ix). 
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measure µ on T.     

P5(Preservation of ordering on events): p(A) ≥ p(B) ⇔ A ≿ B for all A,	B ∈ 𝔅1⋃𝔅2⋃𝔅S⋃𝔅T. 

(B) If a real-valued function p* exists on 𝔅1⋃𝔅2⋃𝔅S⋃𝔅T having the properties P1−P4, then 

the binary relation ≿* defined on 𝔅1⋃𝔅2⋃𝔅S⋃𝔅T by A ≿* B ⇔ p*(A) ≥ p*(B) for all A,	B ∈ 

𝔅1⋃𝔅2⋃𝔅S⋃𝔅T satisfies A1−A5. 

Theorem 1 implies that the five axioms A1−A5 are necessary and sufficient for the 

likelihood relation on the unconditional events to be represented by the probability measure.   

Although Theorem 1 has been shown by French (1982), the proof of Theorem 1 is provided 

in Section 6 for the completeness of this paper. 

 

4. A theorem for the subjective conditional probability 

For a given likelihood relation (𝒟,	≿) satisfying the axioms A1−A5, it holds by Theorem 1(A) 

that a real-valued function p exists on 𝔅1⋃𝔅2⋃𝔅S⋃𝔅T having the properties P1−P5.  We 

call the function p the probability function of (𝒟,	≿).  This section considers when the 

probability function also satisfies the following condition: 

P6(Preservation of ordering on conditional events): p(A⋂B)/p(B) ≥ p(C⋂D)/p(D) ⇔ A|B ≿ 

C|D for all A|B,	C|D ∈ 𝒟.7 

Let us consider an example of the sample spaces and likelihood relation:  

Example 1: Set S1 = { a, b }, S2 = { c, d }, and S = { (a, c), (a, d), (b, c), (b, d) }.  Let p1 be a 

real-valued function defined on 𝔅1⋃𝔅2⋃𝔅S⋃𝔅T such that: p1(a) = p1(b) = p1(c) = p1(d) = 1/2 ; 

p1(a, c) = p1(a, d) = p1(b, c) = p1(b, d) = 1/4, and that the restriction of p1 on 𝔅T  coincides with 

 
7 Luce (1968, Theorem 1) derives the subjective probability measure having property P6, requiring 

that the range of the derived probability measure is {0, 1}, {0, 1/2, 1}, or includes all rationales in [0, 

1]. This section elaborates on Luce (1968, Theorem 1), dispensing with the condition for the range. 
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the Lebesgue measure on T.  Denote 𝒟1 ≡	{ A|B ∈ G1⋃G2⋃GS⋃GT : p1(B) > 0}, and define a 

real-valued function  g1 on 𝒟1 by  

            g1(A|B) = 1/8                         if A|B ∈ GS and B ≠ S   

                          = p1(A⋂B)/p1(B)       otherwise. 

Define a binary relation ≿1	on 𝒟1 by 

            A|B ≿1 C|D  ⇔  g1(A|B) ≥ g1(C|D) for all A|B,		C|D ∈ 𝒟1. 

Because g1(A|h(A)) = p1(A) for all A ∈ 𝔅1⋃𝔅2⋃𝔅S⋃𝔅T, it holds by Theorem 1(B) that (𝒟1,	≿1) 

satisfies the axioms A1−A5 and p1 has the properties P1−P5, which implies that p1 is a 

probability function of (𝒟1,	≿1).  Setting A* = { (a, c), (a, d), (b, c) }, it holds that   

     { (a, c) }|A* ~1 {(a, c), (a, d)}|A*  and    

                p1({(a, c), (a, d)}⋂A*)/p1(A*) = [p1(a, c) + p1(a, d)]/p1(A*) = 2/3  

                                                             > p1({(a, c)}⋂A*)/p1(A*) = p1(a, c)/p1(A*) = 1/3,  

which means that p1 does not have the property P6.    

To exclude such a likelihood relation, we introduce some additional axioms for the 

likelihood relation (𝒟,	≿):  

A6(Consistency): For all A, B, C, D ∈ 𝔅1⋃𝔅2⋃𝔅S⋃𝔅T such that A ⊂	B, C ⊂ D and B ~ D ≻ 

∅T , A ≻ C ⇒	A|B ≻ C|D holds, and A ~ C ⇒	A|B ~ C|D holds.  

A7(Homogeneity in GT): For all A, B ∈ 𝔅T* with A ⊂ B and all c ∈ (0, 1), if A|B ∈ GT ⋂𝒟 and  

c·A|c·B ∈ GT ⋂𝒟, then A|B ~ c·A|c·B.8    

A8(Essentiality): A|B ~ (A⋂B)|B for all A|B ∈ 𝒟.9 

 
8 A closely related axiom to A7 is introduced by Miyake (2016, Homogeneity) to characterize the 

logarithmically homogeneous preferences, which describe the difference comparisons in ℝn. 

