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for Over-dispersed Discrete Outcomes 

 

 

 

Abstract 

In this paper, we propose a multivariate time series model for over-dispersed discrete data 

to explore the market structure based on sales count dynamics. We first discuss the 

microstructure to show that over-dispersion is inherent in the modeling of market structure 

based on sales count data. The model is built on the likelihood function induced by 

decomposing sales count response variables according to products’ competitiveness and 

conditioning on their sum of variables, and it augments them to higher levels by using 

Poisson-Multinomial relationship in a hierarchical way, represented as a tree structure for the 

market definition. State space priors are applied to the structured likelihood to develop 

dynamic generalized linear models for discrete outcomes. 

For over-dispersion problem, Gamma compound Poisson variables for product sales counts 

and Dirichlet compound multinomial variables for their shares are connected in a hierarchical 

fashion. Instead of the density function of compound distributions, we propose a data 

augmentation approach for more efficient posterior computations in terms of the generated 

augmented variables particularly for generating forecasts and predictive density. 

We present the empirical application using weekly product sales time series in a store to 

compare the proposed models accommodating over-dispersion with alternative no 

over-dispersed models by several model selection criteria, including in-sample fit, 

out-of-sample forecasting errors, and information criterion. The empirical results show that the 

proposed modeling works well for the over-dispersed models based on compound Poisson 

variables and they provide improved results than models with no consideration of 

over-dispersion. 

 

Key words: 

Compound Poisson, Compound Multinomial, Discrete Outcomes, Dynamic Generalized 

Linear Model, Hierarchical Market Structure, MCMC, Over-dispersion 
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1. Introduction 

A full Bayesian analysis on the dynamics of discrete responses such as counts has been 

facilitated by the Markov chain Monte Carlo (MCMC) methods for more than 20 years. The 

scope is beyond the earlier works with maximum likelihood method by Harvey and Fernandes 

(1989) and Ord, Fernandes, and Harvey (1993). In particular, West et al. (1985) and Cargnoni 

et al. (1997) developed time-series models for variables following a multinomial distribution 

by introducing dynamic linear models using the Bayesian approach. The former proposed a 

dynamic model with a multinomial distribution and the latter dealt with several sets of 

multinomial distributions, both of which assumed the total number of variables to be constant. 

In contrast, the stochastic models for a discrete response exhibit an interesting 

distributional property: the reproduction of Poisson variables and the conditional distribution 

of these variables on their sum follow a multinomial distribution. Terui et al. (2010) used this 

Poisson–multinomial relationship in a dynamic generalized linear model to propose a 

multivariate time-series model with a hierarchical structure between variables for specifying 

market structure on the basis of a product’s sales dynamics. We use the term “market structure” 

to refer to how we classify products into several groups called “submarkets” or “categories,” 

so that the products are competitive inside a submarket but not outside it. Their model was a 

macro model for direct aggregate sales, without consideration of microstructure. On the other 

hand, the Poisson variable has a limited property of having identical first two moments, and 

therefore the over-dispersion has been discussed as important issues in the literature 

particularly in econometrics, as is fully discussed in Winkelmann (2008). 

In this paper, we extend the model of Terui et al. (2010) such that the discrete response 

variables have over-dispersions. We first incorporate the model of an individual consumer’s 

purchase and then aggregate those up to a product sale, after which we find a microstructure to 

generate over-dispersions for our application. We prove that over-dispersion is inherent 
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whenever consumers in the market do not behave independently, as is usually assumed in 

economics and marketing. Then, we propose to build a multivariate time series model with 

hierarchical structures by using Gamma compound Poisson variables for discrete responses 

having over-dispersion. We first develop the statistical modeling of compound distributions to 

represent a market structure, and then, propose a data-augmentation approach. That is, we 

retain the Poisson–Multinomial distributional relationship implying the number of total sales 

and product’s market share, where we augment Poisson and Multinomial parameters, which 

are generated by Gamma and Dirichlet distributions, respectively. Then, we obtain the joint 

posterior density by a full Bayesian MCMC procedure. 

We discuss the microstructure for the inherent over-dispersion in our problem in Section 2. 

Section 3 describes the properties of the compound Poisson and compound multinomial 

distributions used as the building blocks for our model. The structure of the model is explained 

in Section 4, and data augmentation approach to over-dispersion is proposed in Section 5. 

Section 6 describes model specification in the dynamic generalized linear model and derives 

joint posterior density. Section 7 deals with the estimation and forecasting procedures. Section 

8 reports the empirical application. Concluding remarks are provided in Section 9. 

 

2. Microstructure for Generating Over-dispersions 

Suppose that there are H  potential consumers in the market and the number of purchases of 

product i by consumer h at time t follows a Poisson distribution with parameter ih  as 

 Poissoniht ihx  ,                              (1) 

on the ground that consumers will make no purchase or small quantity of buying product at a 

specific time. 

