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Abstract: A likelihood function is a real-valued function on the set of events of the sample space

representing the likelihood of the occurrence of the events, and the logarithmic and linear (positive

affine) likelihood functions are given by the logarithmic and linear transformations of a probability

measure on the events, respectively.   Specifying statistician's subjective likelihood of the events by

a difference comparison relation, this paper provides some axioms for the relations to be

represented cardinally by the two likelihood functions, the probability measures of which coincide

with the unique subjective (conditional) probability measure determined by the relation.   This

result turns out that the difference of the axiomatizations for the likelihood functions is only the

difference of the Lucian independence axioms, (i.e., difference in the definition of irrelevant events

for the relations).
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1.  Introduction

A likelihood function is a real-valued function defined on the events of a sample space representing

the statistician's subjective likelihood of the occurrence of the events.   Practically, the logarithmic

and linear (positive affine) likelihood functions, which are given by the logarithmic and linear

transformations of a probability measure on a sample space, respectively, are widely used in

statistics.   This paper attempts to derive jointly the two likelihood functions from the qualitative

axioms stated in terms of a relation on the events, which specifies the statistician's subjective

likelihood of the occurrence of the events.

The axiomatic foundation of the likelihood functions as the ordinal (order-preserving)

indicators representing the relation has been established, because the likelihood function is given

by the monotone transformation of the (subjective) probability measure of which axiomatic

foundation is well-established.1   The ordinal likelihood function is implicitly assumed when one

computes the maximal likelihood estimators assuming the logarithmic likelihood function, because

the logarithmic function is a monotone transformation and the maximal likelihood estimators are

invalid against such a transformation.2 

In some hypotheses testings, as shown in the Neyman and Pearson lemma, the likelihood

ratio index is crucial for the optimal testing procedures, because the decisions of the testings are

altered if we adapt another index such as the likelihood difference index.3  Because the likelihood

ratio and likelihood difference indices are derived from the logarithmic and linear likelihood

functions, respectively, the functional forms of the likelihood function are meaningful and the

likelihood functions are assumed as the cardinal functions in the hypotheses testings.4   However

the axiomatic foundation of the cardinal likelihood functions is not established.   Namely the

question what is the qualitative principles determining the logarithmic likelihood function is an

                                         

1   See  Fishburn (1986, 1994) for the surveys of the subjective probability theory.

2    See Myung (2003) for the maximum likelihood estimation.

3    See DeGroot (1970, Ch.8, Theorem 1, p.146).

4   Almost the same question is considered by Sober (2008, Ch 1, p.15 – p.17) in the literature of philosophy of

science, where the cardinality of the confirmation measures closely related to the likelihood ratio index is

discussed. 
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open question.   Moreover, among the qualitative principles, the question what principles do

explain the differences of the two cardinal likelihood functions is also open.

In this paper, we assume that the statistician's subjective likelihood of the occurrence of

events in the sample space is specified by a difference comparison relation (called the relative

likelihood relation) on the sample space, and we derive the two cardinal likelihood functions from

some axioms on the relation as in the standard difference measurement theory,5 without

introducing the concepts in the mathematical physics and information theory such as the entropy

and the complexity measure.   Concretely, we provide the axioms on the relation not only for the

existence of a qualitative (subjective) probability measure satisfying the law of conditional

probability, but also for the representability by the logarithmic likelihood function as a cardinal

indicator representing the relation (i.e., the likelihood function is determined unique up to the

linear transformations).   Moreover, replacing one of the axioms with a new axiom, this paper

derives the linear likelihood function as a cardinal indicator representing the relation.   This joint

derivation result clarifies the qualitative principles underlying the two likelihood functions and

points out the principles explaining the difference of the two likelihood functions.

In order to introduce some axioms for the qualitative conditional probability, we extend the

sample space by adjoining the sample space to an auxiliary experiment of which events are Borel

subsets in the unit interval [0, 1],6 and then we introduce some axioms which specifies the

                                   

5  See Krantz et al. (1971, Ch. 4) and Luce and Suppes (2002, Difference Measurement, p.16) for the

measurement theory.
6   We can assume that the auxiliary experiment is conducted repeatedly many times and the subjective

probability on [0, 1] can be interpreted as the objective probability which determined by the (ideal) limit of

the frequencies of the realizations of the repeated experiments.   While the original experiment for the

original sample space can be interpreted as the one-shot experiment.   Hence the difference relation includes

the comparisons between the pairs of the events in the two distinct sample spaces can be recognized as a

cross-modality ordering.   For the cross-modality ordering, see Krantz et al. (1971, Ch. 4, Section 4.6),

Roberts (1979, Ch.4, Section 4.4), Luce (2012) and Nakamura (2015).   In particular, the subjective

probability and the state-dependent utility are jointly derived by Nakamura (2015) from the axioms on the

cross-modality orderings.
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conditions of the relation using the Euclidean topology and linear operations in [0, 1].   The

extended sample space is used by De Finetti (1970, Section 6), DeGroot (1970) and French (1982)

to derive a qualitative (un-conditional) probability measure,7 introducing the monotone continuity

axiom, which specifies a topological property of the relation.   In this paper, we introduce not only

the continuity axiom, but also the independence of unit axiom as in Luce (1959, Ch.1, Section F) to

specify an algebraic property of the relation.

Practically, in the next section, the basic sample space is introduced as an abstract

measurable space, and we adjoin the sample space to the auxiliary experiment.   In the section 3,

we show that the five axioms in French (1982), including the  continuity  axiom, are necessary and

sufficient for the existence of a qualitative (un-conditional) probability on the extended sample

space (Theorem 1).8   In the section 4, we prove that the five axioms for Theorem 1 and the three

axioms added here, including the independence of unit axiom, are necessary and sufficient for the

existence of the qualitative conditional probability  (Theorem 2).

As the main result of this paper, in the section 5, we introduce three additional axioms

including a Lucian independence axiom, and we show that the eleven axioms are the necessary

and sufficient for the likelihood relation to be represented by the logarithmic likelihood function

(Theorem 3), and the linear likelihood function is axiomatically derived (Theorem 4) only by

replacing the Lucian independence axiom in Theorem 3 with another Lucian independence axiom.9

2. The likelihood relations and the likelihood functions

This section introduces the basic sample space as an abstract measurable space  (S,  �S), and then

we adjoin the sample space to an auxiliary experiment of which events are Borel sets in the unit

interval  T ≡ [0, 1].   Moreover, the relative likelihood relation is defined by a binary relation on the

                                      

7   See  Fishburn (1986,  Section 6) for the survey of the subjective probability theory based on the auxiliary

experiment. 

8  Although French (1982, Section 3, Axiom SP5) assumes the Herstein and Milnor’s (1953) continuity axiom

also, we prove Theorem 1 without assuming the Herstein and Milnor’s continuity axiom.   Namely, our

continuity axiom implies Herstein and Milnor’s continuity axiom under the other four axioms.
9  The two independence axioms are variants of Luce’s (1959) independence axiom.
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pairs of the conditional events of the extended sample space, and we define the logarithmic and

linear likelihood function formally.

Let  S  be the set of possible futures  (a sample space).   We assume that  S ∩ [0, 1] = φ, where

φ  is the empty set.   Let  �S  be a σ-field of subsets of  S, (i.e., �S  is a set of subsets of  S  which is

closed under complementation and σ-additivity).   A set in  � S   is called an event in  S.

Specifically, S  is called the total event of  �S.    The set of null events in  �S    is denoted by  �S.

We assume that  S ∉ �S  and  φ ∈ �S.   For a given pair of events  A  and  B  in  �S   such that  B ∉

�S, a  conditional event  is denoted by an ordered pair  A|B, where  A|B  means an event  A

conditioned on an event  B.   The set of all conditional events in  S  is defined by  ΓS = { A|B : A ∈

�S, B ∈ �S  and  B ∉ �S }.

Let  �T  be the set of all intervals in  T ≡ [0, 1], and let  �T  be the set of all Borel subsets in  T,

which is the minimal σ-field on  T  containing  �T.10   A set in  �T  is called an event in  T.

Specifically, T  is called the total event of  �T.   The set of null events in  �T  is denoted by  �T.   We

assume that  T ∉ �T  and  φ ∈ �T.   A  conditional event  in  T  is denoted by an ordered pair  A|B

for  A, B ∈ �T  such that  B ∉ �T, and the set of all conditional events in  T  is defined by  ΓT =

{ A|B : A ∈ �T, B ∈ �T  and  B ∉ �T }.

A  difference  on  ΓS  is a transition (path) from a conditional event  A|B ∈ ΓS  to a conditional

event  C|D ∈ ΓS, and a  difference  on  ΓT  is a transition (path) from a conditional event  A|B ∈ ΓT

to a conditional event  C|D ∈ ΓT.   In both cases, the difference from  A|B  to  C|D  is denoted by

an ordered pair  (A|B,  C|D).   The sets of all admissible differences on  ΓS  and   ΓT  are defined by

ΘS = {  (A|B,  C|D) : A|B ∈ ΓS, C|D ∈ ΓS  and  A ∩ B ∉ �S  }  and

ΘT = {  (A|B,  C|D) : A|B ∈ ΓT, C|D ∈ ΓT  and  A ∩ B ∉ �T  }, respectively.

                                  

10  A singleton in  �T  is denoted by  {  t  }  or  [t, t]  for all  t ∈ T, and we assume that  [t, t] ∈ �T  for all  t ∈ T.

