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Abstract: In general, a successful decision maker need not have been endowed with the 

correct prior belief on the states of nature.   This paper, however, demonstrates that a 

simple Bayesian hypothesis test scheme has a good property: The probability of a testing 

agent to obtain the optimal outcome is maximized only if the prior belief of the agent 

coincides with the “correct” one, when the agent selects the Bayesian-optimal strategy 

with respect to his or her (own) prior belief.   Consequently, in an evolutional setting, 

where the Bayesian test is conducted repeatedly in parallel by many testing agents with 

diverse prior beliefs, if the fitness value is determined by the outcome, then only the agents 

endowed with the correct prior beliefs survive.   This result expains why an agent’s prior 

belief can be assumed to coincide with the correct one in the Bayesian hypothesis test, as 

if the agent knows the true probability that was assigned by nature. 

 

Key words: Bayesian hypothesis test, diagnostic test, prior belief, Neyman-Pearson 

lemma, natural selection,  Malthusian competition, Laplace’s principle  
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1. Introduction 

In Bayesian hypothesis tests of a simple hypothesis,1 the testing agent is not informed of 

the true probability of the events “the null hypothesis is true” or “the alternative 

hypothesis is true” assigned by the nature; however the agent has the personal prior 

beliefs (i.e., subjective probabilities) regarding the events.   Although the agent can 

implement the Bayesian-optimal test procedure for a given prior belief, which maximizes 

the (posterior) expected value of the test outcome conditioned on the sample (signal), there 

is one problem: At what level should such a prior belief be determined ?  

One possible answer is that such prior belief coincides with the “correct” belief, 

because the correct prior belief can be derived from past information in general by applying 

the statistical inference theory or Bayesian learning theory.2  Namely, before a test, if a 

sufficient number of repetitions of the same test have been conducted, and if the prior 

belief is revised based upon the sample (or signal) at each repetition, it is possible that the 

sequence of revised prior beliefs will converge to the correct one.  

Such a long-term learning process can be conducted when the agent has a sufficient 

information and memory regarding the samples.   Without assuming such an informa- 

tional assumption, this paper attempts to provide an alternative explanation for why the 

prior belief of the agent can be assumed to coincide with the correct one, by showing that 

                                        _ 

1   For the hypothesis tests in the philosophical literature, see Sober (2008, Ch.1).  Okasha 

(2013) and Lo and Zhang (2021) derive the Bayesian behavioral hypothesis (updating of prior 

and utility maximization based on posterior) as a property of long-run equilibria of 

evolutionary process in which non-Bayesian acts are permitted.   Zhang (2013) shows that non-

Bayesian behavioral hypothesis is derived when individual’s risk aversion is incorporated into 

the process.   In this paper, the Bayesian behavioral hypothesis is major premise; we do not 

introduce the non-Bayesian hypotheses in this paper. 
2  For statistical inference theory, see DeGroot and Schervish (2012, Ch 7).  In particular, for 

the theories of determiniation of the prior beliefs, see Berger, Bernardo and Sun (2015) and 

the references.   By way of the statistical inference, it is possible that a testing agent eventually 

knows the true probability with some awareness. 
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the testing agents with the correct prior belief are naturally selected in an evolutional test 

model.3 

We first demonstrate that a simple Bayesian hypothesis test scheme has the good 

property whereby the probability of the testing agent to obtain the optimal outcome is 

maximized only if the prior belief of the agent coincides with the correct one, when the 

agent selects the Bayesian-optimal test procedure with respect to his or her (own) prior 

belief, although a successful decision maker need not have been endowed with the correct 

prior belief in general.4   If the fitness value is determined by the test outcome in an 

evolutional setting, we can re-state this result as follows: The simple Bayesian hypothesis 

test scheme has a good property whereby a testing agent obtains the evolutionally optimal 

outcome only if the prior belief of the agent coincides with the correct one (Proposition 2). 

More precisely, the test scheme has this property under an additional assumption 

for the sample distribution, which is not introduced in the test theory.   However, we show 

that the additional assumption is necessary for the test scheme to have this property by 

constructing an example of a test in which the property does not hold if the assumption is 

removed. 

Second, we apply the aforementioned result to an evolutional test model in which 

the Bayesian test is conducted repeatedly in parallel by many testing agents.   We assume 

that the agents have the diverse initial prior beliefs, which can be derived from a  

                                                       _ 

3 As an explanation of such an assertion, our approach is closely related to the pragmatic 

explanation why an expert acts as if the expert knows the underlying information that is a 

crucial factor for determining the outcome of the act.   See Milton Friedman (1953, Section III) 

for example.  In the literature of evolutionary epistemology, Downes (2000) and Boudry and 

Vlerick (2014) consider the possibility that the true beliefs are naturally selected.  
4   In the horse races, the single win scheme has the property, but the double win scheme does 

not, because not only the full information for the true arrival order but also the full information 

for the other betters’ betting behaviors is required to obtain the best result in the double win 

scheme. 
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hypothetical experiment with the agents who base their decision on Laplace’s principle of  

insufficient reason.   Then, only the testing agents with the correct belief survive through 

the Malthusian competition (Proposition 3).    

Because a Bayesian hypothesis test can be regarded as a one-shot Bayesian 

hypothesis test that appears after many generations have occurred, the latter result 

(Proposition 3) provides an explanation for why the prior belief of the agent can be 

assumed to coincide with the correct one in a Bayesian hypothesis test, as if the agent 

knows the true probability assigned by the nature.5  

The next section introduces the Bayesian hypothesis test, and Section 3 introduces 

the Bayesian-optimal test procedure and shows its well-known characterization (Propo-

sition 1).   Section 4 evaluates the Bayesian-optimal test procedures objectively and states 

the main result of this paper (Proposition 2).   The dynamic process is introduced, and 

Proposition 3 is stated in Section 5. 

 

2.  The Bayesian hypothesis test  

This section introduces the (one-shot) Bayesian hypothesis test model with a testing agent.   

As in a standard textbook (Lesaffre and Lawson, 2012), we formulate the Bayesian test as 

a diagnostic test in which the testing agent (a medical doctor) conducts a test for the 

medical treatments of a patient randomly selected from a large population.   We make the 

following assumptions: 

A1: The patient contracts tuberculosis (TB), or the patient suffers from a normal cold (NC). 

Nature determines one of the two events, TB or NC, exclusively for all patients in a city.   

Let  p*  be the true probability of TB (the true prevalence rate), and we assume that  1 > 

p* > 0. 

