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Abstract

This paper examines the validity of the factor price equalisation theorem (FPET) in relation to

capital theory. Additionally, it presents a survey of the literature on Heckscher—Ohlin—Samuelson (HOS)

models that treat capital as a primary factor, beginning with Samuelson (1953). Furthermore, this paper

discusses the Cambridge capital controversy, which contends that marginal productivity theory does not

hold when capital is assumed to be as a bundle of reproducible commodities instead of as a primary

factor. Consequently, it is shown that under this assumption, the FPET does not hold, even when there

is no reversal of capital intensity. This paper also demonstrates that the recent studies on the dynamic

HOS trade theory generally ignore the difficulties posed by the capital controversies and are thereby able

to conclude that the FPET holds even when capital is modelled as a reproducible factor. Our analysis

suggests that there is a need for a basic theory of international trade that does not rely on factor price

equalisation and a model that formulates capital as a bundle of reproducible commodities.
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1 Introduction

‘Globalisation’ is undoubtedly one of the key words that characterises the 21st Century. It would be defined

sufficiently as the integration of markets for goods, services, capital, and labour (which had formerly been

segmented by political barriers) into a single ‘world market’, although the various definitions of ‘globalisation’

are proposed as Wolf (2004) discusses.

The driving force behind modern globalisation was, at first, the establishment of a free trade system

under the International Monetary Fund and the General Agreement on Tariffs and Trade (IMF-GATT),

which gradually reduced tariffs after the end of the WWII. Thereafter, the collapse of the IMF’s fixed

exchange rate system and its replacement by the flexible exchange rate system further drove globalisation.

Additionally, the relaxation and abolishment of various regulations, which were the product of the counter-

Keynesian revolution, resulted in the free international movement of capital. Finally, the WTO was founded

and it established comprehensive rules for international transactions of goods, finances, information (i.e.

communication), intellectual property, and services.1

Almost all economic theories have been supportive of globalisation. Indeed, the classical economists of

the 19th century, such as Smith, Ricardo, J.S. Mill, and Marx, asserted that open economies were superior to

closed ones.2 Moreover, nowadays, neo-classical economics also assert the superiority of an open economy by

establishing the Heckscher—Ohlin—Samuelson (HOS) model. As a basis of supporting globalisation, economists

typically refer to the potential gains from trade (Anderson, 2008) enjoyed by every economic agent under open

economies. To explain the potential gains from trade, Ricardo’s theory of ‘comparative advantage’ remains

one of the cornerstones of international economics, while neo-classical economics also argue ‘comparative

advantage’ within the HOS framework.

However, there are several differences between neo-classical and classical (including Marx) models on

gains from trade; the former supposes that every country is faced with a common set of techniques, but

differ in terms of factor endowments, while the latter assumes that each country is endowed with its own

techniques which may vary from each other. Note that in the modern economy, globalisation actively promotes

the international movement of not only goods, services, capital, and labour, but also of information and

knowledge, which allows everyone to access common information and knowledge of production technology

from anywhere, at least in the long run. In order to capture such a feature of the modern economy, it would

be admissible to assume that every country is faced with a common set of techniques, which is formalized

by a common production possibility set, as in the HOS model. It should be noted, however, that access to

information and knowledge of production technology does not necessarily imply that every country can use

them effectively. In order for a country to use a technique, it must have the necessary capital formation and

labour force. Given the imperfection of international factor markets, the choice of a technique is dependent

on the country’s factor endowments.

In order to analyse globalisation with the HOS model, the validity of a set of theorems (i.e. the HO

theorem, factor price equalisation theorem, the Stolper-Samuelson theorem, and the Rybczynski theorem)

must be examined. Although the discovery of the Leontief Paradox (Leontief, 1953, 1956) precipitated such

an examination, we focus on the factor price equalisation theorem (FPET), which is the cornerstone of the

HOS model. According to this theorem, the equilibrium international price, as determined by free trade,

ensures the equalisation of factor prices. Thus, it is important to determine whether or not factor prices tend

to converge in modern globalisation.

In their analysis of the US current account imbalance, Obstfeld and Rogoff (2005) reveal that the income

return on US-owned assets exceeded that on US liabilities by an average of 1.2% a year from 1983 to 2003.