 
9  The axiom A8 is introduced by Luce (1968).   
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The three axioms A6, A7, and A8 are standard.  We require a definition to state the theorem: 

For a given real-valued function p* on 𝔅1⋃𝔅2⋃𝔅S⋃𝔅T, a pair (𝒟*,	≿*) is called the induced 

relation of p* if and only if 

           𝒟* =	{ A|B ∈ G1⋃G2⋃GS⋃GT : p*(B) > 0 } and 

                 A|B ≿* C|D ⇔ p*(A⋂B)/p*(B) ≥ p*(C⋂D)/p*(D) for all A|B,		C|D ∈ 𝒟*.     (1) 

Then we have the following theorem: 

Theorem 2:(A) If a likelihood relation (𝒟,	≿) satisfies A1−A8, then a probability function 

of (𝒟,	≿) having property P6 exists: 

             p(A⋂B)/p(B) ≥ p(C⋂D)/p(D) ⇔ A|B ≿ C|D for all A|B,	C|D ∈ 𝒟. 

(B) Suppose that a real-valued function p* exists on 𝔅1⋃𝔅2⋃𝔅S⋃𝔅T having the properties 

P1−P4, then the induced relation of p* determined by (1) is a likelihood relation satisfying 

A1−A8.  (C) Each of the three axioms A6, A7, and A8 is independent of the other axioms in 

Theorem 2(A). 

 

Theorem 2 is proved in Section 6 of this paper. Theorem 2(A, B) implies that the eight 

axioms A1−A8 are necessary and sufficient for the likelihood relation on the conditional 

events to be represented by the conditional probability measure.  Theorem 2(C) implies that 

each of the three axioms A6, A7, and A8 is indispensable for Theorem 2(A). 

 

5. A theorem for the multiplicative law of subjective probability 

For a given likelihood relation (𝒟,	≿) satisfying the axioms A1−A8, it holds by Theorem 2(A) 

that there exists a probability function of (𝒟,	≿) having the property P6.  This section 

considers when the probability function also has the following property: 

P7(Multiplicative law): p(A)∙p(B) = p(A⨉B) for all A ∈ 𝔅1 and all B ∈ 𝔅2.10 

 
10 This assertion means that p(A|S1)∙p(B|S2) = p(A⨉B|S1⨉ S2) for all A ∈ 𝔅1 and all B ∈ 𝔅2. 
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Let us consider an example of the sample spaces and likelihood relation:  

Example 2 (Itô, 1984, Section 1.3c): Set S1 = { H1, T1 }, S2 = { H2, T2 }, and S = { (H1, H2), 

(H1, T2), (T1, H2), (T1, T2) }, and let p2 be a real-valued function defined on 𝔅1⋃𝔅2⋃𝔅S⋃𝔅T  

such that p2(H1) = p2(T1) = p2(H2) = p2(T2) = 1/2 and p2(H1, H2) = p2(T1, T2) = 3/8, p2(H1, T2) = 

p2(T1, H2) = 1/8, where the restriction of p2 on 𝔅T coincides with the Lebesgue measure on 

T.  Let (𝒟2,	≿2) be the induced relation of p2.  Then, p2 being a probability function of (𝒟2,	≿2) 

holds, and that p2 has property P6.   However, p2(H1)⋅p2(H2) = 1/4 < p2(H1, H2) = 3/8 holds, 

implying that p2 does not have property P7. 

To exclude such a likelihood relation, we introduce some additional axioms for the 

likelihood relation (𝒟,	≿):  

A9(Independence of irrelevant experiment): A|S1 ~ A⨉S2|S1⨉S2 holds for all A ∈ 𝔅1, and 

B|S2 ~ S1⨉B|S1⨉S2 holds for all B ∈ 𝔅2.  

A10(Independence of irrelevant events): Let A be an event in 𝔅2. S1⨉A|S1⨉S2 ~ 

S1⨉A|B⨉S2  holds for all B ∈ 𝔅1 with B ≻ ∅T.11   

Axiom A9 requires that the likelihood of an event A|S1 in Experiment 1 coincides 

with that of the (produced) event A⨉S2|S1⨉S2 in Experiment 3, because S2 is redundant 

when one specifies the event A⨉S2 conditioned on S1⨉S2. 

Axiom A10 requires that the likelihood of the (producted) event S1⨉A in Experiment 

3 is independent of any conditioning events in Experiment 1.  Namely, A10 is the re-

statement of Luce and Narens' (1978, Theorem 3) condition that A ~ A|B in our setting.  In 

the coin-tossing experiment as in Example 2, where a coin is tossed twice, A10 requires that 

 
 
11 A⨉S2|S1⨉S2 ~ A⨉ S2|S1⨉B holds for all A ∈ 𝔅1 and all B ∈ 𝔅2  with B ≻ ∅T under A1−A10, because 
Theorem 3 holds under A1−A10 and we have that p(A)	= p(A⨉B)/p(B), implying A⨉S2|S1⨉S2 ~ 
A⨉S2|S1⨉B. 
 