It holds by  S ∩ [0, 1] = φ  that  �S ∩  �T = { φ }.   We define the set-difference operation  A – B  by  A – B ≡

{ x ∈ A : x ∉ B }  for any  A, B ∈ �S ∪ �T  (i.e., A – B  is the relative complement of  B  in  A.)   For example,

S –  S = T – T = φ, S –  φ = S  and  T – φ = T.
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A relative likelihood relation  ì  on  ΘS 
∪ ΘT  is a complete and transitive binary relation on

ΘS 
∪ ΘT.   The expression  (A|B, C|D) ì (A*|B*, C*|D*)  means that the transition from  A|B  to

C|D  gives more added likelihood than the transition from  A*|B*  to  C*|D*.   The symmetric and

asymmetric parts of  ì  are denoted by  ~ and  �, respectively.

A function  F : ΓS 
∪ ΓT → � ∪ { – ∞ }  is called a likelihood function representing a relative likelihood

relation  ì  if and only if

              (A|B,  C|D) ì (A*|B*,  C*|D*)  ⇔  F(C|D) – F(A|B) ≥ F(C*|D*) – F(A*|B*)        (1)

for all  (A|B,  C|D), (A*|B*,  C*|D*) ∈ ΘS 
∪ ΘT.   For the arithmetic rules for the extended real

number  – ∞ , we assume that

              – ∞  = – ∞  + x  and  – ∞ < x  for all real numbers  x ∈ �.                                             (2)

In order to define the logarithmic and linear likelihood functions, we need a definition: a real-

valued function  π(·)  on  �S∪�T  is called a probability function if and only if the following three

conditions hold:

(i)    The restriction of  π  on  �S  coincides with a probability measure on  S.11

(ii)   The restriction of  π  on  �T  coincides with a probability measure on  T.

(iii)   π(A) > 0  ⇔  A ∉ �S∪�T    for all  A ∈ �S∪�T.

For a given probability function  π, a likelihood function  F1(A|B)  is defined to be logarithmic with

respect to a probability function  π   if and only if

              F1(A|B) = log[π(A ∩ B)/π(B)]  for all  A|B ∈ ΓS 
∪ ΓT,                                                 (3)

and a likelihood function  F2(A|B)  is defined to be  linear  with respect to a probability function  π

if and only if there exists  a > 0  and  b  such that

              F2(A|B) = a·[π(A ∩ B)/π(B)] + b  for all  A|B ∈ ΓS 
∪ ΓT.                                             (4)

                                      

11  A probability measure on  S  is a real-valued  function   p  on   �S   such that: (i)  0 ≤ p(A) ≤ 1 for  A ∈ �S;

(ii) p(φ)=0, p(S)=1; (iii)  p  is countably additive on �S .   For the countable additivity, see Rosenthal (2006,

Section 2.1, page 7) and Billingsley (1995, Ch. 1, Section 2, page 17).
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3. The derivation of the qualitative (subjective) probability measure

This section provides the axioms on the relative likelihood relation for ensuring the existence of a

subjective (un-conditional) probability measure representing a subrelation induced by the relation

on the un-conditional events, �S∪�T, based on DeGroot’s (1970, Section 6.2) and French’s (1982)

results.   First we define the subrelation: for a given relative likelihood relation  ì  on  ΘS 
∪ ΘT, a

subrelation  ì́   on  �S∪ �T  is defined by

             A ì́  B  ⇔   (τ(A)|τ(A),  A|τ(A)) ì (τ(B)|τ(B),  B|τ(A))  for all  A, B ∈ �S∪�T.             (5)

where  τ(·)  is a set-valued function on  �S∪�T  defined by  τ(A) = S  if  A ∈ �S; τ(A) = T  if  A ∈ �T.

The expression  A ì́  B  means that an event  A is (at least) more likely to occur than an event  B,

and the binary relation  ì́   is called the direct level relation of  ì.   The direct level relation  ì́   is

complete and transitive.   The symmetric and asymmetric parts of  ì́  are denoted by  ~́   and  � ,́

respectively.

If an axiom is stated in terms of the direct level relation  ì́   of  ì, the axiom is directly

translated into the axiom in terms of the original relation  ì  by way of the equivalence of (5).

Practically, the direct level relation ì́  on  �S ∪ �T  corresponds to the relation assumed in

subjective probability theory by developed by DeGroot (1970) and French (1982) and then we can

re-state some of French’s axioms in our setting:12  

L1 (Total and null events):  (i)  S ~´ T,  (ii)  A ì́  φ  for all  A ∈ �S∪�T,  (iii)  A ∈ �S ∪ �T ⇔  A ~́

φ    for all  A ∈ �S∪�T.

L2 (Additivity): For any  A, B, C, D ∈  �S∪�T  such that  τ(A) = τ(B), τ(C) = τ(D), if  A ∩ B = φ  and

C ∩ D =  φ, then it holds that:  (i)   (A ì́  C, B ì́  D)  ⇒  A ∪ B ì́  C ∪ D;   (ii)   (A �́  C, B ì́  D)  ⇒

A ∪ B �́  C ∪ D.

                              

12  Some of the axioms are introduced by DeGroot (1970).   Concretely, the axiom L2 is introduced by

DeGroot (1970, Section 6.2, Assumption SP2), and the axiom L3 is introduced by DeGroot (1970, Section 6.2,

Assumption SP4).  The axioms  L4  and  L5  are closely related to DeGroot (1970, Section 6.2, Assumption

SP5).
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L3 (Monotone continuity): Let  { Bn }  be a sequence of events in  �S  or  �T.   If  Bn ⊃ Bn+1  for all

n, and if there exists  A ∈ �S∪�T  such that  Bn ì́  A  for all  n, then  ∩ Bn ì́  A.

L4 (Positivity):  sup A > inf A  ⇔  A �́  φ  for all  A ∈ �T.

L5 (Invariance against parallel shifts to the right): A ~´ (A + c)  for all  A ∈  �T  and all  c ∈

[0, 1 – sup A], where   A + c  ≡  { x ∈ T : x = y + c  for some  y ∈ A }. 

The axiom  L1  characterizes simply the total and null events.   The axiom  L2  used for the

resulting probability measure satisfies the finite additivity and the axiom L3 used for the σ-

additivity.   The axioms  L4  and  L5  are standard axioms characterizing the Lebesgue measure  μ

on  �T, which are stated using the geometric or algebraic properties of  [0, 1].  Then we have the

following theorem:

Theorem 1 (French 1982, Section 3, Theorem): (i)  If a relative likelihood relation  ì  on  ΘS 
∪ ΘT

satisfies the axioms  L1 − L5, then for each  A ∈ �S ∪ �T  there exists a real number  πA ∈ [0, 1]

uniquely such that  A ~́  [0, πA], where  ì´  is the direct level relation of  ì .   (ii) A relative

likelihood relation  ì  on  Θ S  
∪ ΘT  satisfies the axioms  L1 −  L5  if and only if there exists a

(unique) probability function  π  on  �S ∪ �T  such that  A ì́  B  ⇔  π(A) ≥ π(B)    for all  A, B ∈

�S ∪ �T, where  ì́   is the direct level relation of  ì,  and that the restriction of  π  on  �T  coincides

with the Lebesgue (probability) measure  μ   on  � T.   The probability function  π  is given by

Theorem 1(i) under L1 − L5.13

4. The derivation of the qualitative conditional probability measure

For a given relative likelihood relation  ì  on  ΘS 
∪ ΘT, a subrelation   ì́´  on  ΓS 

∪ ΓT  is defined by

            A|B ì́ ´ C|D  ⇔  (τ(B)|τ(B),  A|B) ì (τ(D)|τ(D),  C|D)  for all  A|B, C|D ∈ ΓS 
∪ ΓT.   (6)

The expression  A|B ì́´ C|D  means that a conditional event  A|B  is (at least) more likely to

                              

13  We provide the proof of Theorem 1 in the section 6 in this paper for the completeness of the arguments.

For the Lebesgue measure  μ  on  �T, see Rosenthal (2006, Section 2.4, Theorem 2.4.4, page 16) and

Billingsley (1995, Ch. 1, Section 2, Theorem 2.2, page 26). 
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occur than a conditional event  C|D, and the binary relation ì́´ is called the conditional level

relation of  ì.   The relation  ì́´  is complete and transitive.   The symmetric and asymmetric parts

of  ì́ ´  are denoted by  ~́ ´ and  �́´, respectively.   It holds by (5) and (6) that

             A ì́  B  ⇔  A|τ(A) ì́´ B|τ(B)  for all  A, B ∈ �S∪�T,                                                    (7)

If an axiom is stated in terms of the conditional level relation  ì́´  of  ì, the axiom is directly

translated into the axiom in terms of the original relation  ì  by way of the equivalence of (6).

Practically, the conditional level relation of  ì  just corresponds to the conditional likelihood

relation in Luce (1968), and we can provide some axioms in terms of the conditional level relation

ì́´  for ensuring the existence of a qualitative conditional probability function determined by  ì,

which is defined by a probability function  π   on  �S∪�T  such that

             A|B ì́ ´ C|D  ⇔   π(A ∩ B)/π(B) ≥ π(C ∩ D)/π(D)  for all  A|B, C|D ∈ ΓS 
∪ ΓT.14          (8)

We introduce the following three additional axioms for Theorem 2, which are stated in terms of

the conditional level relation  ì́´  of  ì :

L
6 

(Consistency I): (i) For A, B, C ∈  �
S

∪�
T
, if  (A ⊂  C �´ φ , B ⊂ C  and  A|C ì́´ B|C)  or

(C ⊂ B �́  φ, C ⊂ A �́  φ  and  C|B ì́´ C|A), then  A ì́  B.   (ii)  For  A, B, C ∈ �
S

∪�
T
, if  A ⊂  B  and

C ⊂ D, and if  A ~´ C  and  B ~́  D  �́  φ, then  A|B ~́ ´ C|D.