                                                       _ 

5  Even though the agents know the true probability without awareness, this result provides a 

reason why the common prior assumption in the game theory holds for the agents. 
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A2: For a medical doctor, the patient is selected randomly from a large population of 

patients in the city.   The medical doctor does not know the true probability, p*.   But the 

medical doctor has a subjective probability that the patient is TB, which we call a prior 

belief.   Let P ≡ (0, 1)  be the set of all possible prior beliefs.  The two simple hypotheses 

are given as follows: 

         the null hypothesis (H0): The patient suffers from a normal cold, NC. 

         the alternative hypothesis (H1): The patient contracts tuberculosis, TB. 

A3: A medical doctor examines a patient by a TB check-up kit.  The check-up kit indicates 

a real number  x ∊ X ≡	ℝ, which is assumed to be the sample derived from the random 

device of which the probability distribution is  f(x|q0)  in case the patient suffers from a 

NC.  (This means that the sample size is one.)   Otherwise, we assume that the check-up 

kit indicates a real number  x ∊ X, which is assumed to be the sample derived from the 

random device of which probability destribution is  f(x|q1).   We assume that  f(x|q0)  and  

f(x|q1)  are differentiable functions of  x ∊ X,  and that  f(x|q0) > 0  and  f(x|q1) > 0  for all  

x ∊ X.   We define the likelihood ratio function  L(x)  by  L(x) ≡ f(x|q1)/f(x|q0), and we 

assume that  L(x)  is a monotone function of  x ∊ X.   Namely, we assume the following:  

           L΄(x) > 0  for all  x ∊ X, or  L΄(x) < 0  for all  x ∊ X.                                              (1) 

The monotonicity assumption is a standard assumption in the test theory.  See DeGroot 

and Schervish (2012, Ch.9, Definition 9.3.2). 

A4: The medical doctor selects one of the two acts, “Do not reject H0 and prescribe 

streptomycin” or “Reject  H0  and prescribe antipyretics”.   The former act is denoted by  d0  

and the latter act is denoted by  d1.   The selection of an act can be determined conditioned 

on the number in  X  given by A3, and the selection is represented by a function 

d : X → { d0, d1 }  such that  d−1(d0)	∊ 𝔅X, where  𝔅X  is the s-field of Borel subsets in  X.   The 

(completed) Lebesgue measure on  𝔅X  is denoted by  µ.   In the following, the selection of 
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act d is called a test procedure, and the set of all test procedures is denoted by D.  

A5: If the event selected by nature at A1 is consistent with the act  d(x)  selected at A4, then 

there is no error, otherwise an error occurred.   Concretely, there are two types of errors: 

             An error is happened if and only if d(x) = d1, when q = q0;  

             An error is happened if and only if d(x) = d0, when q = q1.  

The former errors are called Type I errors, and the latter errors are called Type II errors. 

Although the doctor remembers the act d(x) at A4, the doctor is not informed of the true 

state, (q = q0) or (q = q1), and the doctor can not guess if an error occurred or not, as shown 

 in Figure 2 below: 6  

                                        _    

6  This assumption implies that the Bayesian updating is conducted within the one-shot test 

and that the agents cannot use the genetically retained updating process.  If we assume the 

genetically retained updating or the existence of a central authority that attempts to infer the 

(true) posterior probabilities, it is not difficult to derive the (correct) Bayesian test procedure  
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A6: After the medical treatment, nature randomly determines the final outcome, “The 

patient is healthy” or “The patient is not healthy”.7    In case of no error, the probability of 

“The patient is healthy” is denoted by pa.   In case of errors, the probability of  “The patient 

is healthy” is denoted by pb.   We assume that  1 > pa > pb > 0.          

  

3.  The Bayesian-optimal test procedures 

In the test model constructed in the previous section, this section introduces the Bayesian  

                                        _    

as shown in Footnote 9 in Section 3 of this paper.   Moreover, in a one-shot test, if the agent 

can derive a large sample, the agent inferes the true hypothesis, making use of the Bayesian 

updating.   Because the sample size is always equal to one in this paper, it is very difficult for 

the agent to take such an inference strategy.   
7  In a standard textbook as DeGroot and Schervish (2012, Ch 9, Section 9.8), only the cost of a 

treatment (or decision) is introduced in order to evaluate the test procedure.   In this paper, 

the probabilities for good health mean the benefit of a treatment.   There is no essential 

defference, because minimizing the cost is equivalent to maximizing the benefit as shown in 

Section 3 of this paper.   We can derive almost the same results, even if we do not assume that 

the probabilities for the two types errors are the same.   
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behavioral assumption for the agent and the Bayesian-optimal test procedure.   Namely,  

for a given prior belief, using the realization of the sample and the updating rule of the 

belief, the testing agent computes the posterior probabilities, and the agent selects the test 

procedure to maximize the probability that the patient is healthy after the medical 

treatment.    

Concretely, the agent’s prior belief for the occurrence of the event that a patient 

has TB (q = q1) is specified by a subjective probability q in P.   For a prior belief q ∊	P, let  

P(qi|x: q) be the posterior probability of (q = qi) after receiving signal x ∊	X for i = 0, 1.8   

Using the Bayes theorem, we have the following well-known lemma: 

Lemma 1: P(θ!|x:q) = 	#∙%('|)!)
		#∙%('|)!)+(!–#)∙%('|)")		

		and		P(θ-|x:q)	=	 	(!–#)∙%('|)")
		#∙%('|)!)+(!–#)∙%('|)")		

		.					 

 

                                               d0             d1                   
                                                                                      
                                  q0     pa             pb    
                                  q1          pb             pa   

                                                                                      

                                                 Table 1. 

 

For a prior belief  q ∊	P, let  h(di|x: q)  be the posterior probability of “The patient is healthy” 

in case of the medical treatment di after receiving signal x ∊	X for i = 0, 1.  The following 

holds by the definition of P(qi|x:q) and A6:   

           h(d1|x:q)=P(q0|x:q)⋅pb +P(q1|x:q)⋅pa  and  h(d0|x:q)=P(q0|x:q)⋅pa+P(q1|x:q)⋅pb.  (2) 

As a direct consequence of Lemma 1 and Equation (2), we may posit another lemma:   

Lemma 2: (i) h(d1|x:	q)	= 			(1.q)⋅pβ∙f(x|θ0)+q⋅pα∙f(x|θ1)				

q∙f(x|θ1)+(1.q)∙f(x|θ0)
	and 	h(d0|x: q)	= 		(1.q)⋅pα∙f(x|θ0)+q⋅pβ∙f(x|θ1)			

q∙f(x|θ1)+(1.q)∙f(x|θ0)
	.  