 



 12 

the decision-maker's likelihood of an event in the second tossing conditioned on the outcome 

of the first tossing is invariant whichever outcome is drived at the first tossing.   Specifically, 

the following holds: 

    p2(H1,H2)/[p2(H1,H2)+p2(H1,T2)] = 3/4 > p2(T1,H2)/[p2(T1,H2)+p2(T1,T2)] = 1/4,        (2) 

which implies that S1⨉{H2}|{H1}⨉S2 ≻2 S1⨉{H2}|{T1}⨉S2.12 Because axiom A10 requires 

that S1⨉{H2}|{H1}⨉S2  ~2 S1⨉{H2}|{T1}⨉S2, the likelihood relation (𝒟2,	≿2) does not satisfy 

A10, and A10 excludes (𝒟2,	≿2).  

As a main result of this paper, we have the following theorem: 

Theorem 3: (A) If a likelihood relation (𝒟,	≿) satisfies all through the axioms A1−A10, then 

there exists a probability function of (𝒟,	≿) having the properties P1−P7.  (B) Suppose that 

a real-valued function p* exists on 𝔅1⋃𝔅2⋃𝔅S⋃𝔅T having properties P1−P4 and P7, then 

the induced relation of p* determined by (1) is a likelihood relation satisfying all through 

axioms A1−A10.  (C) Each of the two axioms A9 and	A10 is independent of the other axioms 

in Theorem 3(A). 

 

Theorem 3 is proved in the next section. Theorem 3(A, B) implies that the ten axioms 

A1−A10 are necessary and sufficient for the likelihood relation to be represented by the 

probability satisfying the multiplicative law. Theorem 3(C) implies that each of the two 

axioms, A9 and A10 is indispensable for Theorem 3(A). 

 

6. Proof of the theorems 

Proof of Theorem 1: (A)  Suppose that a likelihood relation  (𝒟,	≿)  satisfies A1−A5.   We 

will prove that there exists a real-valued function p on 𝔅1⋃𝔅2⋃𝔅S⋃𝔅T having the properties 

 
12 This can be recognized as a result of the decision-maker's updating of the likelihood based on the 

outcome of the first coin-tossing, if the decision-maker follows the maximal likelihood principle. 



 13 

P1−P5.    We need a lemma, which is proved in Appendix: 

Lemma 2: If(𝒟,	≿)satisfies A1−A5, then the following ten assertions hold: (i) { a } º  

[a, a] ~ ∅T  for all a ∈ T.  (ii) [a, b] ≻ ∅T  for all a, b ∈ T with a < b.  (iii)  [a, b] ~ [a, b) ~ (a, b] 

~ (a, b) for all a, b ∈ T with  a < b.  (iv) [0, a]	≿ [0, b]  ⇔  a ≥ b for all a, b ∈	T.  (v) µ(J) ≥ µ(K)  

⇔  J ≿ K for all  J, K ∈	𝔅T*.  (vi) A ≿ B ⇔ BC ≿ AC for all A, B ∈	𝔅1⋃𝔅2⋃𝔅S⋃𝔅T with h(A) = 

h(B), where AC ≡ { s ∈ h(A): s ∉ A }. (vii) Let { Bn } be a sequence of events in  𝔅1⋃𝔅2⋃𝔅S⋃𝔅T.   

If Bn ⊂ Bn+1 for all n, and if there exists A ∈	𝔅1⋃𝔅2⋃𝔅S⋃𝔅T  such that A ≿ Bn for all n, then 

A ≿	⋃nBn, where 	∪nBn ≡ ⋃ Bn	.%
&'( 	 (viii) For any A ∈	𝔅1⋃𝔅2⋃𝔅S⋃𝔅T, { x ∈ T : [0, x] ≿ A } is 

non-empty and closed in T.  (ix) For any A ∈	𝔅1⋃𝔅2⋃𝔅S⋃𝔅T, { x ∈	T : A ≿ [0, x] } is non-

empty and closed in T.  (x)  For any A ∈	𝔅1⋃𝔅2⋃𝔅S⋃𝔅T there uniquely exists a real number 

x ∈ T such that A ~ [0, x]. 

 

Define a real-valued function p on 𝔅1⋃𝔅2⋃𝔅S⋃𝔅T  by 

             p(A) = x  for all A ∈ 𝔅1⋃𝔅2⋃𝔅S⋃𝔅T,                                                                (3) 

where x is the number determined uniquely by Lemma 2(x) for each A ∈	𝔅1⋃𝔅2⋃𝔅S⋃𝔅T.   

(p has property P5): For all A, B ∈	𝔅1⋃𝔅2⋃𝔅S⋃𝔅T, it holds by (3) and Lemma 2(v) that A 

≿ B ⇔ [0, p(A)] ≿ [0, p(B)] ⇔ p(A) ≥ p(B), which means that p has property P5.    