L
7
 (Independence of unit):  For all  A, B ∈ �

T
  with  A ⊂ B  and all  c ∈ (0, 1], if  A|B ∈ Γ

T
  and

c·A|c·B ∈ ΓT, then  A|B ~́ ´ c·A|c·B, where  c·A ≡  { x ∈ T : x = c·y  for some  y ∈ A }.  

L8 (Essentiality):  A|B ~́ ´ (A ∩ B)|B  for all  A|B ∈ ΓS∪ ΓT.

The axiom L6 requires the consistency between the two relations  ì´  and  ì´́ .   The linear

operation on  [0, 1]  means the change of the unit of [0, 1], and the axiom  L7  means that the level

relation  ì́   is independent of the unit of [0, 1].   The axiom  L7  is closely related to Luce’s (1959,

                               

14  Setting  B = τ(A)  and  D = τ(C)  in (8) above, we have by (7) that  A ì́  C  ⇔  A|τ(A) ì́´ C|τ(C)  ⇔  π(A) ≥

π(C)  for all  A, C ∈  �S ∪ �T, which implies that the restrictions of  π   on  � S  or  � T  are qualitative

(subjective) probability measures representing ì́ .
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Ch.1, Section F, p.28) independence of unit axiom, which is stated in terms of a numerical function

in a different setting.   The axiom  L8  is standard and it is introduced by Luce (1968, Section 2,

Axiom 4).15   The main result of this section is the following theorem:

Theorem 2: A relative likelihood relation  ì  on  ΘS 
∪ ΘT  satisfies all through the axioms  L1 − L8 

if and only if there exists a unique qualitative conditional probability function  π   on  � S∪�T

determined by  ì  and the restriction of  π   on  � T  coincides with the Lebesgue (probability)

measure on  �T.   The probability function  π  is given by Theorem 1(i) under  L1 − L8.

Setting  F0(A|B) =  π(A ∩ B)/π(B)  for all  A|B ∈ ΓS 
∪ ΓT  in Theorem 2, it holds that

            A|B ì́  C|D  ⇔  F0(A|B) ≥ F0(C|D)   for all  A|B, C|D ∈ ΓS 
∪ ΓT.

Hence it follows from Theorem 2 that there exists an ordinal likelihood function representing a

conditional level relation of  ì, if the relation  ì́   satisfies all through the axioms L1 − L8.

5. The joint derivation of the logarithmic and linear likelihood functions

For the next two theorems, we introduce some additional axioms.

L9 (Consistency II): If  (A|B,  C|D), (A*|B*,  C*|D*) ∈ ΘS 
∪ ΘT, and if  A|B ~́ ´ A*|B*  and  C|D

~́ ´ C*|D*, then  (A|B,  C|D) ~ (A*|B*,  C*|D*).

L10 (Inversion):  (A|T, B|T) ì (C|T, D|T)  ⇒  (D|T, C|T) ì (B|T, A|T)  for all  (A|T, B|T),

 (C|T, D|T) ∈ ΘS 
∪ ΘT  with  (B|T, A|T), (D|T, C|T) ∈ ΘS 

∪ ΘT .

L
11 

(Independence of irrelevant events I): For all  A, B, C ∈ �
T
  with  A ⊂  B  and  A �́  φ,

if  B ∩ C = φ, then  (A|T, B|T) ~ (A|(B∪ C), B|(B∪ C)).

L
11
* (Independence of irrelevant events II):  For all  A, B, C ∈ �

T
  with  A ⊂  B and  A �́  φ,

if  B ∩ C = φ, then  (A|T, B|T) ~ ((A∪ C)|T, (B∪ C)|T).

The axiom  L9  requires the consistency between the two relations  ì́ ´  and  ì.    The axiom  L10  is

                                    

15  Luce (1968) provides the axioms which are only sufficient for the existence of a subjedtive conditional

probability.   See  Fishburn (1986,  Section 7) for the survey of the subjective conditional probability theory.
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a standard condition as in Krantz et al. (1971, Ch. 4, Section 4.4, Definition 2, Axiom 2).   The two

axioms  L11  and  L11*   can be recognized as the two variants of Luce’s (1959, Section 1.C., Lemma

2) independence axiom (independence of  irrelevant alternatives) stated in terms of a relative

likelihood relation, although Luce’s original independence axiom is stated in terms of the choice

probability in a different setting.16  The irrelevant event is specified by the conditioning event in

the axiom L11, and the irrelevant event is specified by the conditioned event in the axiom  L11* .

Namely, both of the axioms specify the qualitative conditions, using neither topological nor

algebraic (linear) properties of the relation, except for the Boolean operstions.   As the main result

of this paper, we have the following theorems:

Theorem 3: (i) A relative likelihood relation  ì  on  ΘS 
∪ ΘT  satisfies all through the axioms  L1 –

L10  and  L11  if and only if the relation  ì  is represented by a logarithmic likelihood function, the

probability  function of which coincides with the unique subjective probability function determined

by  ì.   (ii)  Suppose that a relative likelihood relation  ì  satisfies all the axioms in the assertion

(i) above, and let  F1  be the logarithmic likelihood function.   A real-valued function  F  on  ΓS 
∪ ΓT

is a likelihood function representing the relation  ì  if and only if there exists  a > 0  and  b  such

that  F(A|B) = a·F1(A|B) + b  for all  A|B ∈ ΓS 
∪ ΓT.   Moreover, for any two likelihood functions  F

and  F*  representing the relation  ì,  there exists  a > 0  and  b  such that  F(A|B) = a·F*(A|B) + b

for all  A|B ∈ ΓS 
∪ ΓT.

Theorem 4: (i)  A relative likelihood relation  ì   on  ΘS 
∪ ΘT  satisfies all through the axioms  L1 –

L10  and  L11*   if and only if the relation  ì   is represented by a linear likelihood function, the

probability  function of which coincides with the unique subjective probability function deternined

by  ì.   (ii)  Suppose that a relative likelihood relation  ì  satisfies all the axioms in the assertion

(i) above, and let  F2  be the linear likelihood function.   A real-valued function  F  on  ΓS 
∪ ΓT  is a

likelihood function representing the relation  ì  if and only if there exists  a > 0  and  b  such that

                                             

16   For the choice theoretic interpretation of Luce’s independence axiom, see Ray (1973) and Echenique, et

al. (2018) and the references.  
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F(A|B) = a·F2(A|B) + b  for all  A|B ∈ ΓS 
∪ ΓT.   Moreover, for any two likelihood functions  F  and

F*  representing the relation  ì,  there exists  a > 0  and  b  such that  F(A|B) = a·F*(A|B) + b  for

all  A|B ∈ ΓS 
∪ ΓT.

This joint derivation result implies that the two independence axioms are independent in the

axiomatizations.   To prove that the axiom  L11  is independent of the other axioms in Theorem 3, it

suffices to prove that the relation induced by a linear likelihood function does not satisfies the

axiom L11, because the induced relation satisfies the other axioms as shown by Theorem 4.

Specifically, for a given domain  ΓS 
∪ ΓT, let  F2(A|B) = π(A ∩ B)/π(B)  be a linear likelihood

function on  ΓS 
∪ ΓT,, where  π  is a probability function on  �S∪�T.   Setting A = [0, 1/2], B = [0, 3/4]

and C = (3/4, 1], it holds that  F2(B|T)  – F2(A|T)  =  (3/4) – (1/2) = 1/4  and   F2(B|(B∪ C)) –

F2(A|(B∪ C)) = (3/4)/(3/4+1/4) – (1/4)/(3/4+1/4) = 1/2, which implies that  (A|(B∪ C), B|(B∪ C))  �2

(A|T, B|T), where  �2  is induced from  F2.   Hence the relation induced by F2 does not satisfies

the axiom L11 .

By amost the same manner, we can prove that the axiom L11*  is independent of the other

axioms in Theorem 4.   Let  F1(A|B) = log[ π(A ∩ B)/π(B) ]  be a logarithmic likelihood function.   It

holds that  F1(B|T) – F1(A|T) = log(3/4) – log(1/2) = log(3/2)  and  F1((B∪ C)|T) – F1((A∪ C)|T) =

log(3/4+1/4) – log(1/4+1/4)  =  log 2, which implies that  ((A∪ C)|T, (B∪ C)|T) �1 (A|T, B|T), where

�1  is induced from  F1.   Hence the relation determined by  F1 does not satisfies the axiom L11* , and

then the axiom  L11*   is independent of the other axioms in Theorem 4.

A relative likelihood relation is a subjective concept, because it can be recognized as a specific

data derived in a hypothetical experiment, where the statistician’s responses are noted as a Yes-No

sequence for the sequence of questions such as “Do you feel that the transition from  A|B  to   C|D

gives more added likelihood than the transition from  A*|B*  to  C*|D* ?”.   However, if a relative

likelihood relation satisfies the axioms in the theorems, the joint derivation result above implies

that the axioms determine the functional forms completely and there is no functional variety

specific to the statistician.
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6.  The proof of Theorem 1 and Theorem 2

Proof of Theorem 1 (i) : Suppose that a relative likelihood relation  ì  on  ΘS 
∪ ΘT  satisfies all

the axioms  L1 − L5.   We need a lemma, which is proved in Appendix:

Lemma 1: If  ì  satisfies all through the axioms L1 − L5, then the following nine assertions hold:

(i)  { a } ~́  φ  for all  a ∈ T.  (ii)  [a, b] �́  φ  for all  a, b ∈ T  with  a < b.   (iii)  [a, b] ~́  [a, b) ~́  

(a, b] ~́  (a, b)  for all  a, b ∈ T  with  a <  b.   (iv)  [0, a] ì́  [0, b]  ⇔  a ≥ b  for all  a, b ∈ T.   (v)  m(J)

≥ m(K) ⇔ J ì́  K  for all  J, K ∈ �T, where  m(J) ≡ sup J – inf J  is the length of  J ∈ �T.   (vi)  A ì́  B

⇒ τ(B) – B ì́  τ(A) – A  for all  A, B ∈ �S∪ �T with τ(A) = τ(B), where  τ(B) – B ≡ { x ∈ τ(B) : x ∉ B }.