                                        _   

8  Setting Xn = (x–(1/n), x+(1/n)), we define P(q1|x:q) by P(q1|x:q) = limn q∙P(Xn|q1)/P(Xn), where  

P(Xn|q1) = ∫Xn f(x|q1)dµ and P(Xn) = ∫Xn [q∙f(x|q1)+(1–q)∙f(x|q0)]dµ.   We can define P(q0|x:q) by 

almost the same manner.  
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 (ii) For all q ∊	P, h(d1|x: q)  and  h(d0|x: q)  are continuous for x∊	X.   

For prior belief q ∊	P, h(d(x)|x : q)  can be recognized as the probability of “The patient 

is healthy” of a test procedure  d ∊	D  after receiving signal  x.   The testing agent attempts 

to maximize the probabilities h(d(x)|x : q) (x ∊	X) by selecting the suitable test procedure 

d ∊ D.   We define the optimal test procedure d as follows: For a given prior belief q ∊	P, a 

test procedure d ∊	D is defined to be a Bayesian-optimal test procedure with respect to q if 

and only if:  

              h(d(x)|x : q) = max[h(d1|x : q), h(d0|x : q)] for almost all x ∊	X, 9              (3)  

which means that the probability of “The patient is healthy”, h(d(x)|x : q)  is maximal in 

the set  { h(d1|x : q), h(d0|x : q) }  for almost all  x ∊	X.   Equation (3) above specifies the 

property of a test procedure only, and there is no specification for a relative advantage 

over the other test procedures.  

For the next Proposition, we require some definitions and Lemmas.   For prior belief  

q ∊	P, let G(d: q) be the induced probability of  “The patient is healthy”  if a testing agent 

selects a test procedure d ∊ D.   Then, according to A5 and A6 the following holds:  

           G(d: q) = (1–q)⋅(1–a(d))⋅pa+(1–q)⋅a(d)⋅pb +q⋅(1–b(d))⋅pa+q⋅b(d)⋅pb ,                (4) 

where a(d) is the probability of Type I errors of d defined by α(δ) = ∫ f(x|θ-)dµ
	
2%!(3!)

			and 

b(d) is the probability of Type II errors of d defined by 	β(δ) = ∫ f(x|θ!)dµ
	
2%!(3")

.!-					 

                                                  _      

9  When  A ∊ 𝔅X  and  µ(A) > 0, a statement of  x  holds for almost all  x ∊ A  if and only if there 

exists B ⊂	A such that: (i) B	∊	𝔅X, (ii) µ(B) = µ(A), (iii) The statement of  x  holds for all  x ∊ B.   

The function w(x) ≡ max[h(d1|x : q), h(d0|x : q)] is Borel measurable, because w(x) is continuous 

on  X  by Lemma 2(ii) and Royden (1988, Problems 4 and 5 in Page 34, and Problem 44 in Page 

49).  Suppose that there exists a statistician who can collect the information from the many 

agents such as  (x, d, h), where  x  is a realization of the sample, d  is the decision, and h  is the 

final health condition of the patient.   If the statistician gets sufficient information, then the 

statistician can infer the probabilities h(d1|x : p*) and h(d0|x : p*), where p* is the true 

probability, and then derives the Bayesian-optimal test procedure with respect to p* without 

knowing the true probabilities  [f(x|q0), f(x|q1), pa, pb, p*]. 
10 The numerical value of  G(d: q)  can be interpreted as the value of the expected utility defined 

by G(d: q)∙(utility of a healthy state)+(1–G(d: q))∙(utility of a not healthy state), because the  
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Lemma 3: (i) For all q ∊	P and all d1, d2 ∊ Dq, it holds that G(d1: q) = G(d2: q).  (ii)  It holds 

that G(d: q) = ∫X h(d(x)|x : q)dlq, where lq is the measure of (X, 𝔅X) defined by lq(B) =   

∫B [q∙f(x|q1)+(1–q)∙f(x|q0)]dµ for all B ∊	𝔅X. 

For prior belief  q ∊	P, a test procedure d* ∊	D is defined to be a subjectively optimal 

test procedure with respect to q if and only if:  

             G(d*: q) ≥ G(d: q) for all d ∊	D.                                                                      (5) 

Statement (5) means that the test procedure d* maximizes the probability of “The patient 

is healthy”, which is computed from belief q.   According to (4), it holds that G(d: q) = pa–

[(1–q)⋅(pa–pb)⋅a(d)+q⋅(pa–pb)⋅ b(d)], which implies that the maximization of G(d: q) is 

equivalent to the minimization of the cost, C(d: q) ≡ (1–q)⋅(pa–pb)⋅a(d)+q⋅(pa–pb)⋅b(d), by 

which we can define the likelihood ratio test procedure in the standard way as in DeGroot 

and Schervish (2012, Ch.9, Section 9.2, Corollary 9.2.1).   Concretely, using the weights 

(1–q)⋅(pa–pb) and q⋅(pa–pb) for the probabilities of errors a(d) and  b(d), we can define the 

critical likelihood ratio at  q ∊	P by D(q) = (1–q)⋅(pa–pb)/q⋅(pa–pb) = (1–q)/q.   Then, the test 

procedure d* ∊	D is defined to be a likelihood ratio test procedure with respect to q if and 

only if:  

            d*(x) = d1 for almost all x ∊ C1(q);  d*(x) = d0 for almost all x ∊ C0(q),         (6)  

where C1(q) = { x ∊	X: f(x|q1)/f(x|q0) > D(q) } and C0(q) = { x ∊	X: f(x|q1)/f(x|q0) < D(q) }.   Let 

Dq be the set of all likelihood ratio test procedures with respect to q ∊	P. 

 

Lemma 4: For any prior belief  q ∊	P, the following assertions hold: (i) Dq ≠ ∅.  (ii) { x ∊	X: 

f(x|q1)/f(x|q0) > (1–q)/q } = { x ∊	X: h(d1|x: q) > h(d0|x: q) }, { x ∊	X: f(x|q1)/f(x|q0) < (1– q)/q } 

= { x ∊	X: h(d1|x: q) < h(d0|x: q) }, and { x ∊	X: f(x|q1)/f(x|q0) = (1–q)/q } = { x ∊	X: h(d1|x: q) 

= h(d0|x: q) }.  (iii) If d1 ∊ Dq and d2 ∊ D, then h(d1(x)|x: q) ≥ h(d2(x)|x: q) for almost all x ∊	X.  

(iv) If d1 ∊ Dq and d2 ∊ Dq, then h(d1(x)|x: q) = h(d2(x)|x: q) for almost all x ∊ X.   

                                              _     

utility value coincides with G(d:q), if we set  (utility of a healthy state) = 1 and (utility of a not 

healthy state) = 0.   
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(v)  Suppose that d1 ∊ Dq.   If d2 ∊ D satisfies d2 ∉	Dq, then there exists a compact subset  A  

in X such that µ(A) > 0 and h(d1(x)|x: q) > h(d2(x)|x: q) for all  x ∊ A.   (vi) If d1 ∊ Dq and d2 

∉	Dq, then G(d1: q) > G(d2: q).   

