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Abstract 

Large-scale databases in marketing track multiple consumers across multiple product 

categories. A challenge in modeling these data is the resulting size of the data matrix, which 

often has thousands of consumers and thousands of choice alternatives with prices and 

merchandising variables changing over time. We develop a heterogeneous topic model for 

these data, and employ variational Bayes techniques for estimation that are shown to be 

accurate in a Monte Carlo simulation study. We find the model to be highly scalable and useful 

for identifying effective marketing variables for different consumers, and for predicting the 

choices of infrequent purchasers. 
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1. Introduction 

Modern analytic techniques in marketing are continuously confronted with the necessity of 

extracting relevant information from large volumes of data by identifying important drivers of 

consumer behavior. It is common for datasets to record household purchases of products that 

are orders of magnitude larger than what current models of behavior are currently capable. 

Existing models of choice and demand, for example, are typically limited to less than twenty 

or so product alternatives that are tracked across possibly hundreds of consumers (see Rossi et 

al. 2005 and Chintagunta and Nair 2011).  

Increasing the number of products analyzed is problematic because of potential 

complexities in the structure of demand and the accompanying increase in the required number 

of model parameters. Increasing the number of respondents is also problematic because of 

computational constraints arising from respondent heterogeneity that is found to be important 

in describing demand and deriving policy implications. While a variety of dimension-reducing 

techniques have been studied in the fields of statistics and data-mining, the presence of 

heterogeneous consumers and heterogeneous purchase environments with prices and other 

variables change over occasions requires the use of model-based inference as opposed to 

methods applied directly to the marginal data (Chintagunta and Nair 2011). 

Naik et al. (2008) discusses three solutions to the challenges in massive data analysis: 

increasing computer power, employing alternative approaches for data analysis, and using 

scalable estimation methods. In this paper, we combine the second and third options to obtain 

improved inferences about consumer behavior in large datasets. We extend the voting bloc 

model of Spirling and Quinn (2010) and Grimmer (2011) that are a variation of topic models 

used to conduct large-scale analysis of text data (Blei et al. 2003). 

The topic model is a generalization of a finite mixture model (Kamakura and Russell 1989) 

in which each data point is associated with a draw from a mixing distribution (Teh and Jordon 

2010). Models of voting blocs (Spirling and Quinn 2010), for example, track the votes of 

legislators (aye or nay) across multiple bills, with each bill associated with a potentially 

different concern or issue. Similarly, the latent Dirichlet allocation (LDA) model of Blei et al. 

(2003) allocates words within documents to a small number of latent topics whose patterns are 

meaningful and interpretable. Each vote and each word is associated with a potentially different 

issue or topic, and hence the mixing distribution is applied to the individual datum. In our 
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analysis of household purchases, we allow every purchase (and every non-purchase) in every 

product category to be related to a potentially different latent context (topic, or issue) for which 

the good is purchased. This allows us to view a consumer's purchases as responding to different 

needs or occasions (e.g., family dinner, snacks, etc.), and allows us to identify the ensemble of 

goods that collectively define latent product segments across a large number of products. 

We obtain a scalable estimation method by employing variational Bayes (VB) inference as 

in Jordan et al. (1999) and Bishop (2006), instead of the standard Markov chain Monte Carlo 

(MCMC) inference. MCMC methods can incur large computational cost in large-scale 

problems. VB inference approximates a posterior distribution of target by variational 

optimization in a computationally efficient manner. 

Our approach combines variational Bayes (VB) methods, as in Jordan et al. (1999) and 

Bishop (2006), with a topic-like probit model to obtain a computationally feasible model of 

consumer purchases that is scalable to large databases. Individual-level inference is possible in 

our model, where we can identify the marketing variables that are effective for specific 

individuals and the products for which they are effective. Our model is therefore similar to 

adaptive personalization systems proposed by Ansari and Mela (2003), Rust and Chung (2006), 

Chung et al. (2009) and Braun and McAuliffe (2010). However, it is different in that our model 

structure facilitates analysis of a much larger array of product categories. 

In the next section, we propose a model for consumer purchases in multiple product 

categories. Section 3 describes a variational Bayes inference scheme for the models and a 

simulation study that verifies the scalability. The prediction performance of the proposed 

models is presented in Section 4. Section 5 applies the model to actual customer purchases in 

a general merchandise store. Discussion and concluding remarks are presented in Section 6. 

 

2. Model 

Estimating parameters of choice model for a large number of consumers and products is 

often computationally infeasible. In addition, the actual sample size of transactional data is 

often much smaller than the data space reflected by a data cube with dimensions corresponding 

to the number of consumers, number of products and time, making fixed-effect estimates of 

model parameters with heterogeneity unsuitable. We address this challenge by relating 

consumer purchases to latent segments (similar to topics and blocs) that greatly reduces the 
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dimensionality of the model. Response parameters are then introduced in the reduced 

dimensional space by connecting each choice to marketing variables with a hierarchical probit 

model.  

2.1 Dimensional Reduction by Topic Models 

Dimensional reduction is an important technique in massive data analysis. Here we 

briefly introduce the idea of introducing a latent variable to common in topic models in the 

context of consumer purchases. We seek the probability  |p i c  that consumer c purchases 

item i . Dataset includes C consumers and I product items through T periods. However, the 

probabilities cannot be directly calculated because of computational difficulty imposed by the 

large-scale setting and data sparseness. The topic model calculates  |p i c  by introducing a 

latent class  1, ,z Z   whose dimension is significantly smaller than the number of 

consumers and items ( ,Z C I ).  

The latent variable is used to represent the sparse data matrix as a finite mixture of 

vectors commonly found in topic models:  

 

 
1

( 1 | 1) ( 1 | ) (1 | )
( |1) ( | ) .