Thus, the total number of sales for product i, ity , also follows Poisson distribution 
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  *

*1 1

tHH

it iht t ih t
h h

y x I h C x
 

    ,                         (2) 

where  tI h C  is an indicator function, taking value “1” when consumer h belongs to a 

potential consumer set tC , i.e., when he/she is ready to buy, and “0” otherwise, and

 
1

H

t t
h

H I h C


   with *h  being the index for reordering of consumers in the set tC . In 

this circumstance, the over-dispersion phenomenon is derived by evaluating the mean and 

variance of ity  as 

   * *

* *

*

1

t tH H

it itih t ih
h h

E y E x  


     ,                    (3) 
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   

* * *

*

* *

'
'

* *

'
'
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              Cov , ,

tH

it ih t ih t ih t
h hh

it it itih t ih t
h h

y x x x

x x E y 




 

   

 


              (4) 

because it holds  * * '
Cov , 0

ih t ih t
x x   for any pair of correlated Poisson variables. 

That is, equation (4) implies that there is over-dispersion whenever at least one pair of 

consumers does not behave independently. This is not a strong assumption, as justified by 

discussions on the existence of a reference group in society and its decision making, going 

back to Hyman (1942), and its application to social psychology on the basis of the consumer 

behavior theory, such as Park and Lessig (1977) and Bearden and Etzel (1982). In fact, 

marketing models have been developed based on a commonality across consumers when they 

represent heterogeneity in the random effect models. This is well explained in the text book 

Rossi et al.(2005). 

On the other hand, Gamma compound Poisson variables with positive parameters  ,a  , 

denoted as  ~ Compound Poisson ,y a  , are suitable for over-dispersion as they contain 

the first two moments 
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 
      Var 1  .

E y a

y a E y



 



  
                        (5) 

In the next section, we assume that the number of product sales, y , by aggregating over an 

individual consumer’s purchase, as shown in equation (2), follows the compound Poisson 

distribution. 

 

3. Gamma Compound Poisson and Dirichlet Compound Multinomial Distributions 

A Gamma compound Poisson variable is defined by the mixture of the Poisson variable having 

parameter   in the Gamma distribution with  ,a  , and its density function is evaluated as a 

negative binomial distribution. 

   

     
 0

| , , 0

1
| | , .

! 1 1

y a

p y a a

y a
f y f a d

y a

 

   
 





               

　　　

         (6) 

Hoadley (1969) discussed the reproductive property of Gamma compound Poisson 

variables and the conditional distribution for a set of these variables when the sum of variables 

is given. That is, let 1 2, ,..., Iy y y  be mutually independent random variables having a 

Gamma compound Poisson distribution with the second parameter   common across 

subjects, i.e., 

 ~ Compound Poisson ,i iy a  .                        (7) 

Then, the sum 1 2 ... In y y y     follows 

 1
 ~ Compound Poisson ,

I

ii
n a 

 .                        (8) 

Furthermore, the conditional distribution of  1 2, ,..., 'Iy y yy  when n is given is shown 

as 

 | ~ Dirichlet Compound Multinomial ,|n n ay y   ,            (9) 
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where  , 1,...ia a i I  , and its density is derived by 

     
 

 
 

 10

!
| , | , |

!

n
ii i i

i i iii

n a y a
p y n a f y n f a d

y an a
  





  
 

 

  
       .  (10) 

 

4. Models for Defining Market Structure 

The products are more or less competitive in their market. These products are grouped 

according to the degree of competitiveness into several segments, and further categorizing 

these groups to higher levels to make subgroups leads to a hierarchical structure for the market 

definition. A tree structure is used to represent the hierarchical nature of competitive 

relationships among products in a graphical form, as shown in Figure 1. Figure 1(a) indicates 

the market with no specific structure and each product sale is directly accumulated to market 

sale. On the other hand, Figure 1(b) shows the situation that some groups of product sales are 

respectively accumulated to sub-markets first and then sub market sales constitute market sale. 