We have the following well-known proposition11: 

 

Proposition 1(Existence and characterization of the Bayesian-optimal test procedures):  

Select any q ∊ P and let q be the subjective belief of a testing agent.  

(i)  There exists a Bayesian-optimal test procedure with respect to q.  

(ii)  The following three statements are mutually equivalent: 

              (a)  The test procedure d ∊	D is Bayesian-optimal with respect to q. 

              (b)  The test procedure d ∊	D is subjectively optimal with respect to q. 

              (c)  The test procedure d ∊	D is a likelihood ratio test procedure with respect to q. 

(iii)  Let d* be a Bayesian-optimal test procedure with respect to q.   If a test procedure 

d is not a Bayesian-optimal test procedure with respect to q, then G(d*: q) > G(d: q). 

Proof of Proposition 1: (ii) First, we prove the assertion (ii) of Proposition 1. [(a) ⇒ (c)]: 

Because Dq ≠ ∅	by Lemma 4(i), we can assume that there exists d* ∊ Dq.   If d0 ∊	D is not a 

likelihood ratio test procedure with respect to q, then it holds by Lemma 4(v) that there 

exists a compact subset A in X such that µ(A) > 0 and h(d*(x)|x : q) > h(d0(x)|x : q) for all x 

∊ A, which implies that d0 ∊	D is not a Bayesian-optimal test procedure with respect to q.   

Taking the contraposition of this, we then find that a Bayesian optimal test procedure 

with respect to q is a likelihood ratio test procedure with respect to q.  [(c) ⇒ (b)]: Let d*  

be a likelihood ratio test procedure with respect to q.   Suppose that d* is not subjectively 

optimal.   It holds according to (5) that there exists d0  ∊	D and a compact subset A in X such 

that µ(A) > 0 and h(d0(x)|x : q) > h(d*(x)|x : q) for all x ∊ A.   However, it holds by Lemma  

                                           _     

11 Specifically, Proposition 1(ii)[(b)⇔(c)] is a re-statement of Neyman-Pearson lemma as in 

DeGroot and Schervish (2012, Ch.9, Theorem 9.2.1) and Lehmann and Romano (2005, Ch.3).   

For Proposition 1(ii)[(a)⇔(c)], see DeGroot and Schervish (2012, Ch.9, Section 9.8).    
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4(iii) that h(d*(x)|x : q) ≥ h(d0(x)|x : q) for almost all x ∊	A.   This is a contradiction, and we 

have that d* is subjectively optimal.  [(b) ⇒ (c)]: Because Dq ≠ ∅	by Lemma 4(i), we can 

assume that there exists d* ∊ Dq.  If d ∊	D is not a likelihood ratio test procedure with respect 

to q, then it holds by Lemma 4(vi) that G(d*: q) > G(d: q), which implies that d is not 

subjectively optimal with respect to q.   Taking the contraposition of this, we find that a 

subjectively optimal test procedure with respect to q is a likelihood ratio test procedure 

with respect to q.  [(c) ⇒ (a)]: Let d* be a likelihood ratio test procedure with respect to q.   

For any d ∊	D, it holds by Lemma 4(iii) that h(d*(x)|x : q) ≥ h(d(x)|x : q) for almost all x ∊	X, 

which implies that d* is a Bayesian-optimal test procedure with respect to q.  (iii) 

Proposition 1(iii) is a direct consequence of Lemma 4(vi) and Proposition 1(ii)[(a) ⇔ (c)].  

(i) Proposition 1(i) is a direct consequence of Proposition 1(ii) and Lemma 4(i).        � 

For any prior belief  q ∊ P, the existence of a Bayesian-optimal test procedure with 

respect to q is ensured by Proposition 1(i).   The optimality concept of (a) is defined by the 

best responses to possible signals, whereas the optimality concept of (b) is defined by the 

comparison of the values directly on the set of all test procedures.  In terms of the game 

theory, the former corresponds to the optimality in the behavioral strategies of extenstive 

form games; the latter corresponds to the optimality in the pure strategies of strategic 

form games.  Proposition 1(ii)[(a) ⇔	 (b)] shows that these optimality concepts are 

equivalent in the Bayesian test scheme.   Proposition 1(iii) strengthens the optimality 

condition by showing that the value of G in the Bayesian-optimal test procedure is strictly 

greater than the values of G in the non-optimal test procedures.  

 

Example 1: We assume that the conditional probability distributions, f(x|q0)  and  f(x|q1) 

in A3 are given by  f(x|q0) = A⋅exp[–(½)⋅x2]  and  f(x|q1) = A⋅exp[–(½)⋅(x–1)2]  for all  x ∊	X, 

where  A = (2π)−½  and  exp(y) = ey  for all  y ∊	X.    
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                                                         Figure 3 

 

The critical likelihood ratio at q ∊	P is given by D(q) = (1–q)/q.   Then it holds by (4) that  

the likelihood ratio function L(x) is given by L(x) = exp(x–(½)).   When q = 0.2, D(0.2) = 4,	 

and L−1(D(0.2)) = log(4)+0.5 ≒ 1.886.   

 

                                            

 

Example 2: We assume that the conditional probability distributions, f(x|q0)  and  f(x|q1)  

in A3 are given by f(x|q0) = A⋅exp[–(½)⋅x2] and f(x|q1) = A⋅exp[–(½)⋅x2]⋅g(x) for all x ∊	X, 

where A = (2π)–½ and g(x) = 2⋅ex/(ex+1)	for all x ∊	X.    

  Figure 4 

x 

L−1(D(0.4)) = 1.886 

x 

f(x|q0) f(x|q1) 

L(x) 

D(0.2) = 4 
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                                                         Figure 5 

 

The likelihood ratio function L(x) is given by L(x) = 2⋅ex/(ex+1).  

 

                                

                                                    Figure 6 

 

When q = 0.2, D(0.2) = 4, C1(0.2) = { x ∊	X: L(x) > 4 } = ∅ and C0(0.2) = { x ∊	X: L(x) < 4 } = 

X.   Hence a typical likelihood ratio test procedure d* in D0.2 is given by d*(x) = d0 for all x 

∊ X.   When q = 0.4, D(0.4) = 1.5 and L−1(D(0.4)) = log(3) ≒ 1.0986.   Hence a typical 

likelihood ratio test procedure d* in D0.4 is given by d*(x) = d1 for all x ≥ 1.0986; d*(x) = d0  

for all x < 1.0986. 

x 

f(x|q0) f(x|q1) 

D(0.2) = 4 

L(x) 

D(0.4) = 1.5 

L−1(D(0.4)) = 1.0986 

x 
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4. The test strategy concept and the evolutionally optimal test strategy 

It holds by Proposition 1 that if a testing agent attempts to maximize the subjective 

probability of the event that the patient is healthy, then the agent selects a likelihood ratio 

test procedure in  Dq, where  q  is the prior belief of the agent.   We assume the following: 

A7: The fitness value coincides with the (objective) probability of the event that the patient 

is healthy for each testing agent.    