( | 1) ( | ) ( | )
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      

         




    


　　 　
Z

z

p i c p i c C p z

p z p z C

p i I c p i I c C p I z

 (1)

More specifically, we decompose a large probability matrix of size IC  to two small 

probability matrices of sizes ZI  and CZ  based on the property of conditional 

independence. 

The main difference between voting blocs model and LDA is assumed distributions 

for probabilities  |p i z  in the ZI   size probability matrix. The voting blocs model 

supposes a Bernoulli distribution for the probability  |p i z . LDA assumes a categorical 

distribution for the probability matrix. 

In the analysis of purchase behavior using topic models for large consumer transaction 

data, Iwata et al. (2009) extracted dynamic patterns between purchased product items and 

consumer interests. Ishigaki et al. (2010) fused heterogeneous transaction data and consumer 

lifestyle questionnaire data, while Iwata et al. (2012) identified consumer purchase patterns by 

using a topic model with price information on the purchased products. These approaches 

identify patterns among consumers and product items. The labeled LDA proposed by Ramage 

et al. (2009), and the supervised LDA of Blei and McAuliffe (2007) extend the topic models 
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by incorporating additional data in the analysis. However, none of these approaches are suitable 

for relating marketing variables to individual consumer choices as explanation variables. In the 

following sections, we construct a model that links marketing variables with consumers and 

products. 

2.2 A Reduced Dimensional Choice Model 

Let city  denote consumer c’s purchase record of product i at time t, assigning 1city  

if consumer c purchased the item, and 0city  otherwise. Denote citu  as the utility of 

consumer c’s purchase record of product i at time t. We assume a binary probit model with 

0citu  if 1city , and 0citu  if 0city . We couple the topic model in (1) with the binary 

choice probability as in a voting bloc model to obtain the choice probability: 

 
1

( 0) ( 0 | ) ( | )


   Z

cit citz
p u p u z p z c . (2)

We denote the utility associated with the latent class z as ( )z
citu , and then the choice 

probability can be represented as    ( )0 | 0z
cit citp u z p u   . Assuming a linear 

Gaussian structure on the segment utility ( )z
citu  with marketing variables as 

 ( ) ,1z T
cit it ziu N x β , the right hand side of (1) is represented as, 
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where  1, , T

zi zi ziM β  is a response coefficient vector of latent class z with respect to item 

i,  1, , T

it it itMx xx   is a vector of M marketing variable for item i at time t, and  F   is the 

cumulative distribution function (CDF) of the standard normal distribution. In our empirical 

study, 
itx  includes price and promotional variables.  

We next set a categorical distribution czC  for the probability )|( czp  that consumer 

c belongs to the latent class z. The categorical distribution is multinomial with parameters cC . 

The cC  is determined so that the selection probability of consumer c with respect to item i is 

conditionally independent if the latent class z is given. Then, the right hand side of (1) is 

represented by: 
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F


 
 
 
 
 


x β

x β

 　　 　  (4)



7 
 

Finally, segment-level heterogeneity is introduced through a hierarchical model with 

a random effect for response coefficient ziβ  

  ,zi M i iN Vβ μ , (5)

where the prior distributions for iμ  and iV  follow an M-dimensional multivariable normal 

distribution  ,  M iN Vμ  and an inverse-Wishart distribution  IW , W w , respectively. 

μ ,  , W and w  are hyperparameters. That is, we assume that the M-dimensional 

coefficient vector zi  for each segment, z, is a draw from a distribution with mean and 

covariance that is item-specific. 

We specify a prior distribution for cC , assuming the Dirichlet distribution as the 

natural conjugate prior distribution of categorical distribution: 

  ~ DirichletcC γ , (6)

where γ  is a hyperparameter vector of the Dirichlet distribution.  

The likelihood is given as  

 
   

1 1

{ } |{ },{ },{ } | , , ,
c c

C Z

cit c zi it cz cit it zi
c i I t T z

l y C p y z
   

   C β x x β　  (7)

where  | , ,cit it zip y zx β  denotes the kernel of the binary probit model conditional on z, 
cT  

denotes a subset of t in which consumer c purchased any item in a store, and 
cI  is a subset 

of items i purchased by consumer c during the period 1, ,t T  , that is, 

 1
| 0I

c citi
T t y


   and  1

| 0T

c citt
I i y


  .  

Equation (7) is difficult to use directly because the likelihood includes summations 

over latent class z. Instead, we employ a data augmentation approach by Tanner (1987) with 

respect to latent variable z. We introduce variables  1, ,citz Z   denoting the label of the 

latent class for each consumer c, each purchased item i, and each purchasing event t. 

Conditioning on the citz  for each purchasing transaction, as in the LDA of Blei et al. (2003), 

the likelihood in (7) simplifies to: 

 
     

1

{ } |{ },{ },{ },{ } | | , ,
c c

C

cit c cit zi it cit c cit it zi cit
c i I t T

l y z p z p y z
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C β x C x β　 , (8)

where  |cit cp z C  denotes a categorical distribution when cC  is given. 

Our model for massive data analysis is different to the LDA model in that it only deals with 

the presence of products appearing in the purchase basket of the consumer, and does not deal 
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with non-purchase of product. This is different to model encountered in the analysis of text 

data where it is the presence of words, and not their absence, that characterizes the latent topics. 

The co-occurrence of the products selected during a shopping trip is what gives meaning to 

segments, as modified by the marketing variables. 

The posterior distribution of parameters including latent variables ( ){ },{ }z
cit citz u  is then 

given by 

  
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(9)

 

 

3. Variational Bayes Inference 

We introduce VB inference in order to achieve computational feasibility for large-scale 

transaction data. VB inference approximates the posterior, or target distribution in a Bayesian 

model. The advantage of this method over MCMC is low computational cost. VB also takes 

advantage of parameters that can be decomposed into several mutually independent groups. 

