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Abstract: This paper considers an evolutional process, where a simple Bayesian 

hypothesis testing is conducted repeatedly in parallel by many testing agents with 

diversified prior beliefs.   Assuming that each of the agents selects a (one-shot) testing 

strategy to maximize the fitness value believing that the (own) prior belief is true, it is 

shown that only the testing agents endowed with the correct prior beliefs are survived 

eventually.   This result provides an explanation for why the prior belief of the agent can 

be assumed to coincide with the correct one in the Bayesian hypothesis testing, as if the 

agent knows the true probability assigned by the nature, without introducing the long-

term learning processes. 
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1. Introduction 

In Bayesian hypothesis testing for simple hypothesis,1 the testing agent is not informed of 

the true probability on the events "the null hypothesis is true" or "the alternative 

hypothesis is true" assigned by the nature, but the agent has the personal prior beliefs 

(subjective probabilities) on the events.   Although the agent can implement the Bayesian 

optimal testing procedure for a given prior belief, which maximizes the (posterior) expected 

value of the testing outcome conditioned on the signals, there is a problem of at what level 

should such a prior belief be determined.  

One possible answer is that the prior belief coincides with the correct one, because 

the correct prior belief can be derived from past information in general, applying the 

statistical inference theory or Bayesian learning theory.2  For example, before a test, if 

sufficiently many times of repetitions of the same test have been conducted, and if the 

prior belief has revised based on the signal at each repetition, it is possible that the 

sequence of revised prior beliefs converges to the correct one.  

Without introducing such a long-term learning process, this paper atempts to 

provide an alternative explanation for why the prior belief of the agent can be assumed to 

coincide with the correct one, by showing that the testing agents with correct prior beliefs 

are naturally selected in an evolutional process, where a Bayesian testing is conducted 

                                    _ 

1   For the hypothesis testings in the philosophical literature, see Sober (2008, Ch.1).  Okasha 

(2013) and Lo and Zhang (2021) derive the Bayesian behavioral hypotheses (up-dating of prior 

and utility maximization based on posterior) as the properties of long-run equilibria of 

evolutionary processes in which non-Bayesian acts are permitted.   Zhang (2013) shows that 

non-Bayesian behavioral hypotheses is derived when individual's risk aversion is incorporated 

into the processes.  In this paper, the Bayesian behavioral hypotheses are major premises, and 

all agents are assumed to be Bayesian agents throughout this paper. 

2   For the statistical inference theory, see DeGroot and Schervish (2012, Ch 7).   For the theories 

of determiniation of the prior beliefs, see Berger, Bernardo and Sun (2015) and the references.  
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repeatedly in parallel by many testing agents.3   

First, we consider the one-shot Bayesian testing model with just one testing agent.   

Because the simple Bayesian hypothesis testing model above covers a class of the 

diagnostic testings, as in a standard textbook (Lesaffre and Lawson, 2012), we formulates 

the one-shot Bayesian testing as a diagnostic testing, where testing agent (medical doctor) 

conducts a testing with medical treatments for the patient randomly selected in a large 

population.   For an informational assumptuion, we assume that the agent knows neither 

the true prevalence rate nor the true initial disease states of the patients even after the 

medical treatments. But we assume that a testing agent is informed of the final health 

state of the patient after the medical treatment.4     

Concretely, for a given prior belief q, we introduce the concept of the Bayesian 

optimal test procedure with respect to  q, which is defined by the test procedure maximi- 

                                                       _ 

3  As a explanation of such an assertion, our approach is closely related to the pragmatistic 

explanation why an expert acts as if the expert knows the seemingly unknowable information 

which is a crucial factor determining the outcome of the act.   See Milton Friedman (1953, 

Section III) for example.  Moreover, the result also provides a reason why the common prior 

assumption in the game theory holds for the testing agents. 

4   Consequently, in the evolutional model, this assumption implies that the Bayesian up-dating 

of belief is conducted within the one-shot testing and the agents cannot use the genetically 

retained up-dating process.  If we assume the genetically retained up-dating process or the 

existence of the central authority which infer the (true) posterior probabilities, it is not difficult 

to derive the (correct) Bayesian testing procedure as shown in Footnote 8 in Section 3 of this 

paper.   Moreover, in a one-shot testing, if the agent can derive a large sample, the agent inferes 

the true hypothesis, making use of the Bayesian updating or the limiting method of the relative 

frequency based on Reichenbach's principle.  Then, we assume that each agent derives a small 

sample in the one-shot testing in this paper.    
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zing the subjective (posterior) probability of the event that the patient is healthy.5   For 

any prior belief  q, it is well-known that the subjectively optimal test procedure exists and 

that the Bayesian optimal test procedure is a likelihood ratio test procedure (Theorem 

1(i,ii)).   

Moreover, for the given true probability p, we introduce the concept of the 

objectively optimal test procedure with respect to  p, which is defined by the test procedure 

maximizing the objective probability of the event that the patient is healthy, based on the 

true probability  p.   Assuming that, for each probability  q ∊	(0, 1), there exists a testing 

agent whose subjective prior belief coincides with  q, we prove that the Bayesian optimal 

testing procedure with respect to  q  is objectively optimal if and only if the prior belief  q  

coincides with the true probability  p (Theorem 2).   This implies that the hypothesis 

testing scheme has a nice property that a Bayesian optimal testing procedure is objectively 

optimal only if the agent's prior belief coincides with the correct one. 

Second, we introduce the evolutional testing model, where the Bayesian testing is 

conducted repeatedly in parallel by many testing agents, and we assume that the agents 

have the diversified initial prior beliefs, which are individually preserved through the 

generations.   Moreover, we assume that the fitness value of a medical doctor is determined 

by the individual achievement of the agent.   Specifically, we assume that the fitness value 

coincides with the objective probability of the event that the patient is healthy.   Then, it 

is shown that only the testing agents with correct beliefs about the probability (the preva- 

lence rate) are survived eventually, if the population ratio of such rational agents is not 

neglibible at the initial state of the model  (Theorem 3).   The natural selection result is 

                                                       _ 

5   In a standard textbook as in DeGroot and Schervish (2012, Ch 9, Section 9.8), the cost of a 

treatment (or decision) is introduced in order to evaluate the testing procedure numerically.   

In this paper, we introduce the benefit of a treatment.   There is no essential defference, 

because minimizing the cost is equivalent to maximizing the benefit as shown in Footnote 9 in 

Section 3 of this paper. 
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derived as a consequence of the Malthusian competition among the testing agents.   

Namely, even if the difference of the fitness values between the testing agents with correct 

beliefs and the other agents is very small, the selection will appear as a consequence of a 

mathematical property of the exponential function, which specifies the growth rate. 6   Note 

that Theorem 3 holds, independent of the natural rate of population growth  d  > 0, which 

is assumed to be common for all types of agents.  