Suppose that  p* ∊	P  is the true probability (the true prevalence rate).  If a testing agent 

selects a test procedure  d ∊ D, the fitness value of the agent denoted by  G(d: p*)  can be 

defined by A7 and (4) as follows:   

         G(d: p*) = (1–p*)⋅(1–a(d))⋅pa+(1–p*)⋅a(d)⋅pb +p*⋅(1–b(d))⋅pa+p*⋅b(d)⋅pb .             (7) 

 

Lemma 5: Set 𝛼∗(q) = ∫ f(x|θ-)dµ
	
5!(6) 		and 	𝛽∗(q) = ∫ f(x|θ!)dµ

	
5"(6) .  It holds that a*(q) 

= a(d) and b*(q) = b(d) for all q ∊	P and all d ∊ Dq.   

 

We define a function, F(⋅, p*) on P as follows:     

          F(q: p*) = (1–p*)⋅(1–a*(q))⋅pa+(1–p*)⋅a*(q)⋅pb  

                                                         +p*⋅(1–b*(q))⋅pa+p*⋅b*(q)⋅pb  for all q ∊	P.          (8) 

 

Lemma 6: (i) F(q: p*) = G(d: p*) for all q ∊	P and all d ∊ Dq.  (ii) F(q: p*)  is continuous  with 

respect to q ∊	P.   

The function F(⋅, p*) need not to be an injection on P.   The value of F(q: p*) coincides 

with the fitness value, when the testing agent takes the test procedure in Dq.   Later in 

this paper, Dq	is called a test strategy corresponding to q.   Test strategy Dq is defined to be 

an evolutionally optimal strategy with respect to p* if and only if:   

           F(q: p*) > F(r: p*)  for all r ∊ P  such that r ≠ q.                                               (9) 

Let us consider the two examples again: 

Example 1.(continued) Set p* = 0.4.  We can draw the graph of the function F(q: 0.4) for 

this example, using the argument for deriving the procedure  d*  in D0.2.   Therefore, D0.4 is 
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an evolutionally optimal test strategy with respect to p* = 0.4. 

 

                      

 

Example 2.(continued) Set p* = 0.2, pa = 0.3, pb = 0.1.   Following the arguments for 

deriving the procedure d* in D0.2 and (7), we have that Dq = Dr for all q, r <  d–1(2) = 1/3, and 

that: 

         F(q: 0.2) = p*⋅pb+(1–p*)⋅pa = 0.26        for all q < 1/3   

                       = 0.3–[0.16a*(q)+0.04b*(q)]  for all q ≥ 1/3. 

 

                   

 

Therefore, there is no evolutionally optimal test strategy with respect to p* in Example 2.  

q 

F(q	: 0.2) 

  Figure 8 

F(q; 0.4) 

q 

 

q = 0.4 

Figure 7 
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To ensure the existence of an evolutionally optimal test strategy with respect to the 

true probability (the true prevalence rate), p*, we additionally assume the following 

condition:  

A8: For any  y ∊ ℝ++, there exists some  x ∊ ℝ  such that  y = f(x|q1)/f(x|q0).        

Because A8 means the range of L(x) ≡ f(x|q1)/f(x|q0) coincides with the full set ℝ++, we call 

A8 the full range condition of the likelihood ratio.   Under the full range condition of the 

likelihood ratio, we obtain the following lemma: 

 

Lemma 7: Dq ∩	Dr = ∅ for all q, r ∊	P  such thatq ≠ r.   

 

As a main result of this paper, we make the following proposition: 

 

Proposition 2(Existence and characterization of the evolutionally optimal test strategy): 

Under all the assumptions stated above, the following assertions hold: 

(i)   There exists an evolutionally optimal test strategy with respect to  p*. 

(ii)  Test strategy Dq corresponding to a prior belief q is evolutionally optimal with respect 

to p* if and only if the prior belief q coincides with p*. 

(iii)  Let Dq be an evolutionally optimal test strategy with respect to p*.   Then, it holds 

that G(d*: p*) > G(d: p*) for all d* ∊ Dq and all d ∉ Dq. 

Proof of Proposition 2: (ii) Suppose that Dq is an evolutionally optimal test strategy with 

respect to p* and that q ≠ p* holds.   We have by (9) that  F(q: p*) > F(p*: p*).   If d ∊ Dq, it 

holds by Lemma 7 that d ∉	Dp*.   Fix any d* ∊ Dp*.   It holds by Proposition 1(iii) that  G(d*: 

p*) > G(d: p*), which implies that F(p*: p*) > F(q: p*).   This is a contradiction.   Therefore, 

we have that q = p*.   Conversely, suppose that q = p*.   Let r ∊ P be a prior belief such 

that r ≠ q.   Suppose that d ∊ Dr holds.   Then, it	holds by Lemma 7 that d ∉	Dp*.  Fix any  d* 

∊ Dp*.   We have by Proposition 1(iii) that G(d*: p*) > G(d: p*), which implies that  F(q: p*) 

> F(r: p*).   (i) Proposition 2(i) holds by Proposition 2(ii) and Lemma 4(i).  (iii)  Suppose 

that d* ∊ Dq and d ∉	Dq.  It holds by Proposition 2(ii) that  d* ∊ Dp*  and  d ∉	Dp*.  We have by 
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Proposition 1(iii) that G(d*: p*) > G(d: p*).                                                                   �   

For a true probability p*∊	P, Proposition 2(i) ensures that there exists an evolutionally 

optimal test strategy with respect to p*.   Proposition 2(ii) implies that the unique 

evolutionally optimal test strategy is Dp*.   Proposition 2(iii) implies that any test procedure 

in the evolutionally optimality strategy Dp* dominates all of the test procedures in (Dp*)c ≡ 

D/Dp*, which implies that Dp* dominates any mutation strategies. 

 

5. A dynamic process for selecting the testing agents with the correct 

prior beliefs 

This section introduces a dynamic test model in which the Bayesian test is conducted 

repeatedly in parallel by many medical doctors (testing agents), and it is shown that only 

the medical doctors with the correct prior belief survive through the Malthusian 

competition.   We additionally assume the following conditions: 

A9 (Time structure and population measures): Time is discrete and infinite, and it is 

denoted by t = 1, 2, ⋯	 .   Without specifying the set of medical doctors, the population 

measure of the doctors at t is represented by the measure pt on P for t = 1, 2, ⋯	. 