This is necessary for our analysis using a large database. 

The target and approximate distributions are denoted as p and q, respectively. The latter is 

called the variational distribution. Distributions p and q share a parameter set θ . In general, 

when the data D is given, the log marginal likelihood ( )p D  of the target distribution is 

decomposed into two components as 
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 

 

1

1

log ( ) ( ) ( || ),
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 KL( || ) ( ) log ( | ) ( ) .

p L q KL q p

L q q p q dZ
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


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
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


D

θ D θ θ

θ θ D θ

 (10)

( )L q  is called the variational lower bound in VB inference, and  KL( || )q p  is the 

Kullback–Leibler divergence of the target and variational distributions. As is well known,

 KL( || )q p  is zero if p and q are the same distribution. Therefore, a reasonable solution to 

estimating the posterior distribution p is the variational distribution q for which  KL( || )q p  is 

minimized. However, it is difficult to evaluate the value of KL( || )q p  because the expression 

involves a posterior distribution of ( | )p θ D . 

In contrast, ( )L q  involves a joint distribution ( , )p D θ  that is easily evaluated in many 

cases because it is obtained as the product of the prior and the likelihood in Bayesian models. 

We note that maximizing ( )L q  is equivalent to minimizing KL( || )q p  because the log 

marginal likelihood of the target distribution is constant for a given dataset. In this situation, 

assuming that the distribution q and parameter set θ  are decomposable for some groups as 

   ( )*J j
jj

q qθ θ , where the parameters ( )*jθ  are called variational parameters, ( )L q  

can be maximized by the following updating algorithm (Jordan et al., 1999): 

   
  

( )*

( )*{ } ( )*arg max

exp log , .

j

Jj new j
jj

i j

L q

p



   


θ

θ θ

E D θ
 (11)

The  i jE  are the expectation value associated with jq  distributions over all parameters
( )*jθ , where i j . The variational parameters are updated for each variational parameter set 
( )*jθ  until convergence of the algorithm. The initial variational parameters are proper random 

values. The VB is guaranteed to converge after several iterations because ( )L q  is convex with 

respect to each  ( )*j
jq θ  (Bishop, 2006). The variational lower bound monotonically 

increases as the iteration proceeds; therefore, convergence can be confirmed by checking the 

value of ( )L q  at each iteration. 

3.1 VB for the Proposed Model 

We introduce the variational distributions and parameters for the modes of proposed 

model. The parameters and variational parameters are denoted as 

 ( ){ },{ },{ },{ },{ },{ } z
c cit cit zi i iz u Vθ C β μ  and
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                  * * * ( )* * * * * * *, , , , , , , ,  z
cit c cit iz iz i i i iV w Wθ C γ β μ μ  respectively, while the 

variational distributions are configured as  

  
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  

 

c c c c
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C C C
z z

c c c z cit cit u cit cit it cit
c c i I t T c i I t T

I Z I

zi zi zi V i i i i i i
i z i

q y

q q z q u z

q V q V w W

θ θ x

C γ C β x

β μ μ μ

 (12)

where cq  is a Dirichlet distribution with variational parameter *
cγ , cq  is a categorical 

distribution with variational parameter *
citC , uq  is a truncated normal distribution with 

parameter citz  and variational parameter ( )*z
citβ , q  is an M-dimensional multivariable 

normal distribution with two variational parameters (mean vector *
ziμ  and covariance matrix 

*
ziV ), and , Vq  is a multivariable normal–inverse Wishart distribution with variational 

parameters * * * *, , , i i i iw Wμ . Here, to realize effective variational inference, we assume that 

all variational parameters are independent. The update equation and the derivations of the 

variational parameters are detailed in Appendix A.  

 

4. Simulation Study 

In this section we examine the performance of the proposed VB estimator relative to 

MCMC using simulated data. We show that MCMC becomes too computationally demanding 

as the size of the dataset increases, and that VB provides a computationally efficient and 

accurate approximation to the posterior with good predictive properties. 

The simulation datasets are generated as follows: 

a) We determine the number of consumers, items and time period for the dataset.  

b) Consumers randomly are assigned to a segment. Consumers assigned to same 

segment have a same product set of items, which are a subset of items that consumers 

evaluate when making a purchase decision. The number of consumer segments and 

the number of items in a product set is set to 0.02 C  and 0.2 I , respectively, where 

C and I are varied in our analysis. 

c) Items in a product set are randomly assigned from all available items, with a lower 

bounds on the number of items needed in the set. 
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d) The marketing variables are comprised of  1, T

it iPx , where iP  is a price discount 

rate generated from a uniform distribution with interval [0.1 1.0].  

e) Each consumer randomly visits the simulated shop on five occasions during data 

period T, and purchases N items with probability proportional to the discount from 

production set.  

Computational time and predictive results are calculated using data simulated from the 

above steps. The computational results reported below were calculated in same computational 

environment (64-bit version of Python 2.7.5, implemented on a 3.5 GHz processor (Quad-Core 

Xeon; Intel Corp.) with 64 GB memory). 

4.1 Scalability 

The scalability is investigated under the condition as follows: C = {1000, 5000, 10000}, I 

= {100, 500, 1000}, T = 30, Z = {5, 10, 20} and N = 10. Thus, 27 different scenarios were 

explored in the simulation study. The simulation times in hours are shown in Table 1. Here, we 

set hyperparameters as  0.1, ,0.1 Tγ  ,  0, , 0 Tμ  , 1  , MW   I , 10w   in 

VB and MCMC. MI  means identity matrix of size M. In VB method, iterations are 

terminated when the variational lower bound improves by less than 510 % of current value in 

two consecutive iterations. The MCMC method uses Gibbs sampler, and its simulation times 

of 6,000 MCMC samples are estimated from those of 10 samples, as is to be computationally 

infeasible. We also note that the selection of 6,000 MCMC samples is consistent with the 

simulation study of Braun and Mcauliffe (2010). Three kinds of settings for hyperparameters, 

stopping rule of VB iteration and the number of MCMC samples, defined above, are adopted 

in all empirical studies hereafter. 