Furthermore, the return on US foreign investments, including capital gains, exceeded that on US liabilities

by a remarkable 3.1% during the same period. If the return is regarded as a measurement of factor price,

how can this persistent difference be explained? This paper seeks to answer this question by reviewing the

development of the HOS model.3

1See Wolf (2004) concerning the history of the world economy’s construction in detail.
2However, Malthus and List exceptionally criticise the free trade doctrine. It is well known that Malthus (1815) criticises the

free trade system for its effects on food security and the stability of prices. List (1904) also criticises free trade for its failure to

protect infant industries.
3While we have a special interest in capital, several studies examine the inexplicable relationship between international trade

and wage disparities; see, for example, Kurokawa (2014).
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We pay particular attention to the relationship between the theoretical development of the HOS model and

the outcome of the Cambridge capital controversies, which revealed that the neo-classical principle of marginal

productivity does not, in general, hold. The neo-classical production function treats capital as a primary

factor of production, and thus, its amount is given independently of the price system. If capital is treated as

a bundle of reproducible commodities, however, the neo-classical theory does not hold. Assuming the neo-

classical production function, the rate of profit maintains a one-to-one correspondence with a technique. If

capital consists of a bundle of reproducible commodities, however, a technique may correspond to some rate of

profit. This phenomenon is termed the reswitching of techniques. Additionally, if capital consists of a bundle

of reproducible commodities (unlike the principle of marginal productivity argues), then the monotonically

decreasing relationship between capital intensity and the rate of profit does not generally hold. In other

words, capital intensity may rise as the rate of profit increases, a phenomenon termed capital reversing. As

we shall argue later, the outcome of the controversies may be used to re-examine the validity of the HOS

model as it assumes the neo-classical production function and as capital is a primary factor. Neo-Ricardians

who were influenced by Sraffa (1960), such as Steedman, Metcalfe, and Mainwaring, have thus far conducted

the majority of such re-evaluations. By using the Leontief model with alternative techniques, they assert that

if capital consists of heterogeneously reproducible commodities, then the FPET does not necessarily hold.

The neo-Ricardian arguments may provide a clear explanation for the persistent differences between the

US’ returns and those of the rest of the world. Since it is clear that in the globalised economy, capital is not a

primary factor, but rather composed of a bundle of reproducible commodities, the FPET does not necessarily

hold. Even if the globalised economy were perfectly competitive as the theory assumes, there could still be

differences in the returns.

The paper is organised as follows: Section 2 presents a brief survey of the literature on the traditional

HOS model, in which capital is treated as a primary factor. Section 3 deals with the neo-Ricardian critiques

of the FPET and presents a numerical example of the two-integrated-sector model, in which the FPET does

not hold despite a lack of sectoral capital intensity reversal. The model is based on the Leontief model with

alternative techniques. It should be noted that our example is more rigorous than that presented by Metcalfe

and Steedman (1972). Section 4 reviews neo-classical economists’ counterarguments against the critiques

popularized by the controversies. We show that Burmeister (1978), who presented the most influential form

of the HOS model after the controversies, merely assumed that the inconvenient phenomena emphasized by

the controversies would not occur. Section 5 presents our concluding remarks.

Throughout the paper, we assume that international trade does not incur any costs (e.g. transportation

costs and tariffs) except for the direct cost of production; there is no perfect specialisation, and as such, every

country produces all commodities; and that there is no joint production unless otherwise stated.

2 The HOSModel with Capital as a Primary Factor of Production

In this section, we examine the traditional HOS model in which capital is treated as a primary factor of

production. Although Heckscher and Ohlin (1991) define the structure of comparative advantage as the

difference in countries’ factor endowments and put forward a prototype of the FPET, it is Samuelson (1953)

who formalises it by using the general equilibrium theory.

Subsequently, Gale and Nikaido (1965) and Nikaido (1968) develope the Samuelsonian formulation;

Samuelson (1966a) and Nikaido (1972) define capital intensity as the relative share of factor costs; and

Mas-Collel (1979a,b) further developes Nikaido’s (1972) formulation. Kuga (1972) characterises the FPET

without using a Jacobian matrix for the cost function; Blackorby et al. (1993) extend Kuga (1972) by allowing

for decreasing returns to scale and intermediate goods.

2.1 Samuelson (1953)

Following Samuelson (1948, 1949), wherein he proved the FPET with a two-country, two-commodity, two-

factor model, Samuelson (1953) extends the theorem by using the general equilibrium model. By simplifying

Samuelson’s (1953) model, wherein there are n commodities and n primary factors, we can define the equi-

librium condition as follows:
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p 5 wA (w) , (1)

[p−wA (w)]X = 0, (2)

A (w)X = V, (3)

where p ≡ [pi] ,w ≡ [wi] ,X ≡ [Xi] ,V ≡ [Vi] ∈ Rn denote the vector of commodity prices, factor prices, out-
put, and factor endowments. A (w) is the physical input coefficient matrix under which the unit cost is

minimised given the primary factor price vector, w; and thus, wA (w) denotes the unit cost function. (1) is

the condition that allows for competitive equilibrium prices; (2) is the condition for the commodity market’s

equilibrium; and (3) is the condition which establishes the full utilisation of factors.