Because a Bayesian hypothesis testing can be regarded as a one-shot Bayesian 

hypothesis testing which appears after many generations have occured, the latter result 

(Theorem 3) provides an explanation for why the prior belief of the agent can be assumed 

to coincide with the correct one in a Bayesian hypothesis testing, as if the agent knows the 

true probability assigned by the nature.    

 The next section introduces the Bayesian hypothesis testing, and Section 3 

introduces the Bayesian optimal test procedure and re-states its characterization theorem 

(Theorem 1).   Section 4 evaluates the Bayesian optimal test procedures objectively and 

shows the main theorem of this paper (Theorem 2).   The dynamic process is introduced 

and Theorem 3 is shown in Section 5. 

 

2.  The (one-shot) Bayesian hypothesis testing  

This section introduces the (one-shot) Bayesian hypothesis testing model with a testing 

agent in a human health care setting.  The model can be specified by the following 

conditions: 

R1: The patient contracts tuberculosis (TB), or the patient suffers from a normal cold (NC).   

The nature determines one of the two events, TB or NC exclusively for all patients in a 

city.   The true probability of TB (true prevalence rate) is denoted by  p*.   We assume that 

            p* ∊	(0, 1),                                                                                                       (1) 

                               ___________  ____________   

6   See Nowak  (2006, Ch.2,  Section 2.2.1).   
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R2: For a medical doctor, a patient is selected randomly from a large population of patients 

in the city.   The medical doctor does not know the true probability  p*.   But each medical 

doctor has a subjective probability of the patient is TB (before the test), which we call a 

belief.   The set of all possible beliefs are denoted by  P ≡ (0, 1).  The two simple hypotheses 

are given by: 

         the null hypothesis (H0): The paitient suffers from a normal cold, NC. 

         the alternative hypothesis (H1): The patient contracts tuberculosis, TB. 

       

R3: The medical doctor examins the patient by a tuberculosis check-up kit.  The check-up 

kit indicates a real number  x ∊ X ≡	ℝ, which is assumed to be the sample mean for size  m 

from the random device of which probability destribution is  f(x|q0)  in case that the 

paitient suffers from a normal cold  (q = q0).   Otherwise (q = q1), we assume that the check-

up kit indicates a real number  x ∊ X, which is assumed to be the sample mean for size m  

from the random device of which probability destribution is  f(x|q1).  We assume that:  

          f(x|q0)  and  f(x|q1)  are continuous functions of  x ∊ X,                             (2) 

and that 

          f(x|q0) > 0  and  f(x|q1) > 0  for all x ∊ X,                                                     (3)  

R4: The medical doctor selects one of the two acts,  "Not reject H0 and prescribe 

streptomycin" or "Reject  H0  and prescribe antipyretics".   The former act is denoted by  d0  

and the latter act is denoted by  d1.   The selection of act can be determined conditioned on 

●

●

●

The	state	
of	patient

p*

1-p*

The	patient	suffers	from	a	normal	cold	(NC)	: θ = θ0

The	patient	contracts	tuberculosis	(TB) : θ = θ1

Figure 1
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the number in  X = ℝ  given by R3, and the selection is represented by a function  d : X → 

{ d0, d1 } such that  d−1(d0)	∊ %X, where  %X  is the s-field of Borel subsets in  X.   In the 

following, a selection of act  d  is called a testing procedure.   Let  D  be the set of all testing 

procedures.   

R5: If the event selected by the nature at  R1  is consistent to the act  d(x)  selected at  R4, 

then there is no error, otherwise an error is happended.   Concretely, there are two types 

of errors: 

             An error is happended if and only if  d(x) = d1, when q = q0;  

             An error is happended if and only if  d(x) = d0, when q = q1.  

The former errors are called Type I errors, and the latter errors are called Type II errors. 

Although the doctor remenbers the act  d(x)  at R4, the doctor is not informed of the true 

state, (q = q0)  or  (q = q1), and the doctor can not guess an error is happended or not.  

R6: In case of the type I error is happended, the nature randomly determine the final 

outcome, "The paitient is healthy" or  "The paitient is not healthy".  The probability of  

"The paitient is healthy" is denoted by  pa.   In case of the type II error is happended, the 

probability of  "The paitient is healthy" is denoted by  pb.   In case of no error is happended, 

the nature determine the final outcome "The paitient is healthy" certainly.   We asume 

that 

                    1 > pa > pb  > 0 .                                                                                   (4) 

 

●

●

●Type I error
(q = q0 and  d(x) = d1) 

1−pa

pa

The patient is not healthy.

The patient is healthy.

Figure 2
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3.  The Bayesian optimal testing procedures 

In the testing model constructed in the previous section, this section introduces the 

Bayesian behavioral assumption for the agent to define the Bayesian optimal testing 

procedure.   Namely, for a given prior belief, using the realization of the sample and its 

up-dating rule, the testing agent computes the posterior probabilities, and the agent 

selects the testing procudure to maximize the probability that the patient is healthy after 

the medical treatment.    

We assume that the agent's prior belief for the occurrence of the event that a patient 

is  TB (q = q1)  is specified by a subjective probability  q  in  P.   For a given a prior belief  

q ∊	P, the posterior probability for (q = qi) after recieving the signal  x ∊	X  is denoted by  

P(qi|x : q).7   Using the Bayes theorem, we have the following well-known lemma: 

 

                                        _     

7  Setting  Xn = (x − (1/n), x + (1/n)), we define  P(q1|x: q)  by  P(q1|x : q) = limn  q∙P(Xn|q1)/P(Xn), 

where  P(Xn|q1) = ∫Xn f(x|q1)dµ  and  P(Xn) = ∫Xn [q∙f(x|q1) + (1 – q)∙f(x|q0)]dµ.   We can define  

P(q0|x: q)  by almost the same manner.  

 

●

●

●Type II error
(q = q1 and  d(x) = d0) 

1−pb

pb

The patient is not healthy.

The patient is healthy.

Figure 3
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Lemma 1: P(q1|x : q) = q∙f(x|q1)/[q∙f(x|q1) + (1 – q)∙f(x|q0)]  and  P(q0|x : q) = (1 – q)∙	
f(x|q0)/[q∙f(x|q1) + (1 – q)∙f(x|q0)]. 