Table 1 shows the computational time for VB and MCMC methods. In both algorithms, the 

cost increases approximately linearly with the size of the dataset specified in term of the 

number of consumers, items, and latent classes. In all scenarios, the computational time of 

MCMC exceeds that of VB. The VB algorithm is around 20 to 50 times more efficient than 

MCMC, depending on the scenario. The time of estimation using large-scale data (C = 10000, 

I = 1000) by MCMC is estimated over 450 h, and thus we recognize that MCMC is not 

applicable for our problem.  
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Table 1 : Simulation time by VB and MCMC 

 

4.2 Data Sparseness and RMSE of Prediction  

The predictive performance of the models is investigated by simulation, focusing on 

whether the model can adapt to sparse data or not. Sparse data are commonly encountered in 

datasets containing many items. In this paper, we define the data density rate (DDR) as  

 
  1

1 1 1



  

   
C I T

cit
c i t

DDR C I T y  (13)

The DDR specifies the rate of 1city   events in the data space. The N controls values of DDR 

in the simulation dataset. Here we generated datasets for C = 500, I = 100, T = 100, Z = 20, and 

N = {2, 4, 6, 8, 10}; this specification of N implies that DDR = {0.1%, 0.2%, 0.3%, 0.4%, 

0.5%}. DDRs of actual scan-panel datasets are, to our knowledge, always below 1 %.  

The prediction performance is measured by the root mean square error (RMSE), given by 

 
 

1
2

1 1 1

( 1)
c

C C I

c cit cit
c c i t T

RSME I T y p y


   

     
 
   (14)

where cT  denotes the number of elements cT  for each consumer; that is, the number of store 

visits within the specified data period. The ( 1)citp y   is calculated by 
1

( )Z T
cz it ziz

C F
 x β . 

The hold-out and hold-in samples are generated by the same procedure. Using the Gibbs 

sampler, we generate 6,000 samples of each parameter, where the first 5,000 are discarded as 

burn-in samples. 

Table 2 shows the average RMSE obtained in three simulation trials of DDR for each of 

four methods, namely Random, Homogeneous, VB and MCMC. In this simulation, we set five 

levels of DDR from 0.1% to 0.5%. “Random” means the situation that consumers are permitted 

completely random choice of purchased items and shop visits, and its RMSE is approximately 

0.577. “Homogeneous” implies the model with Z = 1. We first observe that the proposed models 

works well compared to “Random”. Second, heterogeneity significantly improves the 

predictive performance. Third, the performances of VB and MCMC are comparable. These 

properties hold throughout every setting of DDRs.  

 

Table 2 RMSE as a function of DDR in simulations  
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5 Empirical Application Using Customer Database 

In this section, we apply the proposed model to a real large-scale customer dataset. 

The results of the simulation study indicate that the VB estimator provides a close 

approximation to the MCMC with a large improvement in computational speed. We use VB in 

the empirical application in this section and report on estimation results and their managerial 

implications. 

5.1 Data and Variables 

A customer database from a general merchandise store, recorded from April 1 to June 

30 in 2002, is used in our analysis. A customer identifier, price, display, and feature were 

recorded for a given purchase occasion. The dataset contains 162,775 transactions involving 

1,647 consumers and 1,004 items. The 1,004 selected items were displayed or featured at least 

once in the data period. The DDR of the scan-panel data is 0.31 %.  

The marketing variables are price ( itP ), display ( itD ), and feature ( itF ); that is, 

 1 T

it it it itP D Fx . itP  is the price relative to the maximum price of item i in the 

observational period. Display and feature are binary entries, equal to one if the item i is 

displayed or featured at time t, and zero otherwise.  

 

5.2 Model Comparisons  

The proposed models are compared in terms of RMSE. The parameters are estimated 

with the number of segment Z = {2, 3, 4, 5, 10, 20}. The hold-out sample comprises records 

from July 1 to September 30, 2002. The RMSEs for comparable models are shown in Table 3. 

We observe that our proposed models (Z greater than two) have smaller value of RMSEs than 

“Random” and “Homogeneous” models. The models with Z greater than five have the same 

RMSEs and thus we understand that the model with Z = 5 is appropriate for the empirical 

analysis below. 

The comparison of RMSE of (i) all customers with that of (ii) infrequent customers 

provides useful information of the performance of our models. The largest number of purchases 

by one customer in our data is 390 items and 88 visits to the store, and we define infrequent 

customers as those with fewer than five purchases and three visits to the store. The predictive 

performance of infrequent consumers slightly decreases compared to that of all consumers, 
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however, the RMSE is almost equivalent to that all customers. Thus, our models present a 

tolerable prediction performance for even infrequent consumers. 

 

Table 3 : RMSEs for real customer database – all and infrequent customers 

 

5.3 Segment-Level Parameter Estimates 

Table 4 displays the parameter estimates for “Price”, “Display” and “Feature” and 

“Intercept.” The rows of the tables correspond to products, and the columns to the segments. 

The rows are ordered in terms of the differences of estimates among the segments. The first 

row of each table is for the product estimates with maximum variation, and the last row of each 

table corresponds to estimates with minimum variation. The products positioned near the top 

of the table have larger heterogeneity in the response parameters, while those at bottom of the 

table have relatively similar values among segments. The products are identified in terms of 

their sales rank, with the product named “No. 1” the most purchased product in our database.  