Figure 1 (a), (b) Market Structures 

 

Basic Structure 

Let us assume that there are I  products in the market and that ity  is the number of sales 

for the product i  at time  ( 1,..., )t t T , which follows the Gamma compound Poisson 

distribution independently with a time-varying parameter  ,it ta   defined by (7) for 

1,...,i I  when there is no competitive relationship with each other. Then, we obtain the 

Gamma compound Poisson distribution with  ,it ta  for market sales, defined as the 

aggregate of product sales, 
1

I

t it
i

n y


  , under the assumption of no specific structure among 

products in the market, as shown in Figure 1(a). That is, we have marginal distributions for 
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product and market sales by 

 ~ Compound Poisson ,it it ty a  ,  *Compound Poisson ,t t tn a  ,    (11) 

where 
*

1

I

t it
i

a a


 . Furthermore, after tn  is given, the conditional distribution of product 

sales  , 1,...,t ity y i I   follows 

 | ~ Dirichlet Compound Multinomial ,|t t t tt n n ay y   ,             (12) 

where  1 ,..., 't t Ita a a . The sequential use of equations (11) and (12) produces a joint 

distribution for market and product sales, 

     *, | , | , | ,t t t t t t t t t tp n y a p n a p y n a     .                (13) 

We note that the conditioning set  * , ,t t ta a   has equivalent information with  ,t ta   if we 

take ta  as a full-dimensional vector with a nondegenerated distribution. 

In contrast, Terui et al. (2010) proposed a dynamic generalized linear model based on 

Poisson variables without over-dispersions. This represents a macromodel for aggregate sales 

directly without considering the microstructure. They used the reproductive property of 

Poisson variables and conditional multinomial distribution when the sum of variables is given, 

and proposed a multivariate time-series model with a hierarchical structure based on the 

discrete outcomes. That is, we have marginal distributions  Poissonit ity   and 

 *Poissont tn   and conditional distribution  | Multinomial | ,t t t tt n ny y   , where 

*

1

I

t it
i

 


  and  , 1,..., 1
I

t jt jt iti
j I       . The likelihood at time t is defined 

by  
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     * *, | , | | ,t t t t t t t t tp n y p n p y n       ,               (14) 

where the induced parameters *
t  and t , respectively, represent the expected total sales 

and market shares for each product. 

Higher Order Structure 

This model is extended to a higher order hierarchical structure, as developed by Terui et al. 

(2010). Next, we fully explain the model specifications, including the design matrix of state 

space priors, as this model is applied to actual time-series data in the empirical analysis. 

Extending the Poisson–multinomial relationship in the above-described manner, we 

decompose the market structure into L  submarkets kM  such that [ ]

1

L k
t tk

y y


  , where 

 '[ ] ,k
t it ky y i M   represents kN dimensional vector of the products that are grouped in 

kM , 1,...,k L . Given aggregated submarket sales [ ] ,
k

k
t it

i M

m y


   the conditional 

distribution [ ] [ ]|k k
t ty m , 1,...,k L , follows independent kN -dimensional multinomial 

distribution since [ ]k
ty s are orthogonal to each other, i.e.,    [ ] [ ] [ ] [ ]| |l l k k

t t t ty m y m   for 

l k  by the definition of a submarket. 

Next, let  [1] [ ], ..., 'L
t t tm m m  denote an L-dimensional vector of submarket sales. Then, 

|t tm n follows a multinomial distribution conditional on the sum of submarket sales, i.e., 

market sales [ ]

1

L
k

t t
k

n m


  . In brief, we have a three-layer hierarchical market structure model. 

We note that  ty  and  tn  are independent, conditional on  tm . Then, the joint density 

function of I product sales (bottom layer), L submarket sales (middle layer), and market sales 

(top layer) are decomposed into 

       
     [ ] [ ] [ ]

1

, , | |

   | | .

t t t t t t t t

L
k k k

t t t t t
k

p n m y p n p m n p y m

p n p m n p y m




   

    

　　　　　
           (15) 
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Then, we obtain marginal and conditional data distributions:  *Poissont tn  , 

 | Multinomial ,t t t tm n n   , where [ ] [ ]

1 1 1

/
j k

N NL
j k

jt it it
i k i

  
  

   1,..., 1j L  , 

 [ ] [ ] [ ] [ ]| Multinomial ,k k k k
t t t ty m m    1,..., ,k L   [ ] [ ] , ,k k

t it ki M     

[ ] [ ] [ ]

1

/
kN

k k k
it it jt

j

  


   1,..., 1ki N  , and 
[ ]k
it  is the parameter of the Poisson variable i 

classified to the submarket kM . The structure of this model is illustrated in Figure 1(b). 