(vii) 
 
Let  { B

n
 }  be a sequence of events in  �

S
∪�

T
  satisfying   { B

n
 } ⊂ �

S
   or  { B

n
 } ⊂  �

T
.  

 
If  B

n
 ⊂

Bn+1  for all  n  and if there exists  A ∈ �S∪�T  such that  A ì́  Bn   for all  n, then  A ì́  ∪Bn.   (viii)

If  a convergent sequence  { xn }  in  T   satisfies  xn ≥ xn+1  for all  n  and if there exists  A ∈ �S∪�T

such that  [0, xn] ì́  A  for all  n, then  [0, lim xn] ì́  A.    (ix)  If a convergent sequence  { xn }  in  T

satisfies  xn ≤ xn+1  for all  n  and if there exists  A ∈ �S∪�T  such that  A ì́  [0, xn]  for all  n, then  A

ì́  [0, lim xn].   (x) The two sets, { x ∈ T : A ì́  [0, x] }  and  { x ∈ T : [0, x] ì́  A }  are non-empty and

closed in  T  for all  A ∈ �S∪ �T. 

Fix any  A ∈ �S∪ �T.   It holds by the connectedness of  T  and Lemma 1(x) that there exists a real

number  x ∈ T  such that  A ~´ [0, x].   The uniqueness of  x ∈ T  is ensured by Lemma 1(iv).     �

Proof of Theorem 1 (ii) :  Let  ì  be a relative likelihood relation on  ΘS 
∪ ΘT, and suppose that

there exists a unique real-valued function  π  on  �S∪�T  satisfying the condition.   Then we can

prove easily that  ì  satisfies all the axioms.

Conversely, suppose that a relative likelihood relation  ì  satisfies all the axioms.   Let  π  be

a real-valued function on  �S∪�T  defined by Theorem 1(i).   The axiom L1(i) implies that  S ~́  T =

[0, 1].   Hence we have by Theorem 1(i) that  π(S) = π(T) = 1.    Moreover, it holds by L1(iii) and

Lemma 1(iv) that  π(A) > 0  ⇔  A ∉ �S∪�T  for all  A ∈ �S∪�T, which which implies  π(φ) = 0,

because  φ  ∈ �S.
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We will prove that  π  is finitely additive on  �S.   Fix any  A, B ∈ �S  with  A ∩ B = φ.  It holds

by  Theorem 1(i) that  A ~´ [0, π(A)]  and  B ~́  [0, π(B)].   It follows from Lemma 1(iii, v) that  A ~́

[0, π(A)] ~́  [0, π(A))  and  B ~´ [0, π(B)] ~́  [π(A), π(A)+π(B)].   We have by L2 that  A∪B ~́

[0, π(A)) ∪ [π(A), π(A)+π(B)] = [0, π(A)+π(B)], which implies that  π(A∪B) = π(A)+π(B).   Hence  π  is

finitely additive on  �S.

We will prove that  π  is σ-additive on  �S.   It suffices to prove that  if  { An }  is a sequence of

events in  �S  satisfing  An+1 ⊂ An  for all  n  and if  ∩ An = φ,    then  lim π(An) = 0.   Because  π  is

finitely additive on  �S  and  An = An+1∪ (An– An+1)  for all  n, we have that  π(An) ≥ π(An+1) ≥ 0  for

all  n, which implies that  { π(An) }  is a bounded monotone sequence.   Hence it holds by Klambauer

(1986, Proposition 7.8, page 383)  that  lim π(An)  exists and  lim π(An) ≥ 0.    Suppose that  lim

π(An) > 0.   Set  a = lim π(An) > 0.   It holds by Theorem 1(i) that  An ~´ [0, π(An)].    Because  π(An) ≥

a > 0  for all  n, we have by Lemma 1(ii, v) that  An ~́  [0, π(An)] ì́  [0, a] �́  [0, 0] ~́  φ  for all  n.   It

holds by L3 that  ∩ An �́  φ.   This contradicts with  ∩ An = φ.   Hence  lim π(An) = 0 and we have

that  π  is σ-additive on  �S.

We can prove that  π  is σ-additive on  �T  by almost the same manner in the proof of the σ-

additivity of  π  on  �S  above.   Moreover, we can prove that  π  represents  ì́ .   Practically, for all

A, B ∈ �S∪ �T, it holds by Theorem 1(i) and Lemma 1(v) that  A ì́  B ⇔  [0, π(A)] ì́  [0, π(B)] ⇔

π(A) ≥ π(B).

Finally, we will prove that the restriction of  π  on  �T  coincides with the Lebesgue measure

μ  on  �T.   For any intervals  J ∈ �T, we have  J ~´ [0, m(J)]  by Lemma 1(v), which implies  π (J) =

m(J).   Hence, we have by Carathéodory’s extension theorem as in Rosenthal (2006, Proposition

2.5.8) that  π(A) = μ(A)  for all  A ∈ �T.                                                                                       �

Proof of Theorem 2: Let  ì  be a relative likelihood relation on  ΘS 
∪ ΘT, and suppose that there

exists a unique probability function  π  on  �S∪�I  satisfying the condition in Theorem 2.   Then we

can prove easily that  ì  satisfies all the axioms.

Conversely, suppose that a relative likelihood relation  ì  satisfies all the axioms in Theorem
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2.   It folllows from Theorem 1(ii) that there exists a unique probability function  π  on  � S∪�T

such that  A ì́  B ⇔  [0, π(A)] ì́  [0, π(B)] ⇔ π(A) ≥ π(B).   We will prove that   A|B ì́´ C|D  ⇔

(A ∩ B)|B ì́´ (C ∩ D)|D  ⇔  π(A ∩ B)/π(B) ≥ π(C ∩ D)/π(D).   We need a lemma:

Lemma 2: (i)  Fix any A2|A1, A4|A3, B2|B1, B4|B3 ∈ ΓS 
∪ ΓT.   If  Ai ~́   Bi  for i = 1, 2, 3, 4,  and if

Aj+1 ⊂ Aj  �́  φ and  Bj+1 ⊂ Bj  for  j = 1, 3,  then  A2|A1 ì́´ A4|A3 ⇔ B2|B1 ì́´ B4|B3.

(ii)   [0, β]|[0, α] ì́´ [0, δ]|[0, γ]  ⇔  β/α ≥ δ/γ  for all  α, β, γ, δ ∈ T  with α, γ > 0, α  ≥ β, γ  ≥ δ.

(iii)  A|B ì́´ C|D  ⇔  π(A)/π(B) ≥ π(C)/π(D)  for any  A|B, C|D ∈ ΓS 
∪ ΓT  with  A ⊂ B  and  C ⊂ D.

Fix any  A|B, C|D ∈ ΓS 
∪ ΓT.   It holds by the axiom L8 and Lemma 2(iii) that

          A|B ì́ ´ C|D  ⇔  (A ∩ B)|B ì́ ´ (C ∩ D)|D  ⇔  π(A ∩ B)/π(B) ≥ π(C ∩ D)/π(D).                 �

7.  The proof of Theorem 3 and Theorem 4

For the proof of the next two theorems, we need a lemma:

Lemma 3: If there is a likelihood function  F  representing a relative likelihood relation  ì, and if

F  is logarithmic or linear with respect to a probability function  π , then the probability function  π

is a subjective probability function of  ì .

Moreover, we need another subrelation of the relative likelihood relation  ì: for a given relative

likelihood relation  ì  on  ΘS 
∪ ΘT, a subrelation  ì*  on   ΔT  is defined by

            (A, B) ì* (C, D) ⇔  (A|T,  B|T) ì (C|T, D|T)   for all  (A, B), (C, D)  ∈  ΔT,                   (9)

where   ΔT = {  (A,  B) ≡ (A|T ,  B|T ) : A, B ∈ �T  and  A ∉ �T  }.   The relation  ì*  is complete and

transitive.   The symmetric and asymmetric parts of  ì*  are denoted by  ~*   and  �* , respectively.

Proof of Theorem 3 (i): Suppose that  ì  is represented by a logarithmic likelihood function with

respect to the probability function  π  on  �S∪�T  satisfying the condition in Theorem 2.  It holds by

Lemma 3 and Theorem 2 that  ì   satisfies  L1 −  L8 .   Moreover, we can prove easily that  ì

satisfies L9 − L11 .
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Conversely, suppose that a relative likelihood relation  ì  on  ΘS 
∪ ΘT  satisfies all the axioms.

We will show that  ì  is represented by the likelihood function which is logarithmic with respect to

the probability function  π   on  �S∪�T  satisfying the condition in Theorem 2.   We need the

following two lemmas:

Lemma 4:  Suppose that the relation  ì  satisfies all the axioms  L1 – L10.  (i)  If  A ~́  A* �́  φ  and

B ~́  B* �´ φ  for  A, A*, B, B* ∈ �
T
, and if  A ⊂  B  and  A* ⊂  B*, then  (A,  B) ~* (A*,  B*).   (ii)

(A, B) �* (C, D)  ⇔  (D, C) �* (B, A)  for all  (A, B), (C, D) ∈ ΔT  with  (B, A),  (D, C) ∈ ΔT . 