We observe that “Price” coefficients are estimated negative and “Display” and 

“Feature” are positive for most products. This means that our proposed model produces 

economically reasonable estimates. The coefficient estimates also indicate the effectiveness of 

the marketing mix variables for each product. In the “Price” table, for example, product No. 

205 has the highest rank and consumers in segment 3 do not respond to variation in price for 

this product. For product No. 111, segment 1 is the least price sensitive and for product No. 

153 the price insensitive segment is segment 5. Similar results are found with the display and 

feature portions of the table, where we see that the most responsive segment is product-specific. 

We also find that the lower ranked products in each table show nearly uniform response in each 

segment. The results imply that marketers can perform effective promotions to specific 

segment for higher ranked products, however, homogeneous promotions to any segments are 

enough for lower ranked products. 

 

Table 4: Characteristics of 
ziβ for the five segments of consumers  

 

Next, we extract relative preferences of product category for five segments. First, we 

define the relative preference score of segment z for product i by using estimated intercepts for 
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product i as 1
0 01

 


  Z

zi zi ziz
RP Z . The consumers in segment z with the highest value of 

ziRP  relatively prefer product i than consumers in other four segments. Thus, we observe 

preference of five segments by ordering of the score with respect to each segment. 

For visualization of segment’s preferences, we count the number of product category 

in top 100 products in order of ziRP  with respect to each segment. Table 5 shows name and 

number of product categories containing over three kinds of products in the top 100 products 

for each segment. It discloses consumer’s preferences of purchased products for estimated 

segments. 

 

Table 5: Relative preferences of purchased product category for five segments  

 

5.4 Individual Level Parameter Estimates 

Individual level estimates of market response is obtained by taking expectation of 

segment level estimates with respect to Ccz 

 

1

 
Z

ci cz zi
z

Cα β . (15)

We characterize individual consumer in terms of her estimated response coefficient 
ciα . The 

empirical marginal distribution of individual consumer parameter estimates taking average 

 1
1 1, ,

I

cii i I
I 

 
 α


 of 1,647 products for each marketing variable are displayed by 

histograms in Figure 1(a). On the other hand, the empirical marginal distributions of individual 

product, taking average over 1004 consumers, i.e., of  1
1 1, ,

C

cic c C
C 

 
 α


, are depicted in 

Figure 1(b). The products that never displayed and featured in the data period have been 

omitted. 

The marginal distributions provide reasonable individual consumer estimates since 

almost intercept’s and price’s coefficients are negative and almost display’s and feature’s 

coefficient are positive. The distributions of individual product estimates show that the 

feature’s distribution has a sharp peak around zero, implying that promotions by display and 

feature are effective for many products, however, there are a lot of products that they are not 
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effective for the feature. 

Table 6 shows the results of testing the significance of estimated response coefficients 

for individual consumers and products by using the 95% HPD (highest probability density) 

region. Owing to the space constraints, the results are shown for a portion of the dataset (five 

consumers and five products). “*” signifies that the 95% HPD region does not contain zero; if 

the HPD region includes zero (i.e., if the coefficient is insignificant), this square is left blank. 

We call this graph “Customer-Promotion Diagram”. For example, in the “Price” diagram, the 

purchase of No.253 by consumers (a) and (b) is highly influenced by price; however, the price 

of No. 318 affects the purchasing behavior of consumers (a) only. We also report that 

discounting No.18 will not promote consumer (b) to purchase it. This analysis informs retailers 

and marketers which promotion of specified product is effective to any specific individual 

consumer. Thus, our proposed model enables marketers to develop effective pricing and 

promotional strategies for targeted consumers and products. 

 

Table 6: Personalized effective marketing variables for individual consumers and products  

 

Figure 1 Marginal distribution of parameter estimates of individual consumers and products  

 

5.5 Precision of Approximation to Posterior Density 

We examine the precision of VB by comparing estimates to those obtained with 

MCMC, as is assumed that MCMC is a more correct than VB as long as there are sufficient 

iterations to fully characterize the posterior distribution. For comparison purposes, we reduced 

the size of data so that MCMC computations terminate within one day. We extracted 500 

customers randomly from our dataset, and choose the top 100 products in terms of sales volume. 

Table 7 shows estimates of response parameters for VB methods. The vector of 

estimates for 100 products are displayed in row according to the order of number of purchases, 

that is, first row specifies the estimates for the most purchased product. The numbers in the 

table are sample mean of segment level estimates. “-” mean the product which has never 

displayed or featured in the record. From this result, we observe that price coefficients are 

reasonably estimated in the sense most of product have negative values. The same thing holds 

for the coefficients of display and features. That is, our proposed models perform well.  
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Table 7 : Estimated parameters by VB and MCMC 

 

6. Discussion  

This paper addresses two challenges in estimating models of demand in large 

databases: i) the large number of available products and ii) the large number of consumers who 

purchase these products. Existing models in marketing and methods of estimation tend to focus 

on a narrow set of products and a subset of consumers to understand the richness of the 

competitive environment within a product category among a random sample of consumers. 

This goal, however, is often at odds with the goals of practitioners who want to score existing 

datasets to identify a wide set of customers and products to allocate promotional budgets and 

increase sales.  

We propose a descriptive model of demand based on the idea of topic models where 

products purchased by consumers take the place of words used by authors in creating 

documents. We allow for a product's purchase probability to be affected by price, display and 

feature advertising variables, but do not treat purchases to arise from a process of constrained 

utility maximization. The advantage of this approach is that it allows us to side-step 

complications associated with competitive effects and model a much larger set of products than 

that possible with existing economic models. By retaining prices and other marketing variables 

in our model we can still predict the effect of these variables on own-sales. This tradeoff is 

inevitable in the analysis of large-scale databases where purchases are tracked across thousands 

of products. The proposed model links the characteristics of consumer segments to marketing 

variables, and it is applicable to both segment-level and individual-level marketing across a 

large set of products. 