 

5. Data Augmentation Approach to Over-dispersion 

Data Augmentation 

Extending the model for accommodating over-dispersion, instead of direct use of densities 

(6) and (10), we take a data augmentation approach to keep the original parameters, i.e., 

implying expected sales and market shares for each product in the modeling, and use the 

generated sample of augmented variable  * ', 't t tz     in the MCMC process to define the 

likelihood for the parameters  ,t ta  : 

     *| , =Gamma | , Dirichlet |t t t t t t t tp z a a a       .          (16) 

By using the relation of posterior density 

   
       

* *

* * * *

, | , , , , | ,

| | , | , |

t t t t t t t t t t t t

t t t t t t t t t t t t

p a n y p a n y d d

p n p a d p y n p a d

     

      



       


 

     

    　　　　　　　
,

 (17) 

we evaluate these integrals by augmenting the gamma and Dirichlet parameters in terms of 

generating the s-th samples *( )s
t from gamma  *( ) *( ) ( )| ,s s s

t t tp a   and ( )s
t from Dirichlet 

 ( ) ( )| ,s s
t t tp n a   in MCMC iterations. Then, conditional on  ( ) *( ) ( ), ' 's s s

t t tz    , we 

obtain the Poisson–Multinomial likelihood function 
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 *( )| s
t tp n   ( )| , s

t t tp y n  
,
                       (18) 

and this forms a building block to constitute a hierarchical structure. 

In case of two-layer models and three submarket (L=3), it is extended as follows: for 

 * ' [1] [2] [3], , ', ', ' 't t t t t tz        
,
 

   
   

       

* * * *

[ ] [ ] [ ] [ ] [ ] [ ]

1

, | , , , ; | , ,

| | ,

| , | | , | ,

t t t t t t t t t t t t

t t t t t t

L
k k k k k k

t t t t mt t t t t t t t
k

p a n m y p a z n m y dz

p n p a d

p m n p a d p y m p a d

 

   

     




   

 
 




 

     

        

 (19) 

where , 1,...,
k

mt it
i M

a a k L


 
  
 
  and  [ ] ,k

t it ka a i M   . 

We evaluate these integrals by augmenting the gamma and Dirichlet parameters tz  in 

terms of generated samples *( )s
t from Gamma  *( ) *( ) ( )| ,s s s

t t tp a  , ( )s
t and 

[ ]( )k s
t from 

Dirichlet  ( )( ) | , ss
t t mtp n a   and  ( ) ( )[ ] [ ]|

s sk k
t tp a  , respectively.  Then, conditional on 

 ( ) ( ) ( ) ( ) ( )( ) * ' [1] [2] [3], , ', ', ' '
s s s s ss

t t t t t tz         , we obtain the Poisson–Multinomial likelihood 

function: 

     *( ) ( ) [ ]( ) [ ]( ) [ ]( )

1

| | , | ,
L

s s k s k s k s
t t t t t t t t

k

p n p m n p y m  


 
      .         (20) 

 

6. Model Specification and Joint Posterior Density 

Dynamic Generalized Linear Model  

Using the expectation of product sales leads to 

 it it tE y a   .                               (21) 

Thus, we interpret that the expected sale is decomposed into an individual mean ita and a 

common mean t  across products. In turn, we model the mean function as  ,it t it ita f x   
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connecting with marketing mix variables itx  and stochastic error it . We specify the structure 

in more detail as 

log log ' , 1,...,it i t it it ita a x i I      　  .            (22) 

 

That is, the individual mean has a product-specific mean ia  and a common time trend log t , 

and it is assumed to be mostly explained by marketing mix variables. We set * logit it ia a a 

and denote * logt t   , and then conditional on ia , we have the dynamic equation 

* * 'it t it it ita x      .                        (23) 

This constitutes the structural equation t t t tF v    , where  * *
1 ,..., 't t Ita a   and 

 *
1 2= , ,..., , 't t t It t     , tF  is the matrix defined by the structure on t  in equation (24), 

and tv  is the error vector comprising of it . As for the dynamic state vector used in the 

application, we specify the second-order local common trend for *
t  and the first-order local 

trend model for the response parameter it , i.e., 

* *
1 1 1 1 2

1 3

;

, 1,... ,
t t t t t t t

it it it

w w

w i I

    
 

  



     


   　
                (24) 

and this specifies the system equation 1t t t tH w      . 

Coupled with the data distribution (15), we define the dynamic generalized linear model 

with the state space prior: 

1

,        ~ (0, )

,     ~ (0, )

t t t t t

t t t t t

F v v N V

H w w N W

 

  

  


 

  
   

  .                  (25) 

Joint Posterior Density 

Under the usual assumption that the prior density for the covariance matrix of structural 

and system equations      ,p V W p V p W , we can express the prior distribution as 
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      
         1

1

, , , |

         | , , , | , ,

t t i

T

t t t i t t i
t

p V W a

p X V a p W a p V p W

 

    






  
.

     (26) 

Next, we set the prior distribution  ip a  of the individual mean parameter ia  by  

      2 2 2 2
0 0 0 0| , / ; , ; / 2, / 2i i i i i i ia N a a N a b IG n s     　　 .    (27) 

By arranging the term in (22) as it i itc a   , where log log 'it it t it itc a x    , for 

1,...,t T , we constitute the likelihood for the mean ia  conditional on the error variance 

2
i  and derive conditional posterior distribution       2| , , , , ,i t t i ip a V W a  


 
 in a 

closed form as 

2 2
2

2 2
| ,i i i i

i i
i i

a Tc v
a v N

T T


 

 
   

   ,                    (28) 

where 
1

/
T

i it
t

c c T


   and  ia means the set of , 1,...,ka k I  excluding ia . 