Lemma 5:  Suppose that the relation  ì  satisfies all the axioms L1 – L11.  (i)  A|B ì´́  C|D  ⇔

(B, A) ì* (D, C)  for any  A|B, C|D ∈ ΓT  with  A ⊂ B  and  C ⊂ D.   (ii)  For all  A, B ∈ �T  with

B ⊂ A �́  φ  and all  c ∈ (0, 1], if  c·A �́  φ, then  (A,  B) ~* 
(c·A, c·B), where  c·A ≡ { x ∈ T : x = c·y  for

some  y ∈ A }.   (iii)   ([0, α], [0, β]) ì* ([0,  γ], [0, δ])  ⇔  log(β) – log(α)  ≥  log(δ) – log(γ)   for all  α, β,

γ, δ ∈ T  with α, γ > 0.

Fix any  (A|B, C|D), (A*|B*, C*|D*) ∈ΘS 
∪ ΘT, and set  a = π(A ∩ B)/π(B), a* = π(A* ∩ B*)/π(B*), b

= π(C ∩ D)/π(D), b* =  π(C* ∩ D*)/π(D*).   Then we have that

             π(A ∩ B)/π(B) = π([0, a])/1, π(C ∩ D)/π(D)= π([0, b])/1,

                      π(A* ∩ B*)/π(B*) = π([0, a*])/1,  π(C* ∩ D*)/π(D*) = π([0, b*])/1 .                        (10)

It holds by Theorem 2 that

             A|B ~́ ´ [0, a]|[0, 1],  C|D ~́´ [0, b]|[0, 1],

                              A*|B* ~́ ´ [0, a*]|[0, 1],  C*|D* ~́´ [0, b*]|[0, 1].                                        (11)

It holds by (11), L9, (9), Lemma 5(iii) and (10) that

       (A|B,  C|D) ì (A*|B*,  C*|D*)  ⇔  ([0, a]|[0, 1],  [0, b]|[0, 1]) ì  ([0, a*]|[0, 1],  [0, b*]|[0, 1])

         ⇔  ([0, a],  [0, b]) ì*  ([0, a*],  [0, b*])  ⇔  logπ([0, b]) – logπ([0, a])  ≥  logπ([0, b*]) – logπ([0, a*]).

         ⇔  log[π(C ∩ D)/π(D)] – log[π(A ∩ B)/π(B)] ≥ log[π(C* ∩ D*)/π(D*)] – log[π(A* ∩ B*)/π(B*)].    �
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Proof of Theorem 3 (ii):  Let  F  be a real-valued function on  ΓS 
∪ ΓT.   If there exists  a > 0  and

b  such that  F(A|B) = a·F1(A|B) + b  for all  A|B ∈  ΓS  
∪ ΓT, then  F  is a likelihood function

representing the relation  ì.

Conversely, suppose that  F  is a likelihood function representing the relation  ì.   We will

prove that there exists  a > 0  and  b  such that  F(A|B)  =  a·F1(A|B) + b   for all  A|B ∈ ΓS 
∪ ΓT.

We need a lemma:

Lemma 6: Let  g : [0, 1] → � ∪ { – ∞, +∞   }  be a function such that  g(β) – g(α)  ≥  g(δ) – g(γ)  ⇔

log(β) – log(α)  ≥  log(δ) – log(γ)  for all  α, β, γ, δ ∈ [0, 1] with α, γ > 0.  The following assertions hold:

(i)  g  is strictly increasing on  [0, 1]  and  g(1) < + ∞.  (ii)  Letting  f : (– ∞ , 0] → �  be a function

defined by  f(x) = g(ex)  for all  x ∈ (– ∞ , 0], it holds that  y – x = w – z  ⇔  f(y) –  f(x) = f(w) – f(z)   for

all  x, y, z, w ∈ (– ∞ , 0].   (iii)   f   is strictly increasing on  (– ∞ , 0].   (iv)   f  is continuous on (– ∞ , 0].

(v)   f(q/p) = (q/p)⋅[ f(0) – f(–1) ] + f(0)  for all integers  q > 0  and  p < 0.   (vi)  g(λ) = a⋅λ + b  for all  λ

∈ [0, 1], where  a = f(0) – f(–1) > 0  and  b = f(0).

Setting  g(t) = F([0, t]|[0, 1])  and   F1([0, t]|[0, 1]) = log t  for all  t ∈ [0, 1], it holds by Lemma 6 that

there exists  a > 0  and  b  such that

            F([0, t]|[0, 1]) = a⋅F1([0, t]|[0, 1])+ b  for all  t ∈ [0, 1].                                                (12)

Fix any  A|B ∈ ΓS 
∪ ΓT.   Setting  λ = π(A ∩ B)/π(B), it holds by Theorem 2 that  [0, λ]|[0, 1] ~  ́́  A|B

and

            F1([0, λ]|[0, 1]) = F1(A|B).                                                                                             (13)

Because  ([0, λ]|[0, 1], [0, 1]|[0, 1]) ~ (A|B, τ(B)|τ(B))  by  log(λ/1) – log 1 = log(λ/1) – log 1,  and

because  F(T|T) = F(S|S)  by  F(φS|S) = F(φT|T)  and  (φT|T, T|T) ~ (φS|S, S|S), we have that

F([0, λ]|[0, 1]) = F(A|B).   Thus we have by this, (12) and (13) that F(A|B) = F([0, λ]|[0, 1]) =

a⋅F1([0, λ]|[0, 1]) + b = a⋅F1(A|B) + b.

Suppose that  F*  and  F  represent  ì .   It holds by the above arguments that there exists  a

> 0  and  b  such that

            F*(A|B)  =  a·F1(A|B) + b  for all  A|B ∈ ΓS 
∪ ΓT,
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and that there exists  a* > 0  and  b*  such that

           F(A|B)  =  a*·F1(A|B) + b*   for all  A|B ∈ ΓS 
∪ ΓT.

Hence it holds that   F(A|B)  =  a*·F1(A|B) + b*  =  a*·[ F*(A|B)  – b]/a +  b*  =  (a/a*)·F*(A|B) +

[b* – (a*b)/a]  for all  A|B ∈ ΓS 
∪ ΓT,                                                                                            �

Proof of Theorem 4 (i) : Suppose that  ì  is represented by a logarithmic likelihood function with

respect to the probability function  π  on  �S∪�T  satisfying the condition in Theorem 2.  It holds by

Lemma 3 and Theorem 2 that  ì   satisfies  L1 −  L8.   Moreover, we can prove easily that  ì

satisfies  L9 − L10  and  L11 *   .

Conversely, suppose that  ì  satisfies all the axioms.   We will show that  ì  is represented by

a linear likelihood function with respect to a probability function  π  on  �S∪�T  satisfying the

condition in Theorem 2.   We need a lemma:

Lemma 7: (i)  If  1 ≥ α  ≥ β > 0, then  ([0, β], [0, β]) ~* ([0, α], [0, α]).   (ii)  1 ≥ α ≥ β  > 0 ⇔

([0, β], [0, α]) ì* ([0, β], [0, β]).   (iii)  If  1 ≥ α > β > 0, then  ([0, β], [0, α])  �* ([0, β], [0, β]).  (iv)

([0, α], [0, β]) ì* ([0,  γ], [0, δ])  ⇔  β  – α ≥ δ – γ  for all  α, β, γ, δ ∈ T  with α > 0, γ  > 0.

Fix any  (A|B, C|D), (A*|B*, C*|D*) ∈ΘS 
∪ ΘT, and set  a = π(A ∩ B)/π(B), a* = π(A* ∩ B*)/π(B*),

b = π(C ∩ D)/π(D), b* =  π(C* ∩ D*)/π(D*).   Then we have that

             π(A ∩ B)/π(B) = π([0, a])/1, π(C ∩ D)/π(D)= π([0, b])/1,

                      π(A* ∩ B*)/π(B*) = π([0, a*])/1,  π(C* ∩ D*)/π(D*) = π([0, b*])/1 .                         (14)

It holds by Theorem 2 that

             A|B ~́ ´ [0, a]|[0, 1], C|D ~́´ [0, b]|[0, 1],

                              A*|B* ~́ ´ [0, a*]|[0, 1],  C*|D* ~́´ [0, b*]|[0, 1].                                        (15)

It holds by (15), L9, (9), Lemma 7(iv) and (14) that

          (A|B,  C|D) ì (A*|B*,  C*|D*)  ⇔  ([0, a]|[0, 1],  [0, b]|[0, 1]) ì ([0, a*]|[0, 1],  [0, b*]|[0, 1])

                 ⇔  ([0, a],  [0, b]) ì* ([0, a*],  [0, b*])  ⇔  π([0, a]) – π([0, b]) ≥ π([0, a*]) – π([0, b*])

                 ⇔   π(A ∩ B)/π(B) – π(C ∩ D)/π(D) ≥ π(A* ∩ B*)/π(B*) – π(C* ∩ D*)/π(D*).                 �
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Proof of Theorem 4 (ii) :   Let  F be a real-valued function on  ΓS 
∪ ΓT.   If there exists  a > 0  and

b  such that  F(A|B) = a·F2(A|B) + b  for all  A|B ∈  ΓS  
∪ ΓT, then  F  is a likelihood function

representing the relation  ì.   Conversely, suppose that  F  is a likelihood function representing the

relation  ì.   We will prove that there exists  a > 0  and  b  such that  F(A|B)  =  a·F2(A|B) + b   for

all  A|B ∈ ΓS 
∪ ΓT.