The scalability and predictive performance of the proposed models were confirmed 

through a simulation study involving variational Bayes inference. In our analysis, we imposed 

a fairly conservative convergence criteria for VB of 510 %, but also found that coarser 

thresholds (for instance, 310 %) produced similar results. We therefore believe that estimation 

times can be further reduced in practice from those reported in this paper.  

Finally, we employed the RMSE criterion for choosing the number of segments. In the 

VB framework, the variational lower bound is used for this criterion, as is shown in, for 
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example, Corduneanu and Bishop (2001). The variational lower bound in our models is 

somewhat sensitive to changes in the number of segments, Z. We identify this as a future 

research.  
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Appendix A: Derivation of VB Algorithm for Proposed Model 

This appendix details the variational inference of proposed model. The update procedure 

derives from the analytical calculation of equation (13). The update equation for each 

variational parameter is obtained from the following expectation values 

    

   ( )* ( )*

log , log ,

log , ,

 


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i j

p p

p q d

E D θ E D θ

D θ θ θ
 (A1)

where     , it cityD x .  

The update procedures of variational parameters *
citC , *

cγ , ( )*z
citβ , *

izμ , *
izV , *

i
μ , *

i
 , *

iw , 

and *
iW  are presented below.  

A.1 Optimization of *
cγ  

The Dirichlet and categorical distributions are of the following forms:  
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where     is the gamma function and  citz z   is the Dirac delta function defined as 

  1citz z    if citz z , and   0citz z    otherwise. The expectation value 

 log ,   cq pE D θ  is then calculated for each c as 
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 (A3)

Here and hereafter, const. denotes any terms not included in the relevant parameters. The 

second line of the above equations describes a log-Dirichlet function with parameter 

*

c c

z citz
i I t T

C
 

 . Therefore,  

 *(new) *

c c

c citz
i I t T

C
 

 γ γ  (A4)

A2. Optimization of *
citzC  

Here we denote a digamma function as    , which will be useful for later discussion, 

and summarize the property of truncated normal distribution in the probit model. ( )z
c itu  
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follows a normal distribution with mean zi
T
itβx  and variance 1. Moreover, ( )z

c itu  must satisfy 

1city  if 0citu  and 0city  if 0citu . Therefore, ( )z
c itu  is generated from a 

truncated normal distribution as 
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x β
 (A5)

where  
1 2( , ) ,n nTN    denotes a normal distribution truncated from 1n  to 2n . The 

distribution of ( )z
c itu  is therefore expressed as 
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with          1 0( ) 1 cit city y
z T T

cit it zi it ziF F
  

    x β x β . In addition, the expectation value and 

variance are expressed as  
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where  
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Thus, the expected value  log ,  zq pE D θ  is given as 

    

 ( )
,

log , log |

log | , , , const.


       
   

z c

u

q q cit c

z
q q cit zi cit it cit

p p z

p u z y

E D θ E C

E β x
 (A8)

The first term in the right hand side of Equation (A8) is obtained as    * *
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(Blei et al. 2003), while the second term is evaluated as 
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 (A9)

To solve Equation (A8) for *
citzC , we must evaluate the four terms of Equation (A9). The first 

term includes a CDF from which the expectation value is difficult to obtain analytically. Thus, 
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we expand the term as a first-order Taylor expansion in terms of the CDF of normal distribution 

and the logarithm function. In addition, we assume that the expectation of the third term can 

be approximated by a linear approximation. Such bold approximations are standard strategies 

for adapting topic models with VB to practical computation (for examples, zeroth-order Taylor 

approximation by Asuncion et al. (2009) and Sato and Nakagawa (2012), and zeroth and first 

order delta approximation by Braun and McAuliffe (2010)). The four expectation values in 

Equation (A9) are then written as  
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In appendix A.3, we find that *
ziμ is updated to the optimized value of ( )*z

citβ . Finally, *
citzC  is 

updated as  
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where  
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A.3 Optimization of ( )*z
citβ  

Similar to equations (A3) and (A9), the expected value that optimizes ( )*z
citβ  is 
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Here we seek the mean vector of the truncated normal distribution of ( )z
citu . Therefore, the 

update equation becomes  

 ( )* *z
cit ziβ μ . (A14)
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A.4 Optimization of *
ziμ  and *

ziV  

First, we derive an inverse Wishart distribution function and adopt some well-known 

properties of multivariable normal and inverse Wishart distributions (Anderson 2003, Bishop 

2006). 
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We obtain the optimization procedures of *
izμ  and *

izV  by the following expected value: 
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The first and second terms of the second line are given by the last and third lines of equation 

(A10), while the third and fourth terms are given by Equations (A2) and (A3), respectively, 

derived in a manner similar to (A9). *
izμ  and *

ziV  are then arithmetically updated as  
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where 
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The ziu  is vector and iX  and ziX  are matrices. The number of elements in iu , iX  and 

ziX  are decided by the size of the consumer base and by cT .  

A.5 Optimization of *
i
μ , *

i
 , *

iw , and *
iW  

Here we consider a joint distribution of a multivariable normal distribution of iμ  and an 

inverse Wishart distribution of iV , and derive the update equations for four types of 
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variational parameters from this joint distribution. To this end, we require the following 

expectation value from the joint distribution function: 

      

     

   

,

1 1 1

1

1

log , log , log | , const.