(p has property P3): We have by (3) and A1 that p(S) = 1, and we have by (3), A1 and 

Lemma 2(i) that p(∅S) = 0.  We prove that p is finitely additive on  𝔅S.   Fix any A, B ∈	𝔅S 

with A⋂B = ∅S.  It holds by (3) that  A ~ [0, p(A)]  and B ~ [0, p(B)].  It follows from Lemma 

2(iii, v) that A ~ [0, p(A)] ~ [0, p(A)) and B ~ [0, p(B)] ~ [p(A), p(A)+p(B)].   We have by A2 

that A⋃B ~ [0, p(A))⋃[p(A), p(A)+p(B)] = [0, p(A)+p(B)], which implies that p(A⋃B) = 

p(A)+p(B).   Hence p is finitely additive on 𝔅S.    

We prove that p is s-additive on 𝔅S.    We need a lemma proved in Appendix: 

Lemma 3: If { An } is a sequence of events in 𝔅S satisfying  An+1 ⊂ An  for all  n, and if  ⋂nAn 
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= ∅S, then lim p(An) = 0.    

It holds by Itô (1984, Ch.2 Theorem 2.2.4 and Remark) and Lemma 3 that p is s-additive 

on 𝔅S.  Thus p has property P3. 

(p has properties P1 and P2): We can prove that p has properties P1 and P2, using almost 

the same manner as the proof in case of P3. 

(p has property P4): It holds by (3) and Lemma 2(i) that p(T) = 1 and p(∅T) = 0.  Fix any  

A, B ∈	𝔅T with A⋂B = ∅.   We can prove that p is finitely additive on 𝔅T by almost the same 

manner in the proof above.  For any intervals  J ∈ 𝔅T*, we have J ~ [0, µ(J)]  by Lemma 2(v), 

which implies p(J) = µ(J).   Hence, we have by Hopf's extension theorem (Itô, 1984, Ch.2 

Theorem 2.2.4) that p(A) = µ(A) for all A ∈	𝔅T, because µ is s-additive on 𝔅T.    

(B) Suppose that there exists a real-valued function p* on 𝔅1⋃𝔅2⋃𝔅S⋃𝔅T having properties 

P1−P4.   Let (𝒟*,	≿*) be the induced relation of p*.   Then we can prove easily that (𝒟*,	≿*)  

satisfies all the axioms.                                                                                            �  

Proof of Theorem 2: (A) Suppose that a likelihood relation (𝒟,	≿) satisfies all the axioms.   

It folllows from Theorem 1 that there exists a  real-valued function p having properties P1 

−P5.   We will prove that p has property P6.   We need two lemmas proved in Appendix: 

Lemma 4: (i) Fix any A2|A1, A4|A3, B2|B1, B4|B3 ∈	𝒟. If Ai ~ Bi for i = 1, 2, 3, 4, and if  

Ai+1 ⊂ Ai and Bi+1 ⊂ Bi for i = 1, 3, then A2|A1 ≿ A4|A3 ⇔ B2|B1 ≿ B4|B3.  (ii) For all A, 

B, C, D ∈ 𝔅1⋃𝔅2⋃𝔅S⋃𝔅T  such that A ⊂	B, C ⊂ D and B ~ D ≻ ∅T , C|D ≿ A|B ⇒	C ≿ A. 

Lemma 5: (i) [0, b]|[0, a] ≿ [0, d]|[0, g] ⇔ b/a ≥ d/g for all a, b, g, d ∈ T such that  a, g > 0, a  

≥ b, g ≥ d. (ii) A|B ≿ C|D ⇔ p(A)/p(B) ≥ p(C)/p(D) for any A|B, C|D ∈ 𝒟 with A ⊂ B  and 

C ⊂	D. 

Fix any A|B, C|D ∈ 𝒟.   It holds by A8  and Lemma 5(ii) that   

            A|B ≿ C|D  ⇔  (A⋂B)|B ≿ (C⋂D)|D  ⇔		p(A⋂B)/p(B) ≥ p(C⋂D)/p(D),  
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which menas that p has property P6.   

(B) Suppose that a real-valued function p* exists on 𝔅1⋃𝔅2⋃𝔅S⋃𝔅T having properties 

P1−P4.  Let (𝒟*,	≿*) be the induced relation of p*.   Then we can prove easily that (𝒟*,	≿*)  

satisfies A1−A8. 

(C) (Independency of A6): Let us consider Example 1 again.   It suffices to prove that (𝒟1,	

≿1) does not satisfy A6  and  (𝒟1,	≿1)  satisfies A7 and A8.   Let p1 be the symmetric proba-

bility distribution defined in Example 1.  Because 

             p1({(a, c), (a, d)}) = p1(a, c) + p1(a, d) = 1/2 > p1(a, c) = 1/4,  

implies  {(a, c), (a, d)} ≻1 {(a, c)}, it holds that  

             {(a, c), (a, d)} ≻1 {(a, c)}  and  {(a, c)}|A* ~1 {(a, c), (a, d)}|A*,  

which implies that (𝒟1,	≿1) does not satisfy A6.   Because the restriction of p1 on 𝔅T coincides 

with the Lebesgue measure on T, (𝒟1,	≿1) satisfies A7.   Set G* = { A|B ∈ GS : B ≠ S }.  For  

A|B ∈ 𝒟1, let us consier the two cases: 

Case 1(A|B ∈	G*): Because (A⋂B)|B ∈	G*, we have by the definition of ≿1 that A|B ~1	

(A⋂B)|B. 