 

                                               d0             d1                   
                                                                                      
                                  q0     1               pa 
                                  q1          pb              1   

                                                                                     
 
                                               Figure 4 

 

For a given prior belief  q ∊	P, the posterior probability of "the paitient is healthy" in case 

of the medical treatment  di (i=1, 2)  after recieving the signal  x ∊	X, denoted by  h(di|x: 

q), are defined by  

       h(d1|x: q) = P(q0|x: q)⋅pa +P(q1|x: q)⋅1  and  h(d0|x: q) = P(q0|x: q)⋅1+P(q1|x: q)⋅pb.  (5) 

For a given prior belief  q ∊	P, the probability of "the paitient is healthy" of a testing 

procedure  d ∊	D  after recieving the signal  x  can be denoted by  h(d(x)|x : q).   As a direct 

consequence of Lemma 1 and (5), we have a lemma:      

 

Lemma 2: (i)  h(d1|x: q) = [(1 – q)∙f(x|q0)⋅pa + q∙f(x|q1)]/[q∙f(x|q1) + (1 – q)∙f(x|q0)]  and 

h(d0|x: q) = [(1 – q)∙f(x|q0)  + q∙f(x|q1)	⋅pb]/[q∙f(x|q1) + (1 – q)∙f(x|q0)].  

(ii) For a given  q ∊	P, h(d1|x: q)  and  h(d0|x: q)  are continuous for  x ∊	X.   

 

The testing agent atempts to maximize the probabilities  h(d(x)|x : q) (x ∊	X)  by selecting 

the suitable testing procedure  d 	 in  D.   Namely we can define the optimal testing 

procedure  d  as follows: For a given prior belief  q ∊	P, a test procedure  d ∊	D  is defined to 

be a Bayesian optimal test procedure with respect to  q  if and only if the probability of "The 

paitient is healthy", h(d(x)|x : q)  is maximal in the set  { h(d1|x : q), h(d0|x : q) }  for almost  
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all possible  x ∊	X. 8   Namely, it holds that   

            h(d(x)|x : q) =  max[ h(d1|x : q), h(d0|x : q)]  for almost all  x ∊	X. 8 

The optimality condition above specifies a property of a test procedure only, and there is 

no condition for relative advantage over the other test procedures.   

For the next theorem, we need some definitions and lemmas.   For a given prior 

belief  q ∊	P, if a testing agent selects a testing procedure  d ∊ D, the induced (subjective) 

probability of  "The paitient is healthy", denoted by  G(d: q), is defined by  

           G(d: q) = (1 – q)⋅(1 – a(d))⋅1 + (1 – q)⋅a(d)⋅pa  + q⋅(1– b(d))⋅1 +	q⋅b(d)⋅pb ,           (6) 

where  a(d)  is the probability of Type I errors of  d  defined by α(δ) = ∫ f(x|θ!)dµ	
#!"(%") 			and  

b(d)  is the probability of Type II errors of  d  defined by 	β(δ) = ∫ f(x|θ')dµ	
#!"(%#) 	 .(					 

 

                                                  _      

8  When  A ∊ $X  and  µ(A) > 0, a statement of  x  holds for almost all  x ∊ A  if and only if there 

exists  B ⊂	A  such that: (i) B	∊	$X, (ii) µ(B) = µ(A), (iii) The statement of  x  holds for all  x ∊ B.   

The function  w(x) = max[h(d1|x : q), h(d0|x : q)]  is Borel measurable, because  w(x)  is 

continuous on  X  by Lemma 2(ii) and Royden (1988, Problems 4 and 5 in Page 34, and Problem 

44 in Page 49).  Suppose that there exists a statistician who can collect the information from 

the many agents such as  (x, d, h), where  x  is a realization of the sample, d  is the decision, 

and h  is the final health condition of the patient.   If the statistician gets sufficiently many 

such information, then the statistician can infer the probabilities  h(d1|x : p*)  and  h(d0|x : p*), 

where  p*  is the true probability, and then derives the Bayesian optimal test procedure with 

respect to  p* without knowing the true probabilities  [f(x|q0), f(x|q1), pa, pb, p*]. 

9 The numerical value of  G(d: q)  can be interpreted as the values of the expected utilities 

defined by  G(d: q)∙(utility of healthy state) + (1 – G(d: q))∙(utility of not healthy state), because 

the values coincide with  G(d: q), if we set  (utility of healthy state) = 1  and  (utility of not 

healthy state) = 0.   Moreover, because  G(d: q) = (1 – q)⋅(1 – a(d))⋅1 + (1 – q)⋅a(d)⋅pa + q⋅(1– 

b(d))⋅1 +	q⋅b(d)⋅pb   = 1 – [(1 – q)⋅(1 – pa)⋅a(d) + q⋅(1– pb)⋅b(d)], the maximization of G(d: q) is 

equivalent to the minimization of the cost  C(d: q) ≡ [(1 – q)⋅(1 – pa)⋅a(d) + q⋅(1– pb)⋅b(d)].  
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Lemma 3: (i) For all  q ∊	P  and all  d1, d2 ∊ Dq, it holds that  G(d1: q) = G(d2: q).   

(ii)  G(d: q) = ∫	X h(d(x)|x : q)dlq, where  lq  is the measure on  (X, %X)  defined by  lq(B) =  

∫B [q∙f(x|q1) + (1 – q)∙f(x|q0)]dµ  for all  B ∊	%X.  

 

For a given prior belief  q ∊	P, a test procedure  d* ∊	D  is called a subjectively optimal test 

procedure with respect to  q  if and only if  G(d*: q) ≥ G(d: q)  for all  d ∊	D.   For a given prior 

belief  q ∊	P, a test procedure  d* ∊	D  is defined to be a likelihood ratio test procedure with 

respect to  q  if and only if  

          d*(x) = d1   for almost all  x ∊ C1(q);  d*(x) = d0  for almost all  x ∊ C0(q), 

where  C1(q) = { x ∊	X : f(x|q1)/f(x|q0) > (1 – q)⋅(1 – pa)/q⋅(1 – pb) }  and  C0(q) = { x ∊	X : 

f(x|q1)/f(x|q0) < (1 – q)⋅(1 – pa)/q⋅(1 – pb) }.   Let  Dq  be the set of all likelihood ratio test 

procedures with respect to  q ∊	P. 

 

Lemma 4: For any prior belief  q ∊	P, the following assertions hold: 

(i)   Dq ≠ ∅.   

(ii)  If  d1 ∊ Dq  and  d2 ∊ D, then  h(d1(x)|x : q) ≥ h(d2(x)|x : q)  for almost all  x ∊	X.   

(iii)  If  d1 ∊ Dq  and  d2 ∊ Dq, then  h(d1(x)|x : q) = h(d2(x)|x : q)  for almost all  x ∊	X.   

(iv)  Suppose that  d1 ∊ Dq.   If  d2 ∊ D  satisfies  d2 ∉	Dq, then there exists a compact subset 

         A  in  X  such that  µ(A) > 0  and  h(d1(x)|x : q) > h(d2(x)|x : q)  for all  x ∊ A.    

(v)  If  d1 ∊ Dq  and  d2 ∉	Dq, then  G(d1: q) > G(d2: q).   