1 1 1 1log log
2 2 2 2

1 1log const.
2 2
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 

 




  





       
 

      

          

   

Vq q i i q zi i i

T

i i i i i i

Z
T

q i q i zi i i zi
z

p p V E p V

w M
V V V tr WV

Z E V E V

E D θ μ β μ

μ μ μ μ

μ β μ β

 (A18)

First, we extract from this expectation value all terms linked to multivariable variational 

parameters *
i
μ  and *

i
 ; that is 

      

   

1 1

1

1

1log ,
2

1 const.
2





 

 







     

     

  T

q i i i

Z
T

q i zi i i zi
z

p V

E V

E D θ μ μ μ μ

μ β μ β

. (A19)

The second term in the above equation is obtained in the same manner as (A15). The 

multivariable normal distribution function is then constructed in a straightforward manner as 

follows: 

  
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1* 1 1 *

1

1* 1

,

.
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
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



    
 

 

  



Z

i zi
z

i

Z

Z

μ μ μ
. (A20)

Next, we optimize *  iw and *
iW  using Equation (A15) and the relationship 

     log log , log | i i i i iq V q V q Vμ μ .  

      ,log , log , log ,
              V Vq q q qp p pE D θ E D θ E D θ  (A21)

The expectation value  log ,   Vq pE D θ  is calculated in a straightforward manner by using 

(A16) and (A17). Finally, we obtain the update equations for *
iw and *

iW  as 

 
 * * 1 * * 1 * *

1 1

*

,

.

   
   

 
     

 

     



Z ZT T T
i zi zi zi i iz z

i

W W V Z

V w Z

μ μ μ μ μ μ
 A(22)

Notice that *
i
  and *

iw  are constant if the hyperparameters and the number latent class are 

given.  

 

Appendix B: Gibbs Sampler  

The joint posterior distribution, assuming conditional independence between variables, 
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provides the full conditional posterior distributions: 

  
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z z
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z
zi zi cit i i it

i i zi i

i i zi i

p z

z p z y

u p u z y

p u V

p V

V p V

C C

C β x

β x

β β μ x

μ μ β

β μ

 (C1)

where TN denotes a truncated normal distribution. 

B.1 Sampling of cC  

The cC  is generated by a Dirichlet categorical relation. The Dirichlet distribution is a 

conjugate prior of a categorical distribution. For each consumer c,  1, , T

c c cZn nn   

denotes the number of generated latent classes cz  by categorical distribution of parameter 

cC  in each MCMC step. A Dirichlet categorical relation gives the posterior distribution with 

respect to cC  as 

        | | Diricletc c c c cp p p z    C C C n   (C2)

B.2 Sampling of | citz  

The posterior probability of ( citz j ) is given as  

       
1

Pr | , , ,


 


cj citj
cit c it zi cit Z

cz citzz

C A
z j y

C A
C x β , (C3)

where     1
1


 

citcit yyT T
citz it zi it ziA F Fx β x β . 

B.3 Sampling of ( ) |z
citu   

The distribution of ( )z
c itu  is described in Appendix A.2. ( )z

c i tu  is sampled from a 

truncated normal distribution in Equation (A5). This well-known sampling approach is called 

data augmentation (Tanner, 1987). 

B.4 Sampling of ziβ , iμ , and iV  

The full conditional posterior distribution of izβ , iμ , and iV  is derived from a 

hierarchical linear regression model. In our case, ziβ  for each i and each z is sampled from 

    1 ( ) 1 1~ , ,  T z
iz M zi zi i iN R X V Rβ u μ  (C4)
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where 1 T
zi zi iR X X V ,  ( ) ( )

,c c

T
z z

zi cit c z z t T
u

  
    

u  and   ,c c

T

zi it c z z t T
X

  
   x . 

iμ  is sampled from 

    1 1

1

~ , ,  
 



    
 

 
Z

i M zi i M
z

N Z V Zμ β I  (C5)

for each i. Here, the hyperparameters are set to  T0000~ μ . 

Finally, iV  for each i is sampled from 

  ~ ,  T
iV IW w Z W B B , (C6)

where 1

1 1

Z Z

zi zi
z z

B Z 

 

   
 

 β β . 
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Table 1 Simulation time by VB and MCMC 

 

The number means hour. 

 

Table 2 RMSE as a function of DDR in simulations  

 
Simulated data (C = 500, I = 100). 

 

Table 3 RMSEs for real customer database – all and infrequent customers 

 

Real customer database (C = 1647, I = 1004) 

  

Z 5 10 20 5 10 20

100 0.2 0.3 0.4 4.3 6.0 12.2
500 0.4 0.7 1.2 17.6 22.8 32.1
1000 0.7 0.9 1.5 37.8 41.6 48.9

100 0.6 0.9 1.5 17.8 23.3 35.8
500 1.3 2.1 3.9 50.5 62.6 80.9
1000 2.4 4.1 6.4 99.6 111.0 128.2

100 1.5 2.1 3.7 38.8 52.3 78.5
500 3.3 5.0 8.4 164.3 201.0 264.0
1000 5.9 8.6 14.7 333.3 372.7 450.2

I

VB MCMC

C  =1000

C = 5000

C = 10000

0.1% 0.2% 0.3% 0.4% 0.5%
Random

Homogeneous 0.245 0.236 0.238 0.236 0.237
VB 0.227 0.213 0.212 0.211 0.212

MCMC 0.226 0.214 0.211 0.212 0.212

DDR 

0.577

2 3 4 5 10 20
Random

Homogeneous 
All customers 0.404 0.389 0.385 0.383 0.383 0.383

Infrequent
customers

0.410 0.400 0.395 0.393 0.393 0.393

# of Z

0.577
0.412
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Table 4 Characteristics of 
ziβ for the five segments of consumers 

 

 

Table 5 Relative preferences of purchased product category for five segments 

 

segment 1 segment 2 segment 3 segment 4 segment 5 segment 1 segment 2 segment 3 segment 4 segment 5
111 -0.82 3.56 4.17 3.76 4.09 205 -4.38 -4.53 -0.13 -4.74 -4.59
205 2.38 2.48 -1.60 2.68 2.57 111 -1.30 -5.04 -5.06 -5.21 -5.89
153 1.44 1.25 1.48 1.52 -1.46 153 -3.95 -3.08 -4.08 -4.08 -0.24
253 -1.42 -3.19 -1.43 -1.48 -1.52 120 -2.51 -2.47 -3.75 -2.66 -0.15
120 -0.46 -0.50 -1.34 -0.41 -1.85 147 -2.13 -2.02 -2.10 -1.94 -4.71
... ... ... ... ... ... ... ... ... ... ... ...