Case 2(A|B ∉	G*): Because (A⋂B)|B ∈	G*, we have that g1(A|B) = p1(A⋂B)/p1(B) and   

g1(A⋂B)|B) = p1(A⋂B)/p1(B), which implies A|B ~1	(A⋂B)|B. 

Hence we have that (𝒟1,	≿1) satisfies A8. 

(Independency of A7): Let us consider S1 = {a, b}, S2 = {c, d}, and S = { (a, c), (a, d), (b, c), 

(b, d) } again.   Let p1 be the symmetric probability distribution defined in Example 1.   

Define 𝒟3 by 𝒟3 =	𝒟1, and define a real-valued function g3 on 𝒟3 by  

            g2(A|B) = (4/5)⋅[p1(A⋂B)/p1(B)] + (1/5)    if  A|B ∈ GT  and  p1(A⋂B)/p1(B) > 7/12 

                          = (1/12)⋅p1(B) + (13/24)               if A|B ∈ GT and p1(A⋂B)/p1(B) = 7/12 

                          = (6/7)⋅[p1(A⋂B)/p1(B)]               if A|B ∈ GT and p1(A⋂B)/p1(B) < 7/12 
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                          = p1(A⋂B)/p1(B)                       if A|B ∈ G1⋃G2⋃GS . 

Define a binary relation ≿3	on 𝒟3 by A|B ≿3 C|D ⇔ g3(A|B) ≥ g3(C|D) for all A|B,		C|D ∈ 

𝒟3.  Then it holds that  [0, 7/24]|[0, 1/2] = 2⋅[0, 7/48]|2⋅[0, 1/4] ≻3 [0, 7/48]|[0, 1/4], which 

means that (𝒟3,	≿3) does not satisfy A7.  Moreover, it holds that 

            p1([0, 7/24]⋂[0, 1/2])/p1([0, 1/2]) = 7/12 = p1([0, 7/48]⋂[0, 1/4])/p1([0, 1/4]),    

which means that p1 does not have the property P6 with respect to (𝒟3,	≿3), even though (𝒟3,	

≿3)  satisfies A1−A6  and A8.   Because it holds by the definition of  g3(A|B) that g3(A|B) = 

g3((A⋂B)|B) for all A|B ∈ 𝒟3,  we have  that A|B ~3 (A⋂B)|B, which means that (𝒟3,	≿3)  

satisfies A8.  For all A, B, C, D ∈ 𝔅1⋃𝔅2⋃𝔅S⋃𝔅T  such that A ⊂	B, C ⊂ D and B ~ D ≻ ∅T , 

it holds that  A ≻ C	⇒	 g3(A|B) > g3(C|D), and that A ~ C ⇒	g3(A|B) = g3(C|D).  Hence  (𝒟3,	

≿3) satisfies A6. 

(Independency of A8): Let us consider S1 = {a, b}, S2 = {c, d}, and S = { (a, c), (a, d), (b, c), 

(b, d) } again.  Let p1 be the symmetric probability distribution defined in Example 1.   Define  

𝒟4  by 𝒟4 =	𝒟1, and efine a binary relation ≿4 on 𝒟4	by  

              A|B ≿4 C|D  ⇔  p1(A)/p1(B) ≥ p1(C)/p1(D)  for all A|B,		C|D ∈ 𝒟4. 

Then it holds that  [0, 5/8]|[1/2, 1] ≻4 [1/2, 5/8]|[1/2, 1], which means that  (𝒟4,	≿4)  does not 

satisfy A8.   Moreover, it holds that  

              p1([0, 5/8]⋂[1/2, 1])/p1([1/2, 1]) = 1/4 = p1([1/2, 5/8]⋂[1/2, 1])/p1([1/2, 1]).   

Hence  p1 does not have property P6 with respect to (𝒟4,	≿4), even though (𝒟4,	≿4) satisfies 

A1−A7.                                                                                                       �  

Proof of Theorem 3: (A) Suppose that a likelihood relation  (𝒟,	≿)  satisfies all the axioms.   

It folllows from Theorem 2 that there exists a real-valued function p having properties 

P1−P6.   We will prove tha  p has property P7.  Fix any A∈ 𝔅1 and  A∈ 𝔅2.       

Case 1(A ≻ ∅T): It holds by A10 that    
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              p(A) = p(A⨉S2)  and  p(B) = p(S1⨉B)                                                             (4) 

 It holds by A9 and Theorem 2 that p(S1⨉B) = p(S1⨉B)/p(S1⨉S2) = p(A⨉B)/p(A⨉S2).  Hence 

we have by (4) and this that p(B) = p(S1⨉B) = p(A⨉B)/p(A⨉S2) = p(A⨉B)/p(A), which implies 

that  p(A⨉B) = p(A)p(B).  