A10 (Initial condition): At the beginning of time 1, we assume that there is a continuum 

of doctors N1 = (0, 1), and that all the doctors in N1 form the initial priors based on Laplace’s 

principle of insufficient reason.   Concretely, we consider a hypothetical experiment in 

which each doctor determines the initial prior by drawing a lottery defined by the uniform 

probability distribution on the set of all possible priors.   Then, all the doctors draw the 

lottery independently and simultaneously.   As the result of the experiment, there is a 

population measure p1 on  P,12 which coincides with the Lebesgue µ on P.   The density 

function  h1  of p1 is defined as follows: 

             h1(q) = 1 for all q ∊	P.                                                                                 (10) 

                                                       _ 

12   Namely, we apply Laplace’s principle for an experiment with a double infinity of events and 

doctors. 
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A11 (Transition rule): At the beginning of period  t, for each medical doctor who is active 

at t, a patient is selected randomly from a large population of patients.   The patient is 

tested, and the doctor provides the medical treatment depending on the test result (signal) 

specified by A3.   If the patient’s final health condition is good, the doctor can leave an 

offspring, otherwise the doctor cannot leave an offspring.   At the end of period t, all the 

doctors enter retirement, and the offsprings will appear and become active doctors in the 

next period t+1.   We assume that the offspring’s prior belief coincides with the parent’s 

prior belief.   Moreover, we assume that the measure of each type of offspring is increased 

by the natural rate of population growth gt > 0.   Formally, we assume the following: 

           lim
7→+9

		:&'!(;(#,=))			
		:&(;(#,=))		

 = F(q; p*)⋅(1+gt) for all q ∊	P and all t = 1, 2, 3, ⋯	,           (11) 

where B(q, k) ≡	{	r ∊	P: ∣	r–q ∣ < (1/k) } for all q ∊	P and all k = 1, 2, 3, ⋯	.   A sequence of 

measures {	π>	}>?!+9 		satisfying (11) is called a dynamic process. 

 

Lemma 8:  Let {	π>	}>?!+9 		be a dynamic process, and let h1 be the Radon-Nikodým density 

function of p1.  Then all population measures pt (t = 2, 3, ⋯	)	are absolutely continuous with 

respect to the Lebesgue µ on P, and it holds that  

            		@&'!(#)			
		@&(#)		

 = F(q; p*)⋅(1+gt)  for all q ∊	P and all t = 1, 2, ⋯	, 

where ht be the density function of pt for t = 2, 3, ⋯	.      

We then make the following proposition: 

 

Proposition 3: Let p* be the true probability (true prevalence rate), and let p1 be the 

initial population measure on P.   Let  h1  be the density function of  p1, and suppose that 

all of the assumptions hold.   Then, a dynamic process is determined uniquely by the 

sequence of the density functions  {	ℎ>	}>?!+9 		such that   

          ht+1(q)	=	F(q;	p*)⋅(1+gt)⋅ht(q) > 0 for all q ∊	P and all t = 1, 2, ⋯	.                   (12) 

Moreover, it holds that lim
A→+9

@&(B)
		@&(C∗)		

 = 0 for all r ≠ p*.  
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Proof of Proposition 3: Euation (12) holds by Lemma 8, and according to Equation  (12) 

and Proposition 2 the following holds:  

             lim
A→+9

@&(B)
		@&(C∗)	

= lim
A→+9

	D	∏ F(B;	C∗)⋅(!+H()&
()! I

&
	∙@!(B)				

		D	∏ F(C∗;	C∗)⋅(!+H()&
()! I&	∙@!(C∗)		

																		    

                               	= lim
A→+9

[ 		F(B;	C∗)		
		F(C∗;	C∗)			

]A ∙ 	@!(B)	
	@!(C∗)		

= 0		for	all		𝑟 ≠ 	𝑝 ∗.			                              �   

Even if the difference in the fitness values between the medical doctors with correct beliefs 

and the other medical doctors is very small, it follows from Proposition 3 that the selection 

will appear as a consequence of a mathematical property of the exponential function.13  

Proposition 3 holds, independent of the natural rate of the population growth rate gt > 0, 

because the rate gt is assumed to be common for all types of agents.   Therefore, even if gt  

is variable over time, Proposition 3 still holds.   For example, gt = sin(t).  

Example 1.(continued): When p* = 0.4, pa = 0.3, pb = 0.1, set  h1(q) = 1 for all q ∊	P and  gt 

= 0.23 for all t.   Then, we define a function Ht by Ht(q) = pt(q)/pt(p*) for all q ∊	P and all t. 

 

    

 

                                                       _ 

13   See Nowak (2006, Ch.2, Section 2.2.1).   

 

Ht(q) 

q 

Figure 9 
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6.  Proof of lemmas 

This section proves Lemmas 1, 3, 4, 5 and 6.   We need some technical claims: 

Claim 1:  Let  g  be a bounded continuous function on  S  in  𝔅X  such that  g(x) > 0 for all  

x ∊ S.   For a given null set  A  in  𝔅X, the value of the Lebesgue integral of  g  on  S  

coincides with the value of the Lebesgue integral of  g  on  S/A. 

Proof of Claim 1: Claim 1 is a direct consequence of Royden (1988, Ch.4, Proposition 

5(iii), Page 82).                                                                                                               � 

Claim 2: For any  Z ∊ 𝔅X  such that  µ(Z) > 0, there exists a compact set  Z* ∊ 𝔅X  such that   

Z* ⊂  Z   and  µ(Z*) > 0. 