Finally, we obtain the joint posterior density with data augmentation of 

 * [1] [2] [3], ', ', ', ' 't t t t t tz          by equation (29): 

            
            

        

          

2

3
* * [ ] [ ] [ ]

1

1
1

2 2

1

, , , , , ; | data

| | , | , | , | , | ,

| , , , | ,

| , , , , , .

t t i i t

k k k
T t t t t t t t t t t t t t t t t t

k

t
t t t i t t

I

i t t i i i i
i

p V W a z

p n p p m n p p y m p

p X V a p W p V p W

p a V W a p a p

  

           

   

   









 
 

  
  










    

  

　　

(29)

 

In (29), “data” means the observed data     ,t ty x  . 

Our model with over-dispersions is characterized as the dynamic generalized linear models 
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of the Poisson–Multinomial distribution perturbed by the Gamma–Dirichlet distributions. 

 

7. Estimation and Forecasting 

Sampling the link function for MCMC 

In addition to the standard Bayesian inference on state space modeling by dynamic linear 

models (DLMs) by West and Harrison (1997), we use the MCMC approach to estimate the 

model by using Metropolis–Hastings sampling specifically for the conditional posterior 

density of link functions based on the data-augmented representation 

       | , , ,data , , | | | , ,t t t t t t t t t t t t tp F V p n m y z p z p F V dz          ,   (30) 

where  * [1] [2] [3], ', ', ', ' 't t t t t tz       .  Once the values of t for equation (30) are given, the 

structural equations coupled with the system equations in their state space priors in equation 

(25) constitute the conventional Gaussian state space models. The multi-move sampler by 

Carter and Kohn (1994) and Fruhwirth-Schnatter (1994) is used to sample the state vector t . 

We assume that the initial values of the state vector 0  follow a multivariate normal 

distribution  0 ,N d I  . The mean vector 0  was set as the estimate of the coefficient on 

static regression, i.e., the regression with time-invariant coefficient, and we set d = 0.1 for the 

empirical application. 

Predictive Density 

Next, one-step-ahead predictive density  1 | datatp y   is evaluated by 
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     
   

1 1 111 11

1

| ,data | , | , , ,data

| , , ,data , ,

T T TTT TT

T T T

p z p z p V Wy

p V W p V W d dVdW

 

  

   



  

  　　　　
        (31) 

where  11 | , , ,dataTTp V W 
  is the conditional predictive density of link parameters 

when the predicted state vector, and structural and system error covariance matrices are given. 

The MCMC method is applied to evaluate this predictive density by the augmenting procedure. 

To evaluate this density, we first extend equation (16) to define the predictive likelihood of 

1T  conditional on 1T 
  by 

    

   

* *
1 1 1 1 11 11

3
[ ] [ ] [ ]

1 , 1 1 1 1 1
1

| , , , , data Gamma | ,

Dirichlet | Dirichlet |

T T T T TT TT

k k k
T m T T T T T

k

p z V W a d

a a d d

    

   

     

     










 

    　　
      (32) 

The details of the sampling scheme for MCMC are described in the appendix. 

 

8. Empirical Application 

Data and Variables  

We use the store level scanner, point of sales (POS), time series in the curry roux category 

that was applied to our previous model in Terui et al. (2010) for comparison with the model 

with over-dispersion. The weekly series comprises three manufacturers that produce three 

products each, for a total of nine products during 110 weeks. 

 

Table 1 Summary of Data 

Figure 2 Histogram of Weekly Product Sales Data 

 

Table 1 describes the summary statistics for sales, price display, and feature data. In 

particular, sales data contains variance to give an evidence of the presence of over-dispersion 
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in the data. Figure 2 show the histogram of brand sales. 

The first 100 weeks are used for estimation and the last 10 weeks are reserved for 

validation of forecasting. The data contain the amount of product sales for  ity , and “prices”, 

“display (in-store promotion)”, and “features (advertising in newspaper)” for marketing mix 

variables  itx . itx  contains not only variables of their own, but also those with other products. 

The display and features are binary data taking a value of “1” when it was on and “0” when it 

was off. The logs of price data are used. 