Case 2(A ~ ∅T): It holds by Theorem 1 that p(A) = 0.  It holds by A10 that p(A⨉S2).  Because 

A⨉B ⊂ A⨉S2, we have that p(A⨉B) = 0.  Hence p(A)p(B) = p(A⨉B) = 0.   

(B) Suppose that a real-valued function p* exists on 𝔅1⋃𝔅2⋃𝔅S⋃𝔅T having the properties 

P1−P4 and P7.   Let (𝒟*,	≿*) be the induced relation of p*.   Then we can prove easily that 

(𝒟*,	≿*) satisfies A1−A10. 

(C) (Independency of A9): Let us consider  S1 = {a, b}, S2 = {c, d}, and S = { (a, c), (a, d), (b, 

c), (b, d) } again.   Let p3 be a real-valued function defined on 𝔅1⋃𝔅2⋃𝔅S⋃𝔅T such that: p3(a) 

= 1/4, p3(b) = 3/4; p3(c) = p3(d) = 1/2 ; p3(a, c) = p3(a, d) = p3(b, c) = p3(b, d) = 1/4, and that the 

restriction of p3 on 𝔅T coincides with the Lebesgue measure µ on T.   Hence it holds that   

        p3(a)⋅p3(S2) = 1/4 < p3({ a }⨉S2) = p3({ a }⨉{c, d})  

                                                          = p3({(a, c)}⋃{(a, d}) = p3(a, c) + p3(a, d) = 1/2,  

which means that  p3 does not have the property P7.  Moreover, let  (𝒟5,	≿5)  be  the induced 

relation of p3.  Namely, (𝒟5,	≿5) is determined by (1).  Then it holds that 

        p3(a) = p3(a|S1) = 1/4 and  p3({ a }⨉S2) = p3({ a }⨉S2|S1⨉S2) = 1/2,  

which implies that { a }⨉S2|S1⨉S2 ≻5
 a|S1.   Hence (𝒟5,	≿5) does not satisfy A9.   Because p3  

has properties P1−P6, it holds by Theorem 2(B) that (𝒟5,	≿5) satisfies A1−A8.  Moreover, it 

holds that 

       p3({ a }⨉S2) = p3(a, c) + p3(a, d) = 1/2; p3([{ a }⨉{ c }]⋂[S1⨉{ c }])/p3(S1⨉{ c })  

                  = p3(a, c)/[p3(a, c)+p3(b, c)] = (1/4)/(1/2) = 1/2, 

       p3({ a }⨉S2) = p3(a, c) + p3(b, d) = 1/2; p3([{ a }⨉{ d }]⋂[S1⨉{ d }])/p3(S1⨉{ d })  
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                  = p3(a, d)/[p3(a, d)+ p3(b, d)] = (1/4)/(1/2) = 1/2, 

       p3({ b }⨉S2) = p3(b, c) + p3(b, d) = 1/2; p3([{ b }⨉{ c }]⋂[S1⨉{ c }])/p3(S1⨉{ c })  

                 = p3(b, c)/[p3(a, c) + p3(b, c)] = (1/4)/(1/2) = 1/2, 

       p3({ b }⨉S2) = p3(b, c) + p3(b, d) = 1/2; p3([{ b }⨉{ d }]⋂[S1⨉{ d }])/p3(S1⨉{ d })  

                = p3(b, d)/[p3(a, d) + p3(b, d)] = (1/4)/(1/2) = 1/2, 

which implies that (𝒟5,	≿5) satisfies the axioms A10.    

(Independency of A10): Let us consider Example 2 again.  Because it follows from (2) that 

(𝒟2,	≿2) does not satisfy A10, it suffices to prove that (𝒟2,	≿2) satisfies A1−A9.  Let p2 be the 

probability distribution defined in Example 2. Because p2 has properties P1−P6, it holds by 

Theorem 2(B) that (𝒟2,	≿2) satisfies A−A8.   Moreover, it holds that 

         p2({ H1 }⨉S2) = p2(H1, H2) + p2(H1, T2) = 1/2 = p2(H1);   

         p2({ T1 }⨉S2) = p2(T1, H2) + p2(T1, T2) = 1/2 = p2(T1); 

         p2(S1⨉{ H2 }) = p2(H1, H2) + p2(T1, H2) = 1/2 = p2(H2);   

         p2(S1⨉{ T2 }) = p2(H1, T2) + p2(T1, T2) = 1/2 = p2(T2), 

which implies that (𝒟2,	≿2) satisfies A9.                                                           �  

 

Appendix 

Proof of Lemma 2: (i)  It holds by A1 and A4 that  { a } ~ ∅T for all  a ∈ [0, 1].   (ii)  Fix any  

a, b ∈ [0, 1]  with  b > a, it holds by A4 that  [a, b] ≻ ∅T.   (iii) Fix any a, b  ∈ [0, 1]  with  a < 

b.   Because  [a, b) ≿ [a, b)  and  { b } ≿ ∅T  by A1, it holds by A2 that  [a, b] ≿ [a, b).   Because  

[a, b) ≿ [a, b)  and  ∅T ≿ { b } by Lemma 2(i), it holds by A2 that  [a, b) ≿ [a, b].  Hence  [a, b] 

~ [a, b).   By almost the same manner we can prove that  [a, b] ~ (a, b] ~ (a, b).   (iv)  Suppose  

that a ≥ b.   Because [0, b) ≿ [0, b) and [b, a] ≿ ∅T by A1, it holds by A2 that [0, a] ≿ [0, b).   