Proof of Claim 2: Fix any  Z ∊ 𝔅X  such that  µ(Z) > 0.  It holds by Royden (1988, 

Proposition 15, Ch.3, Page 63) or Ito (1984, Theorem 2.4.1, Ch.2, Page 61) that there exists 

a closed set  W ∊ 𝔅X  such that  W ⊂ Z   and  µ(W) > 0.   Set  Vn = [– n, n]  for all  n =  1, 2, 

⋯	.    If  W⋂Vn = ∅  for all  n,  then  µ(W) = 0, which is a contradiction.   Hence it holds that  

that  W⋂Vn* ≠ ∅  for some  n*.   Thus  Z* ≡ W⋂Vn*   is compact and  µ(Z*) > 0.            � 

 

Proof of Lemma 1: Setting  Xn = (x−(1/n), x+(1/n))  for all  n ≥ 2, it holds by the definition 

of  P(q1|x : p)  that  P(q1|x : q) =  lim
n→+∞

			q∙P(Xn|θ1)			
P(Xn)

, where  P(Xn|q1) =  ∫Xn f(x|q1)dµ  and  P(Xn) 

= ∫Xn [q∙f(x|q1) + (1 – q)∙f(x|q0)]dµ  =  q∙P(Xn|q1) + (1 – q)∙P(Xn|q0).   It follows from the 

mean-value theorem that there exists a sequence of  { xn }  such that: (i)  lim
n→+∞

xJ	 = 	x, (ii)  

xn ∊	 Xn  for all  n ≥ 2,  (iii)  p(Xn|qi) = f(xn|qi)(2/n)  for  i = 0, 1 and all  n ≥ 2.   Because  f   

is continuous, we have that  

         P(q1|x : q)  = lim
n→+∞

  q∙P(Xn|θ1)  

P(Xn)
	= lim

n→+∞

   q∙f(xn|θ1)∙(2/n)   

			q∙f(xn|θ1)∙(2/n) +	(!	–	#)∙f(xn|θ0)∙(2/n)   
    

                         	 	=	    q∙f(x|θ1)

	q∙f(x|θ1)#	(%	–	')∙f(x|θ0)   
 .                                                            

Using almost the same manner, we can prove that  P(q0|x : q) = (1 – q)∙f(x|q0)/[q∙f(x|q1) + 

(1 – q)∙f(x|q0)].                                                                                                               � 
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Proof of Lemma 3: (i) Lemma 3(i) is a direct consequence of (4) and Claim 1.  (ii) Setting  

k(x) ≡ q∙f(x|q1)+(1 – q)∙f(x|q0), X1 = d–1(d1)  and  X0 = d–1(d0), we have by (4) that 

         G(d: q) = (1 – q)⋅(1 – a(d))⋅pa + (1 – q)⋅a(d)⋅pb  + q⋅(1– b(d))⋅pa +	q⋅b(d)⋅pb   

                 = (1 – q)⋅pa∙∫	X₀f(x|q0)dµ  + (1 – q)⋅pb∙∫	X₁f(x|q0)dµ 

                                                           +  q⋅pa∙∫	X₁f(x|q1)dµ  + q⋅pb∙∫	X₀ f(x|q1)dµ  

                =  ∫	X₁	[(1 – q)⋅pb	∙f(x|q0)	+ q⋅pa∙f(x|q1)]dµ + ∫	X₀ [(1 – q)⋅pa∙f(x|q0) + q⋅pb∙f(x|q1)]dµ  

                =  ∫	X₁	h(d1|x : q)⋅k(x)dµ + ∫	X₀ h(d0|x : q)⋅k(x)dµ 

                =  ∫	X₁ h(d1|x : q)dlq + ∫	X₀ h(d0|x : q)dlq = ∫	X h(d(x)|x : q)dlq.                        � 

 

Proof of Lemma 4: Select any  q ∊ P  and let  q  be a subjective belief of a testing agent.   

(i)  Define a function  d : X → { d0, d1 }  by 

          d(x) = d1   for all  x ∊ { x ∊	X : f(x|q1)/f(x|q0) ≥ (1 – q) /q }; 

          d(x) = d0  for all  x ∊ { x ∊	X : f(x|q1)/f(x|q0) < (1 – q) /q }. 

It suffices to prove that  { x ∊	X : f(x|q1)/f(x|q0) < (1 – q)/q} ∊ 𝔅X, which is a direct conse-

quence of the continuity of  L(x) ≡ f(x|q1)/f(x|q0)  on  X.   (ii): Setting  k(x) ≡ q∙f(x|q1)+(1 – 

q)∙f(x|q0), it holds that  h(d1|x: q) – h(d0|x: q) = { [(1 – q)⋅pb∙f(x|q0)+q⋅pa∙f(x|q1)] – [(1 – 

q)⋅pa∙f(x|q0) +q⋅pb∙f(x|q1)] }/k(x) = [(pa – pb)/k(x)]∙[ q⋅f(x|q1) – (1 – q)	∙f(x|q0)].   Hence Lemma 

4(ii) holds by  (pa – pb)/k(x) > 0.   (iii) Fix any  d1 ∊ Dq  and  d2 ∊	D.  It follows from Lemma 

2(i) and Lemma 4(ii) that  d1  has the property: 

          d1(x) = d1  for almost all  x  in  { x ∊	X : h(d1|x: q) > h(d0|x: q) }. 

         d1(x) = d0  for almost all  x  in  { x ∊	X : h(d0|x: q) > h(d1|x: q) }. 

         Do either for all  x  in  { x ∊	X : h(d0|x: q) = h(d1|x: q) }  

This means that  h(d1(x)|x : q) = max[ h(d1|x : q), h(d0|x : q)]  for almost all  x ∊	X.   Because  

max[ h(d1|x : q), h(d0|x : q)] ≥ h(d2(x)|x : q)  for all  x ∊	X, we have that 

          h(d1(x)|x : q) ≥ h(d2(x)|x : q)  for almost all  x ∊	X.   

(iv)  Lemm 4(iv) is a direct consequence of Lemma 4(iii).   (v)  Fix any  d1 ∊ Dq, and suppose 

that  d2 ∊ D  satisfies  d2 ∉	Dq.  
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Case I( µ(C1(q)) > 0  and  µ(C0(q)) > 0):   We need a claim:  

Claim 3:  At least one of the following two statements holds: 

      (a) There exists  A*∊ 𝔅X  such that  A* ⊂ C1(q), µ(A*) > 0  and  d2(x) = d0   for all  x ∊ A*. 

      (b) There exists  B*∊ 𝔅X such that  B* ⊂ C0(q), µ(B*) > 0  and  d2(x) = d1   for all  x ∊ B*. 

Proof of Claim 3: Set  A* = C1(q) ⋂	{ x ∊	X : d2(x) = d0 }  and  B* = C0(q) ⋂	{ x ∊	X : d2(x) = 

d1 }.   If  µ(A*) = 0  and  µ(B*) = 0, then  µ(C1(q) ⋂	{ x ∊	X : d2(x) = d1 }) = µ(C1(q))  and  µ(C0(q) 

⋂	{ x ∊	X : d2(x) = d0 }) = µ(C0(q)).   It holds by  µ(C1(q)) > 0  and  µ(C0(q)) > 0 that 

         d2(x) = d1  for almost all  x ∊ C1(q)  and  d2(x) = d0  for almost all  x ∊ C0(q). 