Model Comparison 

Each of the three makers, A, B, and C, produces three categories of products according to 

the level of spiciness to accommodate the difference in consumer tastes (1: Not spicy, 2: 

Medium spicy, 3: Spicy). Following the discussion of Terui (2011), we assume three possible 

market structures: (1) product category, (2) makers, and (3) usage, i.e., “ordinary” or “luxury” 

usage, as shown in Figure 3, and compare these models with over-dispersion and without 

over-dispersion. That is, we have six models to be compared. 

 

Figure 3 Comparative Models 

 

The top of Table 2-1 shows the log of marginal likelihood (LML) as an in-sample fit 

criterion and two types of predictive measures, i.e., the deviance information criteria (DIC) by 

Spiegelhalter et al. (2002), and the root mean squared errors (RMSE) of 10-step-ahead 

forecasts of hold-out samples as out-of-sample criteria. 

There are three levels for forecasting the RMSE: market, submarket, and product. These 

errors, including the null model of “no” structure, are reported in the lower panel of the table 

2-2. We apply two types of measures: “sum1” and “sum2.” “sum1” is the sum of all errors 
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induced by the model in which we have no specific preference on the levels to be predicted. 

“sum2” is defined as the sum of market and product errors by considering that the numbers of 

submarkets differ between null and other structures. 

According to the three criteria, the proposed models based on compound Poisson variables 

accommodating over-dispersion improve the models with no over-dispersions. In particular, 

the compound Poisson variable model under the market structure (3) shows the best 

performance. 

 

Table 2-1 Model Comparison: Overall 

Table 2-2 Model Comparison: Decomposition of RMSE 

Table 3 Estimates of Product Intercept 

 

Figure 4 In-sample Performance and Forecasting—Market, Submarket, and Product 

Figure 5 Estimates of Structural Parameter 

 

The left panels of Figure 4 show the predicted fit of in-sample data for market, submarket 

of “usage,” and product levels, where each observation is denoted by a dot and the estimates 

are connected by straight lines. We observe that the model fits the market sales well over the 

observational period. The right panel of each element depicts its 10-step-ahead forecasting for 

these sales, where the mean values of the predicted density at each prediction step are 

connected by a continuous line, and the 2.5% and 97.5% quantiles of the density at each step 

are connected by dashed lines. The hold-out samples are denoted by dots in the figure. This 

shows that the market will gradually expand over the next 10 weeks, and these forecasts are 

consistent with the movement of hold-out samples. We generate the forecasts keeping the last 

observation iTx  for the prediction steps. 



 16

Figure 5(a), (b) show the trajectory of estimated parameters  t  and  1 9,...,t ta a . It 

appears that t s are fluctuating downward for the first period and then turning upward with 

local trends around a mean level of 0.9998.  1 9,...,t ta a  move more heterogeneously with 

large fluctuations, which should be proportional to the observed discrete outcomes. 

Figure 5(c) indicates trends for product A2 and B3 sales, which belong to a different 

category; it shows the opposite trends. Figure 5(d) depicts the time-varying price coefficient 

estimates in response to price and promotions (“End” display and “Advertising”). We confirm 

the competitive relationship between submarkets, and more interestingly, we find that products 

B1 and C2 are not hostile to A1 in the sense of pricing strategy, as they have the same 

coefficient sign as that of A1. 

 

9. Concluding Remarks 

In this study, we proposed a multivariate time series model for over-dispersed discrete data. 

Therein, we extended the model with the hierarchical structure by Terui et al. (2010) to 

accommodate the over-dispersion problem inherent in the modeling of market structure based 

on sales count dynamics. We first discussed the mechanism of the microstructure for 

generating over-dispersion in a number of discrete sales data. 

The Gamma compound Poisson variable for product sales count responses and Dirichlet 

compound multinomial variables for product share are connected in a hierarchical fashion as a 

tree structure for depicting a market. The model is based on the likelihood generated by 

decomposing sales count response variables according to the degree of competitiveness among 

products and conditioning on their sum, and builds them up to higher levels, represented as a 

tree structure. State space priors are applied to the likelihood generated by the compound 

distributions to develop dynamic generalized linear models for discrete responses with a 
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hierarchical structure. 

We first showed that over-dispersion is inherent to the problems where consumers are more 

or less dependent. Then, we model the compound distributions for accommodating 

over-dispersions. However, instead of the direct use of the density function of compound 

distributions, we augment variables to make the numerical integrations for mixing easier, and 

provide more efficient algorithms compared to the method that makes direct use of compound 

distributions. The empirical analysis by weekly product sales data in a store showed that our 

modeling worked well and the models with over-dispersion, which is constructed by 

compound Poison variables, performs better than the models without over-dispersion. 

There are a few problems for future research. One is the extension of the theoretical study. 

The zero-inflated Poisson (ZIP) model by, for example, Lambert (1992) could be also applied 

to our modeling when the data contain many zeros. In particular, this could be important if we 

further incorporate modeling of individual consumer behavior in the analysis. This could be 

accommodated by mixture distributions through hierarchical models, as used in this study. 