 

We have the following well-known theorem10: 

 

                                           _     

10  Theorem 1(ii)[(b)⇔(c)] is a re-statement of Neyman-Pearson lemma as in DeGroot and 

Schervish (2012, Ch.9, Theorem 9.2.1) and Lehmann and Romano (2005, Ch.3).   For Theorem 

1(ii)[(a)⇔(c)], see DeGroot and Schervish (2012, Ch.9, Section 9.8).    
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Theorem 1(Existence and characterization of the Bayesian optimal test procedures):  

Select any  q ∊ P  and let  q  be a subjective belief of a testing agent.  

(i)  There exists a Bayesian optimal test procedure with respect to  q. 

(ii)  The following three statements are mutually equivalent: 

      (a)  A test procedure  d ∊	D  is Bayesian optimal with respect to  q. 

      (b)  A test procedure  d ∊	D  is subjectively optimal with respect to  q. 

      (c)  A test procedure  d ∊	D  is a likelihood ratio test procedure with respect to  q. 

(iii)  Let  d*  be a Bayesian optimal test procedure with respect to  q.   If a test procedure 

        d  is not a Bayesian optimal test procedure with respect to  q, then  G(d*: q) > G(d: q). 

 

Although Theorem 1 is well-known, we provide a proof of the theorem for the completeness 

of the arguments of this paper: 

 

Proof of Theorem 1: (ii) First, we prove the assertion (ii) of Theorem 1. [(a) ⇒ (c)]: 

Because  Dq ≠ ∅	 by Lemma 4(i),  we can assume that there exists  d* ∊ Dq.   If  d0 ∊	D  is not 

a likelihood ratio test procedure with respect to  q, then it holds by Lemma 4(iv) that there 

exists a compact subset  A  in  X  such that  µ(A) > 0  and  h(d*(x)|x : q) > h(d0(x)|x : q)  for 

all  x ∊ A, which implies that  d0 ∊	D  is not a Bayesian optimal test procedure with respect 

to  q.   Taking the contraposition of this, we have that a Bayesian optimal test procedure 

with respect to  q  is a likelihood ratio test procedure with respect to  q.  [(c) ⇒ (b)]: Let  d*  

be a likelihood ratio test procedure with respect to  q.   Suppose that  d*  is not subjectively 

optimal.   Then there exists  d0  ∊	D  and there exists a compact subset  A  in  X  such that  

µ(A) > 0  and  h(d0(x)|x : q) > h(d*(x)|x : q)  for all  x ∊ A.   However, it holds by Lemma 4(ii) 

that  h(d*(x)|x : q) ≥ h(d(x)|x : q)  for almost all  x ∊	A.   This is a contradiction, and we 

have that  d*  is subjectively optimal. [(b) ⇒ (c)]:  Because  Dq ≠ ∅	 by Lemma 4(i),  we can 

assume that there exists  d* ∊ Dq.  If  d ∊	D  is not a likelihood ratio test procedure with 
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respect to  q, then it holds by Lemma 4(v) that  G(d*: q) > G(d: q), which implies that  d  is 

not subjectively optimal with respect to  q.   Taking the contraposition of this, we have 

that a subjectively optimal test procedure with respect to  q  is a likelihood ratio test 

procedure with respect to  q.  [(c) ⇒ (a)]: Let  d*  be a likelihood ratio test procedure with 

respect to  q.   For any  d ∊	D, it holds by Lemma 4(ii) that  h(d*(x)|x : q) ≥ h(d(x)|x : q)  for 

almost all  x ∊	X, which implies that  d*  is a Bayesian optimal test procedure with respect 

to  q.  (iii) Theorem 1(iii) is a direct consequence of Lemma 4(v) and Theorem 1(ii)[(a) ⇔ 

(c)].  (i)  Theorem 1(i) is a direct consequence of Theorem 1(ii) and Lemma 4(i).         � 

 

For any prior belief  q ∊ P, the existence of a Bayesian optimal test procedure with respect 

to  q  is ensured by Theorem 1(i).   The optimality concept of (a) is defined by the best 

responces against the possible signals, whereas the optimality concept of (b) is defined by 

the comparisons of the values directly on the set of all test procedures.  In terms of the 

game theory, the former corresponds to the optimality in the behavioral strategies in the 

extenstive form games, the latter corresponds to the optimality in the pure strategies in 

the strategic form games.  Theorem 1(ii)[(a) ⇔ (b)] shows that such two optimality 

concepts are equivalent in the Bayesian testing scheme.   Theorem 1(iii) strengthens the 

optimality condition by showing that the value of  G  at the Bayesian optimal test 

procedure is strictly greater than the values of  G  at the non-optimal test procedures.    

 

Example 1: Set  p* = 0.4.  We assume that the real number  x ∊ X  is the sample mean for 

size m from  N(0, 1)  in case that the paitient suffers from a normal cold  (q = q0).   Otherwise 

(q = q1), we assume that   x ∊ ℝ   is the sample mean for size m  from  N(1, 1).   For simplicity, 

if q = q0, we assume that the emergence of  x  is subject to the nomal distribution  N(0, 1/m) 

(Note that  1/m  is the variance), otherwise (q = q1), we assume that the emergence of  x  is 

subject to the nomal distribution  N(1, 1/m).   Cosequently, the two conditional probability 

destributions, f(x|q0) and f(x|q1) can be defined by 
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         f(x|q0) = A⋅exp[−	(½)⋅m⋅x2]  and  f(x|q1) = A⋅exp[−	(½)⋅m⋅(x−1)2]  for all  x ∊	X,    

where  A = m½⋅(2π)−½  and  exp(y) = ey  for all  y ∊	X.   When m = 2,  setting  A* = π−½,  the  

graph of  f(x|q0) = A*⋅exp[−x2]  and  f(x|q1) = A*⋅exp[− (x−1)2]  can be drawn as follows: 

 

 

 

Lemma 5: (i)  L(x) ≡ f(x|q1)/f(x|q0) = exp[m⋅(x−(½))]  is an increasing function of  x.  

(ii)  c(q) ≡ L−1((1 – q)⋅(1 – pa)/q⋅(1 – pb))  is a decreasing function of  q. 

(iii)  lim q→0 c(q) = + ∞  and  limq→1 c(q) = – ∞ . 

(iv)  The likelihood ratio test procedure with respect to q can be re-defined by 

           d*(x) = d1  for almost all  x ∊ { x ∊	ℝ : x > c(p) }; 

           d*(x) = d0  for almost all  x ∊ { x ∊	ℝ : x < c(p)  }. 