Let us assume the neo-classical production function, Xj = fj (V1j , · · · , Vnj), where
nP
j=1

Vij = Vi.
4 As the

function is homogeneous of degree one, it can be rewritten as follows:

1 = fj (a1j , · · · , anj) , where aij ≡ Vij
Xj
. (4)

It should be noted that the function satisfies the following assumptions:

wi

pj
= ∂fj (a1j , · · · , anj)

∂aij
for i, j = 1, · · · , n, (5)

∂fj

∂aij
= 0.

The production set satisfies the free disposal condition. For V0
j ≡

³
V

0
1j , · · · , V

0
nj

´
,V00

j ≡
¡
V 001j , · · · , V 00nj

¢
, and

∀λ ∈ (0, 1), moreover, the following is satisfied:

fj
¡
λV0

j + (1− λ)V00
j

¢
= λfj

¡
V0
j

¢
+ (1− λ) fj

¡
V00
j

¢
. (6)

(6) indicates that fj is a concave function. If all commodities are produced and all factors are utilised in

every industry, then the equality holds in both (1) and (5).

Let us denote the unit cost function as follows: c (w) ≡ wA (w) = [cj (w)], where cj (w) ≡
nP
i=1

wiaij (w).

If the neo-classical production function is assumed, then function c (w) has the following properties:5

Assumption 2.1.1: c (w) is differentiable with respect to w.

Assumption 2.1.2: c (w) is a homogeneous function of degree one.

Assumption 2.1.3: c (w) is concave with respect to w.

Assumption 2.1.4: c (w) is monotonically increasing with respect to w.

The FPET holds that the cost function, c: w 7→ p, is global univalent. Let us consider a simple case

wherein n = 2. In this case, the FPET’s assumption of no factor intensity reversal causes the factor prices

to equalise in free trade equilibrium. The factor intensity of industry 1 is given by a11 (w) /a21 (w) and that

of industry 2 is a12 (w) /a22 (w). An absence of factor intensity reversal means that½ ∀w ≥ 0, a11 (w) a22 (w)− a12 (w) a21 (w) > 0 or
∀w ≥ 0, a11 (w) a22 (w)− a12 (w) a21 (w) < 0. (7)

4See Burmeister and Dobell (1970, pp. 8—12) with respect to the neo-classical production function in detail.
5 See, for example, Mas-Colell et al. (1995, p. 141).
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If (7) is satisfied, then the FPET holds. This is because A (w) is non-singular and thus has an inverse

matrix. Therefore, w = pA (w)
−1
. In this case, it is shown that c (w) is bijective over the range of the cost

function, P ≡©p ∈ Rn+ | ∃w ∈ Rn+ : c (w) = pª. This directly implies that c is global univalent.6
If we allow factor intensity reversal to occur (i.e. (7) is not satisfied), due to the continuity of function

c (w), a11 (w
0) a22 (w0)−a12 (w0) a21 (w0) = 0 holds forA (w0), which is chosen for w0. If the final commodity

prices in the incompletely specialised-trade equilibrium are given by p0 = w0A (w0), then A (w0) is singular
and does not have an inverse matrix. Therefore, there are an infinite number of factor price vectors that

would satisfy the equation; in other words, the factor prices do not equalise.

Partially differentiating cj (w) with respect to wi yields:
∂pj
∂wi

=
∂cj(w)

∂wi
= aij (w) +

2P
h=1

wh
∂ahj(w)

∂wi
.

Given that
2P

h=1

∂fj
∂ahj

∂ahj
∂wi

= 0 is obtained by differentiating (4) and
∂fj
∂ahj

= wh
pj

is obtained from (5),

1
pj

2P
h=1

wh
∂ahj(w)

∂wi
= 0 is obtained. As pj > 0, we find that:

∂pj

∂wi
= aij (w) , i, j = 1, 2. (8)

This implies that partially differentiating the price equation yields the input coefficient, aij . Samuelson

(1953) shows that the cost function’s non-vanishing Jacobian matrix is the sufficient condition for the validity

of FPET in the case of n = 2:

det

∙
a11 (w) a12 (w)

a21 (w) a22 (w)

¸
= det

"
∂c1(w)

∂w1

∂c2(w)

∂w1
∂c1(w)

∂w2

∂c2(w)

∂w2

#
6= 0.

Furthermore, Samuelson (1953) extends the case of n = 2 to a more general scenario of n = 3 and

conjectures the sufficient condition of the validity of FPET as follows:

∂c1 (w)

∂w1
6= 0,det

"
∂c1(w)

∂w1

∂c2(w)

∂w1
∂c1(w)

∂w2

∂c2(w)

∂w2

#
6= 0, · · · ,det

⎡⎢⎢⎣
∂c1(w)

∂w1
· · · ∂cn(w)

∂w1
...

. . .
...