It holds by Lemma 2(iii) that  [0, a] ≿ [0, b) ~ [0, b].   Suppose that  b > a.  Because [0, a)	≿ 

[0, a)  and  [a, b] ≻ ∅T  by Lemma 2(ii), it holds by A2 that  [0, b] ≻ [0, a).   It holds by Lemma 
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2(iii) that [0, b] ≻ [0, a) ~ [0, a].   Hence we have that  b > a ⇒ [0, b] ≻ [0, a], which implies  

[0, a] ≿ [0, b] ⇒ a ≥ b.   (v) It follows from Lemma 2(iii) that it suffices to prove the case of 

the closed intervals.   For any intervals  [a, b], [c, d] ∈ 𝔅T*, it holds by A5 that  [0, b – a] ~ 

[a, b]  and  [0, d – c] ~ [c, d].   Hence we have by Lemma 2(iv)  that µ([a, b]) ≥ µ([c, d]) ⇔  

(b – a) ≥ (d – c)  ⇔	 [0, b – a] ≿ [0, d – c] ⇔ [a, b] ≿ [c, d].   (vi) Assume that  A ≿ B.   If  AC 

≻ BC, it holds by A ≿ B and A2 that  [AC⋃A] ≻ [BC⋃B], which is a contradiction.   Thus we 

have that  BC ≿ AC. (vii) Suppose that  Bn ⊂ Bn+1  for all  n  and that there exists  A ∈ 

𝔅1⋃𝔅2⋃𝔅S⋃𝔅T  such that  A ≿ Bn  for all  n.   Define  Cn = Bn
C  for all  n, and define  D = 

AC.  Then it holds by Lemma 2(vi) that Cn+1 ⊂ Cn for all n and that Cn ≿ D for all n.  Hence 

we have by A3 that ⋂nCn	≿	D, which implies that A = DC ≿ (⋂nCn)C = ⋃nBn.   (viii)   Fix any  

A ∈ 𝔅1⋃𝔅2⋃𝔅S⋃𝔅T.   It holds by A1 that T ≿ A, which implies that 1 ∈	{ x ∈ T : [0, x] ≿ A } 

≠ ∅T.  Suppose that a sequence { xn } in T converges to x* and that [0, xn] ≿ A  for all n.  It 

suffices to prove that x* ∈	T and [0, x*] ≿ A.  Because T is closed, it holds that x* ∈	T ≠ ∅T.  

Define { Bn } in 𝔅T* by Bn = [0, xn] for all n.  It holds by Anderson and Hall (1963, Ch II, 

Theorem 1.10  and Ch. IV, Theorem 1.9) that we can assume that  xn ≥ xn+1 for all  n, or 

that  xn ≤ xn+1 for all n, without loss of generality. 

Case 1(xn ≥ xn+1 for all  n): We have Bn+1 ⊂ Bn  for all n by  xn ≥ xn+1 for all n.   Because  Bn 

≿ A for all n, we have by A3 that ⋂nBn ≿ A.   Hence it holds by ⋂nBn ⊂	[0, x*] and Lemma 

2(iv) that [0, x*] ≿ A.   

Case 2(xn ≤ xn+1 for all n) : We have Bn ⊂	Bn+1 for all n by xn ≤ xn+1 for all n.   Because  B1	

≿ A and B1 ⊂ ⋂nBn ⊂ [0, x*], it holds by Lemma 2(iv) that [0, x*] ≿ A.   

(ix)  Fix any A ∈ 𝔅1⋃𝔅2⋃𝔅S⋃𝔅T.   It holds by A1 and Lemma 2(i) that  A ≿ [0, 0], which 

implies that 0 ∈	{ x ∈ T : A ≿ [0, x] } ≠ ∅T.  Suppose that a sequence { xn } in T converges to 

x* and that  A ≿ [0, xn]  for all  n.  It suffices to prove that  x* ∈	T  and  A ≿ [0, x*].   Because  



 20 

T is closed, it holds that  x* ∈	T ≠ ∅T.  Define { Bn } in  𝔅T* by Bn = [0, xn] for all  n.  It holds 

by Anderson and Hall (1963, Ch II, Theorem 1.10  and Ch. IV, Theorem 1.9) that we can 

assume that  xn ≥ xn+1 for all  n, or that  xn ≤ xn+1 for all  n, without loss of generality. 

Case 1(xn ≥ xn+1 for all  n):  We have  Bn+1 ⊂ Bn  for all  n  by  xn ≥ xn+1  for all  n.   Because  

A ≿	B1  and  [0, x*] ⊂	B1, we have by Lemma 2(iv) that  A ≿ B1 ≿ [0, x*].   