Lemma 8:  Let  g : [0, 1] → � ∪ { – ∞, +∞  }  be a function such that

          g(β) – g(α)  ≥  g(δ) – g(γ)  ⇔  β – α  ≥  δ – γ    for all  α, β, γ, δ ∈ [0, 1].

It holds that:  (i)  g  is strictly increasing on  [0, 1].  (ii)  g  is continuous on  [0, 1].   (iii)  For any

positve integer  p > 0, it holds that  g(q/p) = (q/p)⋅[ g(1) – g(0) ] + g(0)  for all  q = 0, 1, 2, ···, p.   (iv)

g(λ) = a⋅λ + b   for all  λ ∈ [0, 1], where  a = g(1) – g(0) > 0  and  b = g(0).

Setting  g(t) = F([0, t]|T)  and  h(t) = F2([0, t]|T) =  t  for all  t ∈ [0, 1], it holds by Lemma 8(iii) that

there exists  a > 0  and  b  such that

            F([0, t]|T) = a⋅F2([0, t]|T) + b  for all  t ∈ [0, 1].                                                           (16)

Fix any  A ∈�.   It holds by Lemma 1(iv) that there is  λ ∈ [0, 1]  such that  [0, λ] ~´ A, which

implies that  F([0, λ]) = F(A)  and  F*([0, λ]) = F*(A).   Thus we have by (16) that

           F(A) = F([0, λ]) = a⋅F2([0, λ]) + b = a⋅F*(A) + b.                                                                 �

Appendix

Proof of Lemma 1: (i)  It holds by L4 that  { a } = [a, a] ~́  φ  for all  a ∈ [0, 1].   (ii)  Fix any  a, b ∈

[0, 1]  with  b > a, it holds by L4 that [0, b – a] �́  φ.   It holds by L5 that  [a, b] �́  φ.   (iii)   Fix any

a, b ∈ [0, 1]  with  a < b.   Because  [a, b) ì́  [a, b)  and  { b } ì́  φ  by Lemma 1(i) it holds by L2 that

[a, b] ì́  [a, b).   Because  φ ì́  { b }  by Lemma 1(i), it holds by  [a, b) ì́  [a, b)  and L2 that  [a, b) ì́

[a, b].   Hence  [a, b] ~́  [a, b).   By almost the same manner we can prove that  [a, b] ~́  (a, b] ~́  

(a, b).   (iv)  Suppose  a ≥ b.   Because  [0, b) ì́  [0, b)  and  [b, a] ì́  φ  by L4, it holds by L2 that

[0, a] ì́  [0, b).   It holds by Lemma 1(i) that  [0, a] ì́  [0, b) ~́  [0, b].   Suppose  b > a.  Because

[0, a) ì́  [0, a)  and  [a, b] �́  φ  by Lemma 1(ii), it holds by  L2 that  [0, b] �́  [0, a).   It holds by
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Lemma 1(iii) that  [0, b] �́  [0, a) ~´ [0, a].   Hence we have that  b > a ⇒ [0, b] �́  [0, a], which

implies  [0, a] ì́  [0, b]  ⇒  a ≥ b.   (v)  It follows from Lemma 1(i) that it suffices to prove the case of

the closed intervals.   For any intervals  [a, b], [c, d] ∈ �T, it holds by L5 that  [0, b – a] ~́  [a, b],

[0, d – c] ~* [c, d].   Hence we have by Lemma 1(iv)  that  m([a, b]) ≥ m([c, d])  ⇔  (b – a) ≥ (d – c)  ⇔

[0, b – a] ì́  [0, d – c] ⇔ [a, b] ì́  [c, d].   (vi)  Suppose that  τ(A) – A �́  τ(B) – B.   It holds by A ì́  B

and L2 that  τ(A) �́  τ(B), which is a contradiction.   Thus we have that  τ(B) – B ì́  τ(A) – A.   (vii)

Suppose that  Bn ⊂ Bn+1  for all  n  and that there exists  A ∈ �S∪ �T  such that  A ì́  Bn   for all  n.

Define  Cn = τ(Bn) – Bn  for all  n, and define  D = τ(A) – A.   Then it holds by  Bn ⊂ Bn+1 that  Cn ⊃ 

Cn+1  for all  n  and it holds by Lemma 1(vi) that   Cn ì́  D  for all  n.   Hence we have by  L3 that  ∩

Cn ì́   D.  By this and Billingsley (1995, Problem 2.1, page 32), we have that A = τ(D) – D ì́  τ(∩Cn)

– (∩Cn) = ∪ [τ(Cn) – Cn] = ∪Bn, because  τ(Cn) – Cn = Bn  for all  n.   (viii)  Define  { Bn }  in  �T   by  Bn

= [0, xn]  for all  n.   We have  Bn ⊃ Bn+1  for all  n  by  xn ≥ xn+1  for all  n.   Because  Bn ì́  A  for all

n, we have by L3 that  [0, lim xn] = ∩Bn ì́  A.   (ix)   Define  { Bn }  in  �T    by  Bn = [0, xn]  for all  n.

We have  Bn ⊂ Bn+1  for all  n  by  xn ≤ xn+1  for all  n.   Since  A ì́  Bn  for all  n, we have by Lemma

1(vii) that  A ì́  ∪Bn = [0, lim xn).   It holds by Lemma 1(i) that  [0, lim xn] ~́  [0, lim xn).   Thus we

have  A ì́  [0, lim xn].  (x)  Fix any  A ∈ �S∪ �T.   It holds by L1(ii) that  0 ∈  { x ∈ T : A ì́

[0, x] } ≠ φ.   Because  A ì́  A  and  τ(A) – A ì́  φ  by L1(ii), we have by L2 that  T ì́  A, which implies

that  1 ∈ { x ∈ T : [0, x] ì́  A } ≠ φ.   Let  { xn }  be a sequence in  { x ∈ T : A ì´ [0, x] }  converging to

x*.   It holds by Thurston (1994) that  { xn }  has a subsequence  { yn }  converging to  x*  satisfying

(a)  yn ≤ yn+1 for all  n, or (b)  yn ≥ yn+1  for all  n.   In the case of (a), it holds by Lemma 1(ix) that A

ì́  [0, x*].   In the case of (b), it holds by Lemma 1(iv) that  A ì́  [0, x*].   Hence  { x ∈ T : A ì́  [0, x] }

is closed in  T.   By almost the same manner, we can prove that  { x ∈ T : [0, x] ì́  A }  are closed in

T, using Lemma 1(iv, viii).                                                                                                            � 

Proof of Lemma 2: (i)  It holds by L6(ii) that  A2|A1 ~́´ B2|B1  and  A4|A3 ~́´ B4|B3.   Thus we

have that  A2|A1 ì́´ A4|A3  ⇔  B2|B1 ì́´ B4|B3.

(ii)  Case 1 (α  ≥ γ):  It holds by  1 ≥ (γ/α) > 0  and L7 that  [0, β]|[0, α] ~́´ [0, (γ/α) β]|[0, (γ/α) α] =
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[0, (γ/α) β]|[0, γ].   Hence we have by L6(i) and Theorem 1(ii) that

         [0, β]|[0, α] ì́´ [0, δ]|[0, γ] ⇔ [0, (γ/α)β]|[0, γ] ì́´ [0, δ]|[0, γ]

                                                      ⇔ [0, (γ/α)β] ì́  [0, δ]  ⇔  (γ/α)β ≥ δ ⇔ β/α ≥ δ/γ.

Case 2 (α  <  γ): It holds by  0 < α /γ < 1  and L7 that  [0, δ]|[0, γ] ~́´ [0, (α/γ)δ]|[0, (α/γ)γ] =

[0, (α/γ)δ]|[0, α].   Hence we have by  L6(i)  and Theorem 1(ii) that

          [0, β]|[0, α] ì́´ [0, δ]|[0, γ]  ⇔  [0, β]|[0, α] ì́´ [0, (α/γ)δ]|[0, α]

                                                        ⇔  [0, β] ì́  [0, (α/γ)δ] ⇔ β ≥ (α/γ)δ ⇔ β/α ≥ δ/γ.

(iii): Fix any  A|B, C|D ∈ ΓS  
∪ ΓT with  A ⊂ B  and  C ⊂ D.   It holds by Theorem 1(ii), Lemma

2(i, ii) that  A|B ì́´ C|D ⇔ [0, π(A)]|[0, π(B)] ì́´ [0, π(C)]|[0, π(D)] ⇔ π(A )/π(B) ≥ π(C)/π(D).    � 

Proof of Lemma 3: Suppose that there is a likelihood function  F  representing a relative

likelihood relation  ì, and that  F  is logarithmic or linear with respect to a probability function  π .

It holds by (1), (3), (4) and (6) that

              A|B ì́ ´ C|D  ⇔  (τ(B)|τ(B),  A|B) ì (τ(D)|τ(D),  C|D)  ⇔  π(A ∩ B)/π(B) ≥ π(C ∩ D)/π(D)

for all  A|B, C|D ∈ ΓS 
∪ ΓT.                                                                                                          �

       
Proof of Lemma 4:  (i)   It holds by (5) that  A|T ~́´ A*|T and  B|T ~́´ B*|T.   It holds by  L9 that

(A|T, B|T) ~ (A*|T, B*|T).   (ii)  Fix any  (A, B), (C, D) ∈ ΔT with  (B, A), (D, C) ∈ ΔT.   It holds by

L10  that  (A, B) ì* (C, D) ⇒   (D, C) ì* (B, A).   By the contraposition of this, we have that

(B, A) �* (D, C) ⇒ (C, D) �* (A, B).                                                                                              �

                                                                                         
Proof of Lemma 5: (i)  Suppose that  A ⊂ B �́  φ  and  C ⊂ D �́  φ.   It holds by (6) that

             A|B ì́ ´ C|D  ⇔  (T|T,  A|B) ì (T|T,  C|D).                                                                 (17)

and it holds by Theorem 2 and  L9  that

              (T|T,  A|B) ~ (B|B,  A|B)  and  (T|T,  C|D) ~ (D|D,  C|D).