853 -0.89 -0.90 -0.90 -0.90 -0.90 764 -0.52 -0.53 -0.52 -0.53 -0.53
1002 -0.73 -0.72 -0.73 -0.73 -0.73 608 -0.63 -0.64 -0.63 -0.63 -0.63
822 -0.03 -0.03 -0.03 -0.02 -0.02 479 -0.03 -0.03 -0.03 -0.03 -0.04
479 -0.13 -0.13 -0.13 -0.12 -0.13 556 -0.42 -0.42 -0.43 -0.42 -0.42
166 0.05 0.06 0.06 0.06 0.06 737 -0.57 -0.56 -0.57 -0.56 -0.57

segment 1 segment 2 segment 3 segment 4 segment 5 segment 1 segment 2 segment 3 segment 4 segment 5
195 1.26 1.32 1.29 1.31 2.74 147 1.06 0.96 1.01 0.91 2.71
18 1.35 0.14 0.11 0.14 0.12 96 2.54 0.90 0.92 0.93 0.96
182 1.28 1.18 1.21 2.27 1.22 558 1.02 1.90 2.51 0.99 1.03
225 1.57 0.62 0.61 0.63 1.33 502 1.03 1.11 1.19 2.53 1.12
47 0.66 1.59 0.66 0.62 0.58 163 0.57 0.50 1.73 0.58 0.56
... ... ... ... ... ... ... ... ... ... ... ...

936 -0.09 -0.08 -0.10 -0.10 -0.10 457 0.23 0.22 0.21 0.21 0.23
483 -0.07 -0.07 -0.06 -0.06 -0.07 907 0.03 0.04 0.05 0.03 0.04
871 0.32 0.32 0.33 0.33 0.33 24 0.06 0.05 0.06 0.05 0.06
181 0.30 0.31 0.31 0.29 0.31 187 0.20 0.20 0.20 0.20 0.21
794 0.70 0.71 0.70 0.71 0.70 166 0.05 0.06 0.06 0.06 0.06

Price

FeatureNo. No.Display

No. Intercept No.

Segment 1 # Segment 2 # Segment 3 # 
Dessert 7 Dessert 6 Yoghurt 6
Instant noodle 4 Dry noodle 4 Noodle 4
Dressing 4 Chocolate 4 Chocolate 4
Cookie 4 Snak 4 Coke 4
Coffee 3 Snacks made from rice 4 Dressing 3
Sauce 3 Instant noodle 3 Detergent 3
Yoghurt 3 Coke 3 Softener 3
Fish sausage 3 Detergent 3 Fresh noodle 3
Dry noodle 3 Fish sausage 3
Frozen noodle 3 Milk 3

Soy sauce 3
Segment 4 # Segment 5 # 

Instant noodle 6 Yoghurt 8
Detergent 4 Instant noodle 6
Milk 4 Coke 4
Fresh noodle 4 Fish sausage 4
Japanese tea 4 Milk 4
Coffee 3 Tea 3
Coke 3 Snacks made from rice 3
Dessert 3 Japanease Tea 3
Yoghurt 3 Beans paste 3
Dry noodle 3 Detergent 3
Fizzy drink 3



30 
 

 

Table 6 Personalized effective marketing variables for individual consumers and products. 

 
Squares marked with * indicate that a consumer (row) is likely to purchase a product 

(column) based on the marketing variable (price, display, or feature)  

 

 

Table 7 Estimated parameters by VB and MCMC 

 

Real customer database (C = 500, I = 100). 

 

 

 

18 110 253 318 742 18 110 253 318 742 18 110 253 318 742
(a) * * * * * (a) * * * * (a) * * *
(b) * * * * (b) * * * (b) * *
(c) * * * (c) * * * (c) * *
(d) * * * (d) * * * * (d) * *
(e) * * * * (e) * * * (e) * *

Product No.

C
us

to
m

er

C
us

to
m

er

C
us

to
m

er

Product No. Product No.
DisplayPrice Feature

VB MCMC VB MCMC VB MCMC VB MCMC
1 3.29 1.35 -4.91 -3.42 - - 0.17 0.44
2 3.95 2.38 -5.38 -4.18 - - 0.44 0.47
3 -0.12 -0.54 -0.81 -0.26 - - 0.71 0.96
4 3.61 2.67 -5.33 -4.26 - - 0.75 0.74
5 0.56 0.60 -2.58 -2.55 0.28 0.29 0.10 0.12
... ... ... ... ... ... ... ... ...
95 -0.13 -0.02 -0.44 -0.50 0.40 0.14 0.31 0.32
96 -0.67 -0.88 -2.04 -1.31 0.26 0.24 0.93 0.98
97 -0.52 -0.86 -1.80 -1.28 - - 1.10 1.21
99 1.30 0.34 -3.08 -1.97 0.17 0.12 - -
100 -0.69 -0.81 -0.64 -0.51 0.43 0.44 -0.11 -0.24

No. Intercept Price Display Feature
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Figure 1 Marginal distribution of parameter estimates of individual consumers and products 