 

For all  q ∊	P, c(q)  is called the  critical value  of the likelihood ratio test procedure with 

respect to  q.   When  m = 2, pa = 0.3, pb = 0.1, q =  q(q1) = 0.2, q(q0) = 0.8, it holds that: 

         c(q) = c(0.2) = (1/2)∙log(4) + (1/2)∙log(7/9) + (1/2) = 1.0675,  

         L(x) ≡ f(x|q1)/f(x|q0) = A*⋅exp[− (x−1)2]/A*⋅exp[−x2] =  exp(2x−1) 

Figure 5

f(x|!₀)      f(x|!₁)       

x 
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         P(q0|x : q) = (1 – q)∙f(x|q0)/[ q∙f(x|q1) + (1 – q)∙f(x|q0)] =  4/ [L(x) +4] , 

         P(q1|x : q) = q∙f(x|q1)/[ q∙f(x|q1) + (1 – q)∙f(x|q0)]  = 1/[ 1+ 4(1/L(x)] = L(x)/[L(x)+4],  

         h(d1|x: q) = P(q0|x: q)⋅pa + P(q1|x: q)⋅1 = [L(x)+(1.2)] /[L(x) +4],  

         h(d0|x: q) = P(q0|x: q)⋅1 +	P(q1|x: q)⋅pb = [(0.1)L(x)+4] /[L(x) +4] . 

 

 

 

 

4. The objective evaluation of the Bayesian optimal testing procedures 

It holds by Theorem 1 that the testing agent selects a likelihood ratio test procedure in    

Dq, where  q  is the prior belief of the agent.   This section evaluates the selected test 

procedures objectively and proves that the selected test procedure is objectively optimal if 

and only if the testing agent's prior belief coincides with the true probability.     

Suppose that  p* ∊		(0, 1)  is the true probability (true prevalence rate).   We assume 

that: 

      A1: For any  y ∊ ℝ++, there exists some  x ∊ ℝ  such that  y = f(x|q1)/f(x|q0).     

The condition A1 means the range of  L(x) ≡ f(x|q1)/f(x|q0)  coincides with the full set  ℝ++. 

 

  Figure 6 

h(d0|x: q) h(d1|x: q) 

x 

c(q) = 1.0675 



 16 

If a testing agent selects a testing procedure  d ∊ D, the induced probability of  "The paitient 

is healthy", denoted by  G(d: p*), can be defined by  

        G(d: p*) = (1 – p*)⋅(1 – a(d))⋅1 + (1 – p*)⋅a(d)⋅pa  + p*⋅(1 – b(d))⋅1 +	p*⋅b(d)⋅pb .          (7) 

Then we have a lemma: 

 

Lemma 6: (i) For all  q ∊	P  and all  d1, d2 ∊ Dq, it holds that  G(d1: p*) = G(d2: p*).    

(ii)  G(d: p*) =  ∫	X h(d(x)|x : p*)dl,  where  l  is the measure on  (X, %X)  defined by  l(B) = 

∫ B [p*∙f(x|q1) + (1 – p*)∙f(x|q0)]dµ  for all  B ∊	%X.  

(iii)  Dq∩Dr = ∅  for all  q, r ∊	P  such that  q ≠ r.   

 

We assume that: 

          A2:  For each  q ∊	P, there exists a continuum of agents  Nq (µ(Nq) > 0)  such that   

                 if  i ∊	Nq then  i's prior belief coincides with  q.   

Because the value  G(d: p*)  is independent of the selection of  d  in  Dq  as shown by Lemma 

6(i),  we can define a function  F(⋅, p*)  on  P  by  

           F(q: p*) = G(d: p*)  for some  d ∊ Dq.                                                             (8) 

The function  F(⋅, p*)  need not to be an injection on  P.   See Example 1 (Figure 7) at the 

end of this section.   The value of  F(q: p*)  can be interpreted as the the population ratio 

of  "The paitient is healthy", when all agents in  Nq  take the test procedures in D(q).  Hence 

the resulting measure  µ(Mq)  is given by  

          µ(Mq) = µ(Nq)	⋅F(q: p*).                                                                                  (9) 

In the following of this paper,  Dq		is called a  testing strategy corresponding to  q.   Note 

that  Dq ∩	Dr = ∅  for all  q, r ∊	P  such that  q ≠ r.  (Lemma 6(iii)).   A testing strategy  Dq  is  

objectively optimal with respect to  p*  if and only if  F(q: p*) ≥ F(r: p*)  for all  r ∊ P.    As a 

main result of this paper, we have the following theorem: 
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Theorem 2(Existence and characterization of the objectively optimal testing strategy):  

(i)   There exists uniquely an objectively optimal testing strategy with respect to  p*. 

(ii)  The following three statements for a prior belief  q ∊ P  are mutually equivalent: 

      (a)  A testing strategy  Dq  corresponding to  q  is objectively optimal with respect to  p*. 

      (b)  If  d* ∊ Dq  and  d ∉ Dq, then  G(d*: p*) > G(d: p*).  

      (c)  The prior belief  q  coincides with 	p*. 

 

Proof of Theorem 2: (ii) First, we prove the assertion (ii) of Theorem 2.  [(a) ⇒ (c)]: 

Suppose that (a) and  q ≠ p* hold.  If  d ∊ Dq, it holds by Lemma 6(iii) that  d ∉	Dp*.  Fix any  

d* ∊ Dp*.   It holds by Theorem 1(iii) that  G(d*: p*) > G(d: p*) , which implies that  F(p*: 

p*) > F(q: p*).   This contradicts with (a).   Hence we have that  [(a) ⇒ (c)].   [(c) ⇒ (b)]: 

Suppose that  d* ∊ Dp*  and  d ∉ Dp*.   It holds by Theorem 1(iii) and Lemma 6(ii) that  G(d*: 

p*) > G(d: p*).   [(b) ⇒ (a)]: Let  r ∊ P  be a prior belief such that  r ≠ q.   If  d ∊ Dr, then it	
holds by Lemma 6(iii) that  d ∉	Dq.  Fix any  d* ∊ Dq.   We have by (b) that  G(d*: p*) > G(d: 

p*), which implies that  F(q: p*) > F(r: p*). (i)  Theorem 2(i) holds by Theorem 2(ii)[(b) ⇒ 

(a)]  and Lemma 4(i) .                                                                                                  � 	
 

For a given true probability p*∊	P, Theorem 2(i) ensures that there exists uniquely an 

objectively optimal testing strategy with respect to  p*. Theorem 2(ii)[(a) ⇔ (c)] implies 

that a subjectively optimal testing procedure with respect to a prior belief  q  is objectively 

optimal only if the prior belief  q  coincides with the true probability  p*.  Namely it holds  

that  F(p*: p*) > F(q: p*)  for all  q ≠ p*.   The objective optimality condition selects a specific 

strategy  Dq  among the class of all testing strategies  { Dq : q ∊ P }, whereas the condition 

(b) in Theorem 2(ii) selects a specific strategy  Dq   such that each test procedure in  Dq  

dominates all of test procedures in  (Dq)c = D/Dq,  which is an optimality concept in  D. 