However, this additional mixture modeling demands more complicated computation 

procedures. The expected gains from this extension could not be substantial, compared with 

the development of a new model, and thus, we would like to leave this modification of the 

model for future research. 
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Appendix: MCMC Algorithm 

A.1 Dynamic Generalized Linear Model  

We summarize the prior and conditional posterior distribution used for our proposed model 

below. 

Conditional Posterior Distribution 

We run 10,000 MCMC iterations in the model. In all models, we used the last 5,000 

iterations to estimate the posterior distribution of model parameters. When the initial values of 

the parameters are given, the conditional posterior density of the necessary parameters is 

generated as follows. 

(i) |t 
 

t  is defined by equation (23), and we use Metropolis–Hastings with a random walk 

algorithm, 

 ( ) ( 1) 0 0 1s s
t t N I       　   , 

where I  is an identity matrix with corresponding dimensions. 

Acceptance probability   is defined as 

   
 

( ) ( ) ( )

( ) ( 1)

( 1) ( 1) ( 1)

| , , ,data
, min ,1

| , , ,data

s s s
t t ts s

t t s s s
t t t

p F V

p F V

 
  

 


  

 
 
 
 


 


. 

After obtaining the draw of these parameters, we use West and Harrison’s (1997) standard 

Bayesian inference procedure on state space modeling by DLM. 

(ii) |t 
 

The multi-move sampler by Carter and Kohn (1994) and Fruhwirth-Schnatter (1994) is 

used to sample the state vector t  

(iii) * |t   

    Generate *( )s
t from gamma  * *( ) ( )| ,s s

t t tp a 
 

(iv) |t   

Generate ( )s
t from Dirichlet  ( )| , s

t t mtp n a   

(v) [ ] |k
t   

Generate [ ]( )k s
t  from Dirichlet  ( )[ ][ ] |

skk
t tp a   

(vi) |ia   
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Generate ( )s
ia  from 

2 2
0 0

2 2
0 0

, ,ib a ma
N

b m b m




 

 
     

where 
1

/
m

i
i

a a m


  . We set 0 00, 10a b   in the empirical analysis. 

(vii) 2 |i   

Generate 2( )s
i  from  2

0 0
1

( ) / 2, / 2 .
m

i
i

IG n m s a a


      
  

  

We set 0 02,n s m   in the empirical analysis. 

 

A.2 Forecasting Discrete Outcomes and Constituting Predictive Density 

Given the s-th draw of MCMC  ( ) ( ) ( ), ,s s s
T V W , 

(i) obtain the forecast ( )
1

s
T   from  11 | , , ,dataTTp V W 

   1 | , , ,dataT Tp V W 
   

by the algorithm of Gaussian state space model; 

(ii) obtain the forecast ( )
1

s
Tz   from  1 1|T Tp z     to get the parameter 

 ( ) * ( ) ( ) [1] ( ) [2] ( ) [3] ( )
1 1 1 1 1 1, ', ', ', ' 's s s s s s

T T T T T Tz            ; 

(iii) generate the random number  ( ) * ( )
1 1Poissons s

T Tn    for the market sales forecast; 

(iv) given ( )
1

s
Tn   together with the parameter values  ( )

1
s

iT  , generate ( )
1

s
Tm   by 

sampling from the multinomial distribution 

 ( ) ( ) ( )( )
1 1 1 1| Multinomial ,s s ss

T T T Tn nm       for the submarket sales forecasts; 

(v) given [ ]( )
1

k s
tm   together with the parameter values  [ ]( )

1
k s

T 
  of the multinomial 

distribution of submarket kM , generate the respective product’s forecasts by sampling 

from the multinomial distribution 

 [ ]( ) [ ]( )[ ]( ) [ ]( )
1 1 11 | Multinomial ,k s k sk s k s

T T TTy m m   
    for k=1, …, L; 

(vi) iterate steps (i)–(v) M times. 

Then, the empirical distribution of  [ ]( )
1 , ,...,k s

t s b My    approximates the predictive 

density (31) in [ ]
1 1

k
T tz y  . We set the burn-in parameter b = 5,000 and the total number of 

iterations M = 10,000 for the empirical application after checking the convergence. Seven 

hours of computation were necessary to implement our empirical analysis. By extending the 
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above forecasting steps up to H step ahead, we obtained the MCMC sample path 

 [ ]( ) [ ]( ) [ ]( )
1 2, ,...,k s k s k s

t t t Hy y y     for the joint predictive density. 
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Table 1 Summary of Data 

 

 
 

 

 

 

Table 2-1 Model Comparison: Overall 

 

 