Case 2(xn ≤ xn+1 for all  n): We have Bn ⊂	Bn+1 for all n by xn ≤ xn+1 for all n.   Because  A ≿	

Bn for all n, it holds by Lemma 2(vii) that  A ≿	⋃nBn.   Hence we have by 	[0, x*) ⊂	⋃nBn 	and 

Lemma 2(iv, iii) that A ≿ ⋃nBn ≿ [0, x*) ~ [0, x*].   (x) Fix any  A ∈ 𝔅S⋃𝔅T.   It holds by 

Lemma 2(viii, ix) that the two sets { x ∈ T: [0, x] ≿ A } and { x ∈	T: A ≿ [0, x] } are non-empty 

and closed in  T.   Because it holds by Smith (1983, Ch.7, Theorem 7.4) that  T  is connected, 

we have that { x ∈ T : [0, x] ≿ A }∩{ x ∈	T : A ≿ [0, x] } ≠ ∅T	 and there exists a real number x 

∈ T such that  A ~ [0, x]. The uniqueness of x ∈ T is ensured by Lemma 2(iv).           �	

Proof of Lemma 3: Because p is finitely additive on 𝔅S and An = An+1⋃(An/An+1) for all n, 

we have that p(An) ≥ p(An+1) ≥ 0 for all  n, which implies that { p(An) } is a bounded monotone 

sequence.  Hence it holds by Smith (1983, Ch.6, Theorem 2.2) that lim p(An) exists and lim 

p(An) ≥ 0.  Suppose that lim p(An) > 0, and set L = lim p(An) > 0.  It holds by (3) that  An ~ 

[0, p(An)].   Because p(An) ≥ L > 0 for all n, we have by Lemma 2(v) that An ~ [0, p(An)] ≿ [0, 

L] ≻ [0, 0] ~ ∅T for all n.  It holds by A1 and A3 that ⋂nAn ≻ ∅T	~ ∅S.   This contradicts with 

⋂nAn = ∅S.  Hence we have lim p(An) = 0.                                                                      �	

Proof of Lemma 4: (i) It holds by A6 that A2|A1 ~ B2|B1  and  A4|A3 ~ B4|B3.   Hence we 

have A2|A1 ≿ A4|A3 ⇔ B2|B1 ≿ B4|B3.  (i) Fix any A, B, C, D ∈ 𝔅1⋃𝔅2⋃𝔅S⋃𝔅T  such that 

A ⊂	B, C ⊂ D and B ~ D ≻ ∅T.  Because the contraposition of A ≻ C 	⇒	 A|B ≻ C|D is that 

C|D ≿ A|B  ⇒		C ≿ A, we have by A6 that C|D ≿ A|B  ⇒		C ≿ A.                              � 

Proof of Lemma 5: (i) Case 1 (a > g): It holds by 1 > (g/a) > 0 and A7 that  
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           [0, b]|[0, a] ~ [0, (g/a)b]|[0, (g/a) a] = [0, (g/a)b]|[0, g].                                   (5) 

It holds by A6 and Lemma 4(ii) that  

           [0, (g/a)b] ≿ [0, d]  ⇔		[0, (g/a)b]|[0, g] ≿ [0, d]|[0, g].                                       (6) 

Hence we have by (5), (6) and Lemma 2(v) that  

          [0, b]|[0, a] ≿ [0, d]|[0, g]  ⇔  [0, (g/a)b]|[0, g] ≿ [0, d]|[0, g]  

                                                      ⇔  [0, (g/a)b] ≿ [0, d]  ⇔  (g/a)b ≥ d  ⇔  b/a ≥ d/g.  

Case 2 (a < g): It holds by 0 < a/g < 1 and A7 that 

         [0, d]|[0, g]  ~ [0, (a/g)d]|[0, (a/g)g] = [0, (a/g)d]|[0, a].   

Hence we have by A6, Lemma 4(ii) and Lemma 2(v) that  

          [0, b]|[0, a] ≿ [0, d]|[0, g]  ⇔  [0, b]|[0, a] ≿ [0, (a/g)d]|[0, a] 

                                                      ⇔  [0, b] ≿	[0, (a/g)d]  ⇔  b ≥ (a/g)d  ⇔  b/a ≥ d/g.    

Case 3 (a = g): We have by A6, Lemma 4(ii) and Lemma 2(v) that  

          [0, b]|[0, a] ≿ [0, d]|[0, g]  ⇔		[0, b] ≿	[0, d]  ⇔  b ≥ d  ⇔  b/a ≥ d/g.    

(ii): Fix any A|B, C|D ∈ 𝒟 with A ⊂ B and C ⊂	D.  It holds by the definition of p and Lemmas 

2 and 3(i) that   

       A|B ≿ C|D ⇔ [0, p(A)]|[0, p(B)] ≿ [0, p(C)]|[0, p(D)] ⇔ p(A)/p(B) ≥ p(C)/p(D).        �  
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