Theorem 2(ii) [(a) ⇔ (b)] shows that such two optimality concepts are equivalent in the 

testing scheme. 
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Example 1(Continue): Using Lemma 5,  we can draw the  graph of the function  F(q: p*), 

when  m = 2, p* = 0.4, pa = 0.3, pb = 0.1.    

 

                                     Figure 7  

 

5. An dynamic process for selecting the testing agents with correct prior 

beliefs 

This section introduces an evolutional testing model, where the Bayesian testing is 

conducted repeatedly in parallel by many testing agents, and it is shown that only the 

testing agents with correct prior belief are survived eventually.    

(Time structure): The time is discrete and infinite, and it is denoted by  t = 1, 2, ⋯	.  
(Initial condition): Let  %P  be the s-field of Borel subsets in  P = (0, 1).   Without 

specifying the set of testing agents, we assume that the population distribution on the set 

of testing strategies at  t = 1  is represented by a discrete measure  b  on  (P, %P), where a 

discrete measure on  (P, %P)  is a measure  p  on  (P, %P)  such that there exists a finite 

subset  Q  of  P  such that  p(Q) = p(P).  In the following, a discrete measure  p  on  (P, %P)  

is called a  population distribution  on  P.   

(Transition rule): At the biginning of period t, for each medical doctor who are active at  

t, a patient is selected randomly from a large population of patients.   The patient is tested, 

F(q; p*) 

q 

 

p*=0.4 
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and the medical doctor provides the medical treatment depending on the test result 

(signal) as specified by R3.   If a patient's final health condition is good, the medical doctor 

can leave an offspring, otherwise the doctor can not leave an offspring.   This assumption 

means that the fitness value of the strategy  q ∊	P  is assumed to coincide with the value  

F(q; p*).  The offspring's prior belief coincides with the pearent's prior belief.   At the end 

of period  t, all the medical doctors enter retirement, and the offsprings appear.   We 

assume that the measure of each type of offsprings is increased by the natural rate of 

population growth  gt > 0.   All the offsprings will become active medical doctors in the next 

period  t+1.   A sequence of strategy distributions  { pt }  is called a dynamic process.   Then 

we have the following theorem: 

 

Theorem 3: Let  p*  be the true probability (true prevalence rate), and let  b  be the initial 

population distribution on  P.    Suppose that all of the testing agents satisfies the Bayesian 

behavioral assumption.   The above rules determine uniquely a dynamic process and the 

process is given by a history  { pt }t=1
∞  such that:   

(i)  p1 = b,  and  (ii)  pt+1({q}) = (1+gt)⋅F(q; p*)⋅pt({q}) for all  q ∊	supp(b)  and all  t = 1, 2, 3, ⋯	. 
We suppose additionally that  p* ∊	supp(b).  Then  limt→ +∞ pt({ q })/pt(P) = 1  holds if and 

only if  q = p*.  

 

Note that the convergence is independent of the value of  d, because it is neutral.   Hence  

gt  can be variable over time.    For example, gt = sin(t). 

 

Proof of Theorem 3: It holds by Theorem 1 that the initial distribution  p   coincides with 

the distribution b.   For all  q ∊	supp(b), it holds by (ii) that  pt({q}) = [∏n=1
t(1+gn)]⋅[F(q; p*)]t 

⋅p1({q}), which implies    

          pt({q})/pt(P) = 	[F(q; p*)]t⋅p1({q})/ [∑q ∊	supp(b) [F(q; p*)]t⋅p1({q})    

                             = 	[F(q; p*)/F(p*; p*)]t/[∑q ∊	supp(b) [F(q; p*)/F(p*; p*)]t .   
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Case 1(q = p*):  It holds by Theorem 2 that 

           limt→ +∞	[F(p*; p*)/F(p*; p*)]t = limt→ +∞1t = 1  and  

           limt→ +∞ [F(r; p*)/F(p*; p*)]t =  0  for all  r ≠ p*.   

Hence we have that 

           limt→ +∞[ ∑r ∊	supp(b) [F(r; p*)/F(p*; p*)]t = limt→ +∞	[F(p*; p*)/F(p*; p*)]t = 1  and  

           limt→ +∞ pt({q})/pt(P) = limt→ +∞ pt({q*})/pt(P) = 1.    

Case 2(q ≠ p*): Because  limt→+∞ [	F(q; p*)/F(p*; p*) ]t = 0  and  lim t→ +∞ [ ∑r∊	supp(b) [F(r; 

p*)/F(p*; p*) ]t = 1, we have that  limt→+∞pt({q})/pt(P) = 0/1 = 0.                              � 

 
Example 1 (Continue) : When  qk = 0.1⋅k  for  k= 1, 2, ⋅⋅⋅, 8, and  m = 2, p* = 0.4, pa = 0.3, 

pb = 0.1, d = 0.3, we assume that  µ(Nk(1)) = 1/8  for all  k= 1, 2, ⋅⋅⋅, 8.    

 

  
                                                 Figure 8 
 
 

Popuration ratio (%) 

Time 

q4 = 0.4 

q5 = 0.5 

q3 =0.3 

q6 =0.6 
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6.  Proof of lemmas 

Proof of Lemma 1:  Setting   Xn = (x − (1/n), x +  (1/n)), it holds by the definition of  P(q1|x : 

p) that  P(q1|x : q) =  limn  q∙P(Xn|q1)/P(Xn), where  P(Xn|q1) =  ∫Xn f(x|q1)dµ  and  P(Xn) =   

 ∫Xn [q∙f(x|q1) + (1 – q)∙f(x|q0)]dµ = q∙P(Xn|q1) + (1 – q)∙P(Xn|q0).   It follows from the mean-

value theorem that there exists a sequence of  { xn }  such that: (i)  lim xn = x ,  (ii)  xn ∊	 Xn  

for all  n,  (iii)  p(Xn|qi) = f(xn|qi)(2/n)  for  i = 0, 1 and all  n.   Because  f  is continuous, we 

have that  

         P(q1|x : q) = limn q∙P(Xn|q1)/P(Xn)  

                 =  limn   q∙f(xn|q1)(2/n)/[ q∙f(xn|q1)(2/n)+ (1 – q)∙f(xn|q0)(2/n)] 

                 =  limn  q∙f(xn|q1)/[q∙f(xn|q1)+ (1 – q)∙f(xn|q0)]  =  q∙f(x|q1)/[q∙f(x|q1) + (1 – q)∙f(x|q0)].   