Hence it holds that  d2 ∊ Dq, which is a contradiction.   Thus we have that  µ(A*) > 0  or  

µ(B*) > 0.                                                                                                                         � 

 

First we prove Lemma 4(v) in the case (a) in Claim 3.   It holds by Claim 2 that there exists 

a compact subset  A  in  C1(q)  such that  µ(A) > 0  and  d2(x) = d0   for all  x ∊ A.   It holds by 

Lemma 4(ii) and Lemma 2(i) that 

            h(d1|x: q) > h(d0|x: q)  for all  x ∊ A.                                                                 (13) 

It holds by the definition of  d1  that 

            d2(x) = d0  and  d1(x) = d1  for almost all  x ∊ A.                                                 (14) 

We have by (13) and (14) that  h(d1(x)|x : q) > h(d2(x)|x : q)  for almost all  x ∊ A.  It holds 

by Claim 2 that there exists a compact subset  A+  in A  such that  µ(A+) > 0  and  h(d1(x)|x : 

q) > h(d2(x)|x : q)  for all  x ∊ A+.   Second, we can prove Lemma 4(v) in the case (b) by 

almost the same manner.  

Case II (µ(C1(q)) > 0  and  µ(C0(q)) = 0):   We need a claim:  

Claim 4: There exists  A* ∊ 𝔅X  such that  A* ⊂ C1(q), µ(A*) > 0  and  d2(x) = d0   for all  x ∊ 

A*. 

Proof of Claim 4:  Set  A* = C1(q) ⋂	{ x ∊	X : d2(x) = d0 }.   If  µ(A*) = 0, then  µ(C1(q) ⋂	{ x 

∊	X : d2(x) = d1 }) = µ(C1(q)).   It holds by  µ(C1(q)) > 0  that  d2(x) = d1  for almost all  x ∊ C1(q).   

Hence it holds that  d2 ∊ Dq, which is a contradiction.   Thus we have that  µ(A*) > 0.        �   
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It holds by Claim 4 and Claim 2 that there exists a compact subset  A  such that  A* ⊂ 

C1(q), µ(A) > 0  and  d2(x) = d0   for all  x ∊ A.  It holds by Lemma 4(ii) and Lemma 2(i) that   

            h(d1|x: q) > h(d0|x: q)  for all  x ∊ A.                                                               (15) 

It holds by the definition of  d1  that 

            d2(x) = d0  and  d1(x) = d1  for almost all  x ∊ A.                                                (16) 

We have by (15) and (16) that  h(d1(x)|x : q) > h(d2(x)|x : q)  for almost all x ∊ A. It holds by 

Claim 2 that there exists a compact subset  A+  in A  such that  µ(A+) > 0  and  h(d1(x)|x : 

q) > h(d2(x)|x : q)  for all  x ∊ A+. 

Case III (µ(C1(q)) = 0  and  µ(C0(q)) > 0): We can prove Lemma 4(v) in this case by almost 

the same manner used in the proof of the case II above.  

Case IV(µ(C1(q)) = 0  and  µ(C0(q)) = 0):  In this case, f(x|q1)/f(x|q0) = (1 – q)/q  for all  x.   

Hence we have that  Dq = D,  which implies that there is no  d2 ∊ D  which satisfies  d2 ∉	Dq.   

Thus Lemma 4(v) holds in this case.   (vi)  Lemm 4(vi) is a direct consequence of Lemma 

3(ii) and Lemma 4(iii, v).                                                                                                    � 

 

Proof of Lemma 5: Lemma 5 holds by (1), (4) and (6).                                                  � 

 

Proof of Lemma 6: (i) Lemma 6(i) holds by (8) and Lemma 5.   (ii) First, we prove that  

a*(q)  is continuous on  P.   Fix any  q ∊	P.   

Case I (C1(q) ≠ ∅):  We have by (1) that  C1(q)  is an interval  (−∞, c(q)]  or   [c(q), +∞), 

where  c(q) = L−1(D(q)).    Becasue  D(q) = (1 – q)/q  and  L−1 are continuous, c(q) = L−1(D(q))  

is continuous at  q.   Hence it holds by the absolute continuity of the definite integral that  

a*(p)  is continuous.     

Case II (C1(q) = ∅):  If there exists an open interval  Q  in  P  such that  q ∊	Q  and  C1(r) = 

∅  for all  r ∊	Q, then  a*(r) = 0  for all  r ∊	Q, which implies the continuity of  a*(q).   Hence, 

we can assume that there exists a sequence  { qn }  such that  limn qn = q   and  a*(qn) > 0  

for  all  n.   Because a*(qn) > 0 implies  C1(qn) ≠ ∅,	 we have by (1) that  C1(qn)  is an interval  

(−∞, c(qn)]  or   [c(qn), +∞), where  c(q) = L−1(D(q)).  If  C1(qn) = (−∞, c(qn)], we have by C1(q) 
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= ∅		that lim c(qn) = −∞  and   lim a*(qn) = 0 = a*(q).   Otherwise, we have by C1(q) = ∅		that 

lim c(qn) = +∞  and   lim a*(qn) = 0 = a*(q).                                                                     � 

 

Proof of Lemma 7: Because  p ≠ q  implies (1 – p)/p ≠ (1 – q)/q, Lemma 7 holds by A8 and 

the continuity of  L(x).                                                                                                       � 

 

Proof of Lemma 8: Let  {	π>	}>?!+9 	 be a sequence of measures satisfying (11), and let  ht  be 

the density function satisfying (12) for  t = 1, 2, 3, ⋯	.   Fix t = 1 and select any  q ∊	P.  Then 

it holds by the definition of the Radon-Nikodym density (Shilov and Gurevich, 2012, 

Sec.10.1, (3)) and (11) that    

            		
			 )*+
'→)*

		,-(/(0,2))			
		4(/(0,2))		 			

	 )*+
'→)*

		,5(/(0,2))			
		4(/(0,2	))		

	= lim
,→#.

		/-(0(',2))			
		/5(0(',2))		

  =  F(q; p*)⋅(1+g1).   

Because it holds by Lemma 6 and (12) that  lim
,→#.

	/-(0(',2))		
		3(0(',2))		

 = F(q; p*)⋅(1+g1)⋅h1(q)  for all  q 

∊	P  and  F(q; p*)⋅(1+g1)⋅h1(q)  is continuous and positive on  P, p2  is absolutely continuous 

with respect to the Lebesgue  µ  on  P.   Using an induction argument, we have that all 

population measures  pt (t = 2, 3, ⋯	 ) 	 are absolutely continuous with respect to the 

Lebesgue  µ  on  P, and it holds that  		@&'!(#)		
		@&(#)		

  = F(q; p*)⋅(1+gt)  for all  q ∊	P  and all  t = 1, 

2, ⋯,  where  ht  be the density function of  pt  for t = 2, 3, ⋯	 .                                      � 
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