Hence we have by (17) and this that

             A|B ì́ ´ C|D  ⇔  (B|B,  A|B) ì (D|D,  C|D).                                                                 (18)  

It holds by L11 and  A ⊂ B �́  φ  that
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             (B|B,  A|B) ~ (B|T, A|T)  and  (D|D,  C|D) ~ (D|T, C|T).

Hence we have by this, (18) and (9) that

            A|B ì́ ´ C|D  ⇔     (B|T, A|T)  ì  (D|T, C|T)  ⇔  (B, A) ì* (D, C) .

(ii)  The axiom L7 and Lemma 5(i) together imply Lemma 5(ii).

(iii)  Fix  α, β, γ, δ ∈ T  with α    > 0, γ  > 0.

Case 1 (β  ≥ α   and  δ  ≥ γ ):  It holds by Lemma 5(ii) that

          ([0, α/β], [0, 1]) ~* ([0, α], [0, β])   and  ([0,  γ /δ], [0, 1]) ~* ([0,  γ], [0, δ]) .

We have by this, Lemma 4(i), (6),  L10  and Theorem 1(ii) that

           ([0, α], [0, β]) ì ([0,  γ], [0, δ])  ⇔  ([0, α/β], [0, 1]) ì* ([0,  γ /δ], [0, 1])

                                    ⇔  ([0, 1], [0,  γ /δ]) ì* ([0, 1], [0, α/β])  ⇔  [0,  γ/δ] ì́  [0, α/β]

                                    ⇔  γ /δ   ≥ α /β   ⇔     β /α  ≥  δ /γ     ⇔  log(β) – log(α)  ≥  log(δ) – log(γ).

Case 2 (β  ≥ α  and  δ < γ ):  We show that ([0, α], [0, β]) ì * ([0,  γ], [0, δ])  �* ([0, α], [0, β])   and  

log(β) – log(α)  ≥  log(δ) – log(γ)  hold simultaneously.   It holds by  β  ≥ α  and  δ < γ   that  log(β) –

log(α) ≥ log(δ) – log(γ).   We prove that  ([0, α], [0, β]) ì * ([0,  γ], [0, δ]).   It holds by Lemma 5(ii) that

([0, 1], [0, δ /γ]) ~* ([0,  γ], [0, δ]).   We have by this and Theorem 1(ii) that

             ([0, 1], [0, 1]) ì* ([0, 1], [0, δ /γ]) ~* ([0,  γ], [0, δ])                                                          (19)

It holds by  Lemma 5(ii) that  ([0, α /β], [0, 1]) ~* ([0, α], [0, β]).   We have by this and   L10  that

            ([0, 1], [0, α /β]) ~* ([0, β], [0, α]).

We have by Theorem 1(ii) and this that  ([0, 1], [0, 1]) ì* ([0, 1], [0, α /β]) ~* ([0, β], [0, α]).   Hence

we have by  L10 that

            ([0, α], [0, β]) ì* ([0, 1], [0, 1]).                                                                                        (20)

Thus we have  by (19) and (20) that  ([0, α], [0, β]) ì* ([0,  γ], [0, δ]).    

Case 3 (β  < α   and δ  < γ ):  We have by  L10 and Case 1  that

           ([0, α], [0, β]) ì* ([0,  γ], [0, δ])  ⇔  ([0, δ], [0, γ]) ì* ([0, β], [0, α])  ⇔  γ /δ ≥ α /β

                                                               ⇔   β /α ≥ δ /γ     ⇔  log(β) – log(α)  ≥  log(δ) – log(γ).     

Case 4 (β < α  and δ   ≥ γ ): Applying the logical equivalence: (P ⇔ Q) ≡ (not P ⇔ not Q), it suffices

to prove that  ([0,  γ], [0, δ])  �* ([0, α], [0, β])  ⇔  log(δ) – log(γ) > log(β) – log(α).   We show that
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([0,  γ], [0, δ])  �* ([0, α], [0, β])  and  log(δ) – log(γ) > log(β) – log(α)  hold independently in this case.

It holds by  β < α  and  δ  ≥ γ  that  log(δ) – log(γ) > log(β) – log(α).   There remains to prove that

([0,  γ], [0, δ])  �* ([0, α], [0, β]).   Suppose that

             ([0, α], [0, β]) ì* ([0,  γ], [0, δ]).                                                                                      (21)

Because  α /α = 1 > β /α,   it holds by Lemma 5(i) and Theorem 2 that

            ([0, α], [0, α])   �*  ([0, α], [0, β]).                                                                                     (22)

Because  δ / γ  ≥ 1 =  γ /  γ,   it holds by Lemma 5(i) and Theorem 2 that  ([0,  γ], [0, δ])  ì* ([0,  γ], [0, γ]).

Hence it holds by  γ / γ = α /α, Lemma 5(i) and Theorem 2 that

            ([0,  γ], [0, δ]) ì* ([0,  γ], [0, γ]) ~* ([0, α], [0, α]).                                                             (23)

We have by (21), (22) and (23) that  ([0,α], [0,α]) �* ([0,α], [0,β]) �* ([0,α],[0,β]) ì* ([0,  γ], [0, δ])  ~*

([0,α], [0,α]).   This is a contradiction.   Hence  ([0,  γ], [0, δ])  �* ([0, α], [0, β]).                       �

Proof of Lemma 6: (i)  It holds by the supposition of Lemma 6 that  g(β) – g(α) ≥ g(1) – g(1)  ⇔

log β – log α ≥ log 1 – log 1  for all α, β ∈(0, 1], which implies that  g(β) – g(α) ≥ 0 ⇔  log (β/α)  ≥

log 1  and  g(β) ≥ g(α)  ⇔  β ≥ α.   Hence  g  is strictly increasing on  (0, 1].

If  g(0) ≥ g(λ*)  for some  λ*  ∈  (0, 1],  then  g(0)  –  g(1)  ≥   g(λ*)  –  g(1).   On the other hand,

we  have by the supposition of Lemma 6 and (2) that

              log(λ*)  >  log(0)  ⇒  log(λ*) –  log(1)  >  log(0) –  log(1)  ⇒  g(λ*) –  g(1)  >  g(0) – g(1).

This is a contradiction.   Thus  g(0) <  g(λ)  for all  λ ∈ (0, 1]  and  g  is strictly increasing on  [0, 1].

Moreover , it holds that

            log(1/2)  >  log(1/4)  ⇒  log(1/2) –  log(1)  >  log(1/8) –  log(1/2)

                                            ⇒   g(1/2) –  g(1)  >  g(1/8) – g(1/2)   ⇒   g(1/2)  – g(1/8) + g(1/2)  >  g(1).

Because  g  is strictly increasing on  [0, 1], we have that  g(1) < + ∞.

(ii) It holds that

          f(log λ) =  g(λ)   for all  λ ∈ (0, 1].                                                                                      (24)

It holds by the supposition of Lemma 6 that

           log β – log α = log δ – log γ  ⇔   g(β) –  g(α ) = g(δ) – g(γ)                                                  (25)
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for all  α, β, γ, δ ∈ (0, 1].   For all  x, y, z, w ∈ (– ∞ , 0],  set  α = ex, β = ey, γ = ez and  δ = ew.   Then we

have by (24) and (25) that  y – x = w – z  ⇔  f(y) –  f(x) = f(w) – f(z)   for all  x, y, z, w ∈ (– ∞ , 0].

(iii)  Because  g  is strictly increasing on  [0, 1]  by Lemma 6(i), and because  ex  is strictly

increasing on  (– ∞ , 0], f(x) = g(ex)  is strictly increasing for  x ∈ (– ∞ , 0].

(iv)  It holds by Lemma 6(iii) and Royden and Fitzpatrick (2010, Section 6.1, Theorem 1) that there

are at most countable number of points at which  f  is not continuous, and then there is a point  x

in  (– ∞ , 0)  at which f  is continuous.   Let  y  be a point in  (– ∞ , 0], and let  { ym }  be a convergent

sequence in   (– ∞ , 0]  to  y.   Define a sequence  { xm }  by  xm = x  – y + ym
   for all  m.    Because   – x 

> 0, there exists some integer  m*  such that   – y + ym
 <  – x   for all  m ≥ m*, which implies that  xm

∈ (– ∞ , 0]  for all  m ≥ m*.    Hence we have by Lemma 6(ii) that  f(xm) – f(x ) = f(ym) – f(y)  for all  m

≥ m*.   Because  lim ym = y  and  f  is continuous at  x, we have that  lim f(ym) = f(y ), and that  f(⋅)

is continuous on  (– ∞ , 0].

(v)   Using the induction arguments with respect to  q = 0, 1, 2, ⋅⋅⋅  for a fixed negative integer  p <

0, it holds by Lemma 6(ii) that

          f(q/p) = [ f(1/p) – f(0) ]⋅q + f(0)  for all integers  q ≥ 0  and  p < 0.                                   (26)

For each  p < 0,  setting  q = – p  in (26), we have that

          f(–1) = – [ f(1/p) – f(0) ]⋅p + f(0)  and  f(1/p) = [ f(0) – f(–1) ]/p + f(0)  for all  p <  0.