Using almost the same manner, we can prove that  P(q0|x : q) = (1 – q)∙f(x|q0)/[q∙f(x|q1) + 

(1 – q)∙f(x|q0)].                                                                                                                 � 

 

Proof of Lemma 3: (i) We can prove Lemma 3(i) as a direct consequence of (6) and Lemma 

A below: 

 

Lemma A:  Let  g  be a bounded continuous function on  S  in  %X  such that  g(x) > 0 for 

all  x ∊ S.   For a given null set  A  in  %X, the value of the Lebesgue integral of  g  on  S  

coincides with the value of the Lebesgue integral of  g  on  S/A. 

 

Lemma A is a direct consequence of Royden (1988, Ch.4, Proposition 5(iii), Page 82). 

(ii) Setting  k(x) = q∙f(x|q1)+(1 – q)∙f(x|q0), X1 = d–1(d1)  and  X0 = d–1(d0), we have that 

         G(d: q) = (1 – q)⋅pa ∙a(d)  + q∙(1– b(d)) + (1 – q)∙(1 – a(d)) + q⋅pb∙b(d) 

                    = (1 – q)⋅pa ∙ ∫	X1 f(x|q0) dµ  + q ∙ ∫	X1 f(x|q1)dµ 

                                                               + (1 – q)∙∫	X0 f(x|q0) dµ  + q⋅pb∙∫	X0 f(x|q1)dµ  

                    =  ∫	X1 [(1 – q)∙f(x|q0)⋅pa + q∙f(x|q1)]dµ + ∫	X0 [(1 – q)∙f(x|q0) +q∙f(x|q1)	⋅pb]dµ  

                    =  ∫	X1 h(d1|x : q)⋅k(x)dµ + ∫	X0 h(d0|x : q)⋅k(x)dµ 

                     =  ∫	X1  h(d1|x : q)dlq + ∫	X0 h(d0|x : q)dlq = ∫	X h(d(x)|x : q)dlq.                       � 
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Proof of Lemma 4: Select any  q ∊ P  and let  q  be a subjective belief of a testing agent.  

(i)  Define a function  d : X → { d0, d1 }  by 

          d(x) = d1   for all  x ∊ { x ∊	X : f(x|q1)/f(x|q0) ≥ (1 – q)⋅(1 – pa)/q⋅(1 – pb) }; 

          d(x) = d0  for all  x ∊ { x ∊	X : f(x|q1)/f(x|q0) < (1 – q)⋅(1 – pa)/q⋅(1 – pb) }. 

It suffices to prove that  { x ∊	X : f(x|q1)/f(x|q0) < (1 – q)⋅(1 – pa)/q⋅(1 – pb) } ∊ %X, which is a 

direct consequence of the fact that  L(x) ≡ f(x|q1)/f(x|q0)  is continuous on  X. 

(ii)  Fix any  d1 ∊ Dq  and  d2 ∊	D.  It follows from Lemma 2(i) that  d1  has the property: 

      d1(x) = d0  for almost all  x  in 

            h(d1|x: q) = (1 – q)∙f(x|q0)⋅pa  + q∙f(x|q1) < (1 – q)∙f(x|q0)  + q∙f(x|q1)⋅pb = h(d0|x: q); 

     d1(x) = d1 for almost all  x  in   h(d1|x: q) > h(d0|x: q);  

     Do either   if  h(d1|x: q) = h(d0|x: q).   

This means that  h(d1(x)|x : q) =  max[ h(d1|x : q), h(d0|x : q)]  for almost all  x ∊	X.   Because  

max[ h(d1|x : q), h(d0|x : q)] ≥ h(d2(x)|x : q)  for all  x ∊	X, we have that 

            h(d1(x)|x : q) ≥ h(d2(x)|x : q)  for almost all  x ∊	X.   
(iii)  Lemm 4(iii) is a direct consequence of Lemma 4(ii). 

(iv)  Fix any  d1 ∊ Dq, and suppose that  d2 ∊ D  satisfies  d2 ∉	Dq.  

Case I( µ(C1(q)) > 0  and  µ(C0(q)) > 0):   We need a claim:  

 

Claim 1:  At least one of the following two statements holds: 

      (a) There exists  A*∊ %X  such that  A* ⊂ C1(q), µ(A*) > 0  and  d2(x) = d0   for all  x ∊ A*. 

      (b) There exists  B*∊ %X such that  B* ⊂ C0(q), µ(B*) > 0  and  d2(x) = d1   for all  x ∊ B*. 

Proof of Claim 1:  Set  A* = C1(q) ⋂	{ x ∊	X : d2(x) = d0 }  and  B* = C0(q) ⋂	{ x ∊	X : d2(x) = 

d1 }.   If  µ(A*) = 0  and  µ(B*) = 0, then  µ(C1(q) ⋂	{ x ∊	X : d2(x) = d1 }) = µ(C1(q))  and  µ(C0(q) 

⋂	{ x ∊	X : d2(x) = d0 }) = µ(C0(q)).   It holds by  µ(C1(q)) > 0  and  µ(C0(q)) > 0 that 

            d2(x) = d1  for almost all  x ∊ C1(q)  and  d2(x) = d0  for almost all  x ∊ C0(q). 

Hence it holds that  d2 ∊ Dq, which is a contradiction.   Thus we have that   µ(A*) > 0  or 

µ(B*) > 0.                                                                                                                       � 
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First we prove Lemma 4(iv) in case (a).   It holds by Claim 1 and Royden (1988, Proposition 

15, Ch.3, Page 63) that there exists a compact subset  A  in  C1(q)  such that  µ(A) > 0  and 

d2(x) = d0   for all  x ∊ A.   Because  f(x|q1)/f(x|q0) > (1 – q)⋅(1 – pa)/q⋅(1 – pb)  implies  (1 – 

q)∙f(x|q0)⋅pa  + q∙f(x|q1) > (1 – q)∙f(x|q0)  + q∙f(x|q1)⋅pb  for all  x ∊ A, it holds by Lemma 2(i)  

that 

            h(d1|x: q) > h(d0|x: q)  for all  x ∊ A.                                                              (10) 

It holds by the definition of  d1  that 

            d2(x) = d0  and  d1(x) = d1  for almost all  x ∊ A.                                               (11) 

We have by (10) and (11) that  h(d1(x)|x : q) > h(d2(x)|x : q)  for almost all  x ∊ A.  It holds 

by Royden (1988, Proposition 15, Ch.3, Page 63) that there exists a compact subset  A+  in 

A  such that  µ(A+) > 0  and  h(d1(x)|x : q) > h(d2(x)|x : q)  for all  x ∊ A+.   Second, we can 

prove Lemma 4(iv) in case (b) by almost the same manner.  

Case II (µ(C1(q)) > 0  and  µ(C0(q)) = 0):   We need a claim:  

 

Claim 2: There exists  A* ∊ %X  such that  A* ⊂ C1(q), µ(A*) > 0  and  d2(x) = d0   for all  x ∊ 

A*. 