ML: the log of marginal likelihood, DIC: Deviation information measure 

RMSE: the root mean squared errors of 10 step ahead forecasts 

  

weekly weekly weekly
Brand Price (/100g) Display Feature

Average (Variance) Average Average Average
A1 33.74 (1057.47) 90.04 2.09 0.40
B1 74.11 (4287.59) 90.33 2.10 0.40

C1 51.29 (2034.13) 89.59 2.09 0.40

A2 61.54 (2915.08) 87.29 1.52 0.23
B2 87.00 (4470.92) 83.71 2.73 0.23

C2 49.67 (1551.92) 80.62 3.39 0.20

A3 27.22 (578.82) 101.22 0.69 0.19

B3 48.13 (1947.57) 99.31 0.73 0.19
C3 24.42 (959.64) 99.03 0.72 0.18

weekly
Sales

ML DIC RMSE(sum1) RMSE(sum2)

Poisson

    Null 150453 -300620 792.71 792.71

    Product Category 150558 -300810 648.96 480.06

    Maker 150575 -300880 858.24 515.76

    Usage 150593 -300995 621.13 449.51

Compound Poisson

    Null 150797 -301170 653.99 653.99

    Product Category 150827 -301202 650.41 467.65

    Maker 150829 -301235 770.48 490.00

    Usage 150868 -301309 612.19 412.85
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Table 2-2 Model Comparison: Decomposition of RMSE 

 

 
 

 
  

  Market 222.65   Market 164.36   Market 138.73   Market 171.34

A1 47.52 Category A 65.71 Maker 1 133.65     Usage 1 125.81

A2 31.21 A1 45.75 A1 49.74 A1 38.74

A3 76.93 A2 27.64 B1 62.98 B1 75.44

B1 105.19 A3 9.66 C1 37.20 C1 42.16

B2 78.92 Category B 67.77 Maker 2 141.38 A2 19.21

B3 83.77 B1 71.43 A2 52.44 B2 33.27

C1 54.63 B2 47.72 B2 59.21 C2 19.28

C2 51.56 B3 35.98 C2 31.08

C3 40.32 Category C 35.41 Maker 3 67.46     Usage 2 45.81

C1 44.85 A3 22.50 A3 17.19

C2 19.01 B3 39.22 B3 23.71

C3 13.68 C3 22.65 C3 9.17

(sum1) 792.71 (sum1) 648.96 (sum1) 858.24 (sum1) 621.13
(sum2) 792.71 (sum2) 480.06 (sum2) 515.76 (sum2) 449.51

Poisson

Null UsageProduct Category Maker

  Market 305.95   Market 215.32   Market 198.35 Market 203.94

A1 42.34 Category A 49.88 Maker 1 124.41     Usage 1 139.20

A2 93.88 A1 20.04 A1 29.99 A1 26.89

A3 55.41 A2 20.69 B1 63.23 B1 30.30

B1 28.20 A3 25.07 C1 35.25 C1 21.26

B2 52.06 Category B 81.87 Maker 2 75.66 A2 16.61

B3 15.59 B1 50.56 A2 17.35 B2 29.37

C1 22.97 B2 32.68 B2 47.74 C2 20.50

C2 27.33 B3 33.89 C2 13.26

C3 10.26 Category C 51.01 Maker 3 80.41     Usage 2 60.14

C1 25.87 A3 14.96 A3 22.01

C2 19.19 B3 47.40 B3 20.79

C3 24.34 C3 22.47 C3 21.18

(sum1) 653.99 (sum1) 650.41 (sum1) 770.48 (sum1) 612.19
(sum2) 653.99 (sum2) 467.65 (sum2) 490.00 (sum2) 412.85

Compound Poisson

Null UsageProduct Category Maker
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Table 3 Estimates of Product Intercept 

 

 

  

Category Brand Post Mean Post S.D.
A1 0.17 0.06
B1 0.81 0.07
C1 -0.10 0.06
A2 0.69 0.10
B2 0.94 0.07
C2 0.26 0.06
A3 -0.48 0.08

Usage 2 B3 0.33 0.08
C3 -1.03 0.08

Usage 1
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Figure 1 Market Structure 

 

(a) No Specific Structure 

 

 
 

 

(b)Three-Layer Hierarchical Market Structure 
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Figure 2 Histogram of Weekly Product Sales Data 
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Figure 3 Comparative Models 

 

 

Three makers produce three categories of products and they are classified into two 

groups by their usages. 
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Figure 4 In-sample Performance and Forecasting: Market, Submarket, and Product 

 

(a) In-sample fit                                  (b) Forecasting 
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Figure 5 Estimates of Structural Parameter 

(a)  t  

 

(b)  ita  
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(c) Trend 
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(d) Response Parameters 
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