It holds by (26) and this that  f(q/p) = (q/p)⋅[ f(0) – f(–1) ] + f(0)  for all integers  q ≥ 0  and  p < 0.

(vi)  Fix any rational number  r  in  (– ∞ , 0].   There exists a pair of integers  (p*, q*)  such that

          r = q*/p*, q* ≥ 0  and  p* < 0.

Because  a = f(0) – f(–1)  and  b = f(0), we have by Lermma 6(v) that

          f(r) = f(q*/p*) = a⋅(q*/p*) + b = a⋅r + b                                                                              (27)

for all rational numbers  r  in   (– ∞ , 0].    Because  f(x)  is continuous on  (– ∞ , 0]  by Lemma 6(iv),

we have by Lemma 6(v) and (27) that  f(x) = a⋅x + b  for all real numbers  x ∈ (– ∞ , 0], which implies

that

 g(λ) = f(log λ) = a· log  λ +  b  for all  λ ∈ (0, 1].                                                                (28)

It holds by (28) that limλ→0 g(λ) = – ∞ .   Hence we have Lemma 6(i) and (2) that  g(0) = – ∞.
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Because  log 0 = limλ→0 log λ = – ∞, we have by (2) that  g(0) = a⋅log 0 + b.   Thus we have by this

and (27) that  g(λ) = a· log  λ +  b  for all  λ ∈ [0, 1].                                                                     �

Proof of Lemma 7:  (i)  Fix any  1 ≥ α  ≥ β > 0.  It holds by L11*   that

           ([0, β], [0, β])  ~* ([0, β] ∪  (β, α], [0, β] ∪  (β, α]) = ([0, α], [0, α]).

(ii)   It holds by L11*  , L10 , (9) and (5) that

           ([0, β], [0, α])  ì* ([0,  β], [0, β] )

                          ⇔  ([0, β + (1 – α) ], [0, 1]) ~* ([0, β], [0, α]) ì* ([0,  β], [0, β]) ~* ([0, 1], [0, 1])

                          ⇔  ([0, 1], [0, 1]) ì* ([0, 1], [0, β + (1 – α) ])

                          ⇔  (T|T, [0, 1]|T) ì* (T|T, [0, β + (1 – α) ]|T)

                          ⇔  [0, 1] ì́  [0, β + (1 – α)]  ⇔   1  ≥  β + (1 – α)  ⇔  α ≥ β.

(iii)   It holds by Lemma 7(ii) that  ([0, β], [0, α])  �*  ([0, β], [0, β]).

(iv)   Fix  α, β, γ, δ ∈ T  with α    > 0, γ  > 0.

Case 1 (β  ≥ α   and  δ  ≥ γ ):  We have by Lemma 4(i),  L10 , L11*   and Theorem 1(ii) that

           ([0, α], [0, β])  ì* ([0,  γ], [0, δ])  ⇔  ([0, α + (1 – β) ], [0, 1]) ì* ([0,  γ + (1 – δ) ], [0, 1])

                      ⇔  ([0, 1], [0,  γ + (1 – δ) ]) ì* ([0, 1], [0, α + (1 – β) ])

                      ⇔  [0,  γ + (1 – δ) ] ì́  [0, α + (1 – β)] ⇔   γ + (1 – δ)  ≥  α + (1– β)  ⇔  β  – α ≥ δ  – γ.

Case 2 (β  ≥ α  and  δ < γ ):  We show that  ([0, α], [0, β]) ì* ([0, γ], [0, δ])  and  β  – α  ≥ δ  – γ   hold

simultaneously.   We have by  β  ≥ α   and  δ < γ   that  β  – α ≥  0 > δ  – γ.    It holds by  L11*  that

([0,  γ], [0, δ]) ~* ([0, 1], [0, δ + (1– γ)]).   We have by this and Theorem 1(ii) that

            ([0, 1], [0, 1]) ì* ([0, 1], [0, δ+ ( 1 –  γ) ]) ~* ([0,  γ], [0, δ])                                              (29)

It holds by  L11*  that  ([0, α], [0, β]) ~* ([0, α + (1 – β) ], [0, 1]).   We have by this and  L10  that

            ([0, 1], [0, α + (1 – β) ] ) ~* ([0, β], [0, α]).

We have by Theorem 1(ii) and this that  ([0, 1], [0, 1]) ì* ([0, 1], [0,α + (1– β) ]) ~* ([0, β], [0, α]).

Hence we have by  L10  that

            ([0, α], [0, β]) ì* ([0, 1], [0, 1]).                                                                                        (30)

Thus we have  by (29) and (30) that  ([0, α], [0, β]) ì* ([0,  γ], [0, δ]). 
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Case 3 (β < α   and δ < γ ):   We have by  L10  and Case 1 that

       ([0, α], [0, β]) ì* ([0,   γ], [0, δ]) ⇔ ([0, δ], [0, γ]) ì* ([0, β], [0, α])  ⇔ γ  – δ ≥ α  – β  ⇔  β  – α ≥ δ  – γ.

Case 4 (β < α  and  δ ≥ γ): Applying the logical equivalence: (P ⇔ Q) ≡ (not P ⇔ not Q), it suffices to

prove that  ([0,  γ], [0, δ])  �* ([0, α], [0, β])  ⇔  δ – γ > β – α.   We show that  ([0,  γ], [0, δ])  �* ([0, α],

[0, β])  and  δ – γ > β – α  hold independently in this case.    It holds by β < α  and  δ  ≥ γ   that  δ – γ >

β  – α.   There remains to prove that  ([0,  γ], [0, δ]) �* ([0, α], [0, β]).   Suppose that

            ([0, α], [0, β]) ì* ([0,  γ], [0, δ]).                                                                                       (31)

It holds by β  < α  and Lemma 7(iii) that  ([0, β], [0, α])  �*  ([0, β], [0, β]).   Hence we have by  L10

that

            ([0, β], [0, β])   �* ([0, α], [0, β]).                                                                                     (32)

It holds by Lemma 7(ii) that  ([0,  γ], [0, δ]) ì* ([0,  γ], [0, γ]).   It holds by this and Lemma 7(i) that

            ([0,  γ], [0, δ]) ì* ([0,  γ], [0, γ]) ~* ([0, β], [0, β]).                                                             (33)

We have by (31), (32) and (33) that  ([0, β], [0, β]) �* ([0,α], [0, β]) ì* ([0, γ], [0, δ]) ~* ([0,β], [0, β]).

This is a contradiction.   Thus ([0,  γ], [0, δ])  �* ([0, α], [0, β]).                                                  �

Proof of Lemma 8: (i)  It holds by the supposition of Lemma 8 that  g(β) – g(α) ≥ g(1) – g(1)  ⇔

 β – α ≥ 1 – 1  for all α, β ∈[0, 1], which implies that  g(β) ≥ g(α)  ⇔    β ≥ α.   Hence  g  is strictly

increasing on [0, 1].

(ii)  It holds by the supposition of Lemma 8 that

           β – α = δ  – γ  ⇔ g(β) –  g(α ) = g(δ) – g(γ)                                                                          (34)

for all  α, β, γ, δ  ∈ [0, 1].  It holds by Lemma 8(i) and Royden and Fitzpatrick (2010, Section 6.1,

Theorem 1) that there are at most countable number of points at which  g  is not continuous, and

then there is a point  λ  in  (0, 1)  at which  g  is continuous.   Let  μ  be a point in  [0, 1], and let

{ μm }  be a convergent sequence in  [0, 1]  to  μ.   Define a sequence  { λm }  by  λm = λ  + μm
 – μ  for

all  m.    Because  – λ < 0 < 1 – λ, there exists some integer  m*  such that  –  λ < μm
 – μ ≤ 1 –  λ  for

all  m ≥ m*, which implies that  λm ∈ [0, 1] for all  m ≥ m*.   Hence we have by (34) that  g(λm) –
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g(λ ) = g(μm) – g(μ )  for all  m ≥ m*.   Because  lim μm = μ   and  g  is continuous at  λ, we have that

lim g(μm) = g(μ ), and that  g(⋅)  is continuous on  [0, 1].

(iii)   For each  p > 0, using the induction arguments with respect to  q = 0, 1, 2, ⋅⋅⋅  , p, it holds by

(34) that

            g(q/p) = [ g(1/p) – g(0) ]⋅q + g(0)   for all  q = 0, 1, 2, ⋅⋅⋅  , p.                                            (35)

For each  p > 0, setting  q = p  in (35), we have that

            g(1) = [ g(1/p) – g(0) ]⋅p + g(0)  and  g(1/p) = [ g(1) – g(0) ]/p + g(0)  for all  p > 0.

It holds by (35) and this that

            g(q/p) = (q/p)⋅[ g(1) – g(0) ] + g(0)   for all  p > 0  and all  q = 0, 1, 2, ⋅⋅⋅  , p.

(iv)  Fix any rational number  r  in  [0, 1].   There exists a pair of integers  (p*, q*)  such that

             r = q*/p*,  p* > 0  and   p*  ≥  q* ≥ 0.

Because  a = g(1) – g(0)  and  b = g(0), we have by Lemma 8(iii) that

             g(r) = g(q*/p*) = a⋅(q*/p*) + b = a⋅r + b                                                                          (36)

for all rational numbers  r  in  [0, 1].    Because  g  is continuous on  [0, 1]  by Lemma 8(ii), we have

by (36) that  g(λ) = a⋅λ + b  for all real numbers  λ ∈ [0, 1].                                                       �
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