Proof of Claim 2:  Set  A* = C1(q) ⋂	{ x ∊	X : d2(x) = d0 }.   If  µ(A*) = 0, then  µ(C1(q) ⋂	{ x 

∊	X : d2(x) = d1 }) = µ(C1(q)).   It holds by  µ(C1(q)) > 0  that  d2(x) = d1  for almost all  x ∊ C1(q). 

Hence it holds that  d2 ∊ Dq, which is a contradiction.   Thus we have that  µ(A*) > 0.   � 

 

It holds by Claim 2 and Royden (1988, Proposition 15, Ch.3, Page 63) that there exists a 

compact subset  A  such that  A* ⊂ C1(q), µ(A) > 0  and  d2(x) = d0   for all  x ∊ A.   Because  

f(x|q1)/f(x|q0) > (1 – q)⋅(1 – pa)/q⋅(1–pb) implies (1 – q)∙f(x|q0)⋅pa  + q∙f(x|q1) > (1 – q)∙	
f(x|q0)  + q∙f(x|q1)⋅pb  for al l x ∊ A, it holds by Lemma 2(i) that   

            h(d1|x: q) > h(d0|x: q)  for all  x ∊ A.                                                               (12) 

It holds by the definition of  d1  that 

            d2(x) = d0  and  d1(x) = d1  for almost all  x ∊ A.                                                (13) 
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We have by (12) and (13) that  h(d1(x)|x : q) > h(d2(x)|x : q)  for almost all x ∊ A. It holds by 

Royden (1988, Proposition 15, Ch.3, Page 63) that there exists a compact subset  A+  in A  

such that  µ(A+) > 0  and  h(d1(x)|x : q) > h(d2(x)|x : q)  for all  x ∊ A+. 

Case III ( µ(C1(q)) = 0  and  µ(C0(q)) > 0): We can prove Lemma 4(iv) in this case by almost 

the same manner used in the proof of the case II above.  

Case IV( µ(C1(q)) = 0  and  µ(C0(q)) = 0):  In this case, f(x|q1)/f(x|q0) = (1 – q)⋅(1 – pa)/q⋅(1 

– pb)  for all  x.   Hence we have that  Dq = D,  which implies that there is no  d2 ∊ D  which 

satisfies  d2 ∉	Dq.   Thus Lemma 4(iv) holds in this case.  

(v)  Lemm 4(v) is a direct consequence of Lemma 3(ii) and Lemma 4(ii, iv).              � 

 

Proof of Lemma 5: (i)  It holds that  L'(x) = exp[m⋅(x−(½))]  > 0, which implies that  L(x)   

is an increasing function of  x. 

(ii) Because c(q) = (1/2)+(1/m)∙log [(1 – q)⋅(1 – pa)/q⋅(1 – pb)] = (1/m)∙log(1/q – 1)+(1/m)∙log(1 

– pa)/(1 – pb) + (1/2), it holds that  c'(q) = (1/m)∙1/[1/q – 1]∙(–1/q2) = – (1/m)∙(1/q)∙[1/(1–q)] < 

0, which implies that c(q)  is a decreasing function of  q. 

(iii) Because  lim q→0  log(1/q – 1) = + ∞,  we have that  

        lim q→0 c(q) = lim q→0 [(1/m)∙log(1/q – 1)+(1/m)∙log(1 – pa)/(1 – pb) + (1/2)] = + ∞.    

Because  lim p→1  log(1/q – 1) = – ∞,  we have that  

        lim p→1 c(q) = lim p→1 [(1/m)∙log(1/q – 1) + (1/m)∙log(1 – pa)/(1 – pb) + (1/2)] = – ∞.   

(iv)  It holds that  { x ∊	X : f(x|q1)/f(x|q0) > (1 – q)⋅(1 – pa)/q⋅(1 – pb) } = { x ∊	X : x > (L−1((1 – 

q)⋅(1 – pa)/p⋅(1 – pb)) } = { x ∊	X : x > c(q) }, and that  { x ∊	X : f(x|q1)/f(x|q0) < (1 – q)⋅(1 – 

pa)/q⋅(1 – pb) } =  { x ∊	X	: x < (L−1((1 – q)⋅(1 – pa)/q⋅(1 – pb)) } = { x ∊	X : x < c(q) }.        �   

 

Proof of Lemma 6: (i) We can prove Lemma 6(i) by almost the same manner used in the 

proof of Lemma 3(i). 

(ii) We can prove Lemma 6(ii) by almost the same manner used in the proof of Lemma 

3(ii). 
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(iii)  Because  p ≠ q  implies  (1 – p)⋅(1 – pa)/p⋅(1 – pb) ≠ (1 – q)⋅(1 – pa)/q⋅(1 – pb), Lemma 

6(iii) holds by the full range assumption of  L(x)  and the continuity of  L(x).             � 

 

7.  Appendix 

The full range assumption: { y ∊	ℝ++	 :  y = f(x|q1)/f(x|q0)  for some  x ∊ X. } = ℝ++  is 

indispensable for Theorems 2 and 3.   We construct a counter example, on which the full 

range assumption, Theorems 2 and 3 do not hold : 

 

Example 2: Set  p* = 0.2, and  set  m = 2, pa = 0.3, pb = 0.1.   The two conditional probability 

destributions, f(x|q0)  and  f(x|q1)  are defined by 

        f(x|q0) = A⋅exp[−x2]   and  f(x|q1) = A⋅exp[−	x2]⋅g(x)  for all  x ∊	X,    

where  A = 2½⋅(2π)−½ ,  exp(y) = ey  for all  y ∊	X   and  g(x) = 2⋅ex/( ex+1)		  for all  x ∊	X.		
	

 

 

 

Figure 9 

f(x|q0) f(x|q1) 

x 
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L(x) ≡ f(x|q1)/f(x|q0) = g(x) = 2⋅ex/(ex+1), which implies that the monotonicity condition 

holds, but  lim x→+∞ L(x) = 2  and lim x→−∞ L(x) = 0.   Because  (1 – p)⋅(1 – pa)/p⋅(1 – pb) = (1 

– p)⋅7/p⋅9  = (7/9)⋅(1/p – 1) > 2  iff  p < (7/25) = 0.28, we have that 

        Dq = Dr  for all  q , r ∊	P  such that  q, r < 0.28, 

and that 

         F(q: 0.2) = 0.82                                                                   for all  q < 0.28    

                        = 1 – [0.56⋅ ∫	X1 f(x|q0)dx +0.18⋅∫	X0
 f(x|q1)dx]      for all  q ≥ 0.28, 

where  X1 = d–1(d1)  and  X0 = d–1(d0). 

    

       

                                                 Figure 10  
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