∂c1(w)

∂wn
· · · ∂cn(w)

∂wn

⎤⎥⎥⎦ 6= 0. (9)

(9) indicates that the sufficient condition for the validity of the FPET is that the successive principal

minors of the cost function’s Jacobian matrix be non-vanishing.

Furthermore, it is clear that the condition is also valid for the Leontief production function. This is

because (8) may simply be rewritten as
∂pj
∂wi

= aij , which has constant coefficients. Therefore, the Jacobian

matrix has one-signed principal minors even when w changes.

Samuelson’s (1953) use of the cost function’s Jacobian matrix to characterise the condition for the validity

of the FPET had a decisive impact on the direction of later research.7

2.2 The Application of Jacobian Matrix

Gale and Nikaido (1965) and Nikaido (1968) point out a major flaw in Samuelson (1953).8 Before proceeding

with our analysis, let us first define the following matrices:

Definition 2.2.1: A square matrix, A, is termed a P-matrix if all the principal minors are positive.

6See the Appendix for the rigorous proof in the case of n = 2.
7 See Chipman (1966) for a description of other HOS models based on the general equilibrium theory.
8Gale and Nikaido (1965) provide a counter-example for condition (9). They suppose the mapping F (x) ≡ [fi (x)] as defined

below: 
f1 (x1, x2) = e

2x1 − x22 + 3,
f2 (x1, x2) = 4e

2x1x2 − x32.
The successive principal minors can then be given as:
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Definition 2.2.2: A square matrix, A, is termed an N-matrix if all the principal minors are negative. An

N-matrix can be further divided into two categories:

i) An N-matrix is said to be of the first category if A has at least one positive element.

ii) An N-matrix is said to be of the second category if all of the elements are non-positive.

Let the mapping f : Ω→ Rn satisfy the following assumptions:

Assumption 2.2.1: Ω is a closed rectangular region in Rn.9

Assumption 2.2.2: Given that the mapping f (x) ≡ [fj (x)] (x ∈ Ω, j = 1, 2, · · · , n), fj (x) is monotonically
increasing and totally differentiable on Ω:

dfj (x) =

nX
j=1

∂fj (x)

∂xi
dxi, (j = 1, 2, · · · , n) .

Consequently, the following theorem holds:

Theorem 1 (Gale and Nikaido, 1965; Inada, 1971; Nikaido, 1968): For a given vector, p ≡ [pj ], mapping
p = f (x) is global univalent if either (a) or (b) holds:

(a) The Jacobian matrix of f (x), is everywhere a P-matrix in Ω.

(b) The Jacobian matrix is continuous and is everywhere an N-matrix in Ω.

Proof : See Nikaido (1968, pp. 370—371).

As Ethier (1984, p. 151) points out, Gale and Nikaido’s (1965) assumptions regarding the mapping, f , are

quite general and their conditions for global univalence are purely mathematical. Therefore, it is necessary

to clarify the kinds of assumptions that shall be imposed on the cost function in order to capture a standard

economic environment.

Samuelson (1966a) conjectures that ‘factor intensity’ could be defined by the share of the increase in the

cost of factor i relative to the increase in the cost of production per unit; in other words, for price equation,

p = c (w), the factor intensity, αij , is given as:

αij ≡ cij (w)wi
pj

, (∀i, j = 1, . . . , n),

where cij (w) ≡ ∂cj(w)

∂wi
. αij is the share of the rate of increase in the cost of factor i relative to that in the cost

of producing one unit of commodity j. Let us define matrix eA ≡ [αij ] (i, j = 1, 2, · · · , n).10 Moreover, let us
assume that eA has successive principal minors whose absolute values are bounded from below by constant,

positive numbers, δk (k = 1, 2 · · · , n), if its rows and columns are adequately renumbered:11

∂f1

∂x1
= 2e2x1 > 0,∂f1/∂x1 ∂f1/∂x2

∂f2/∂x1 ∂f2/∂x2

 =  2e2x1 −2x2
8e2x1x2 4e2x1 − 3x22

 = 2e2x1 4e2x1 + 5x22 > 0,
holds for ∀x; therefore, (9) is satisfied. However, F (0, 2) = F (0,−2) = (0, 0), which precludes global univalence.

9A closed rectangular region is defined as follows:

Ω ≡ {x| pi 5 xi 5 qi, i = 1, 2, · · · , n},
where −∞ < pi < qi < +∞.
10αij = 0 and

n
i=1

αij = 1 are obtained using the Euler Theorem and the homogeneity of the cost functions. Therefore, A is

a stochastic matrix.
11 (10) is equivalent to (7) if there are two-commodities and two-factors.
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¯̄̄̄
¯̄̄det

⎡⎢⎣ α11 · · · α1k
...

. . .
...

αk1 · · · αkk

⎤⎥⎦
¯̄̄̄
¯̄̄ = δk, k = 1, 2 · · · , n. (10)

Consequently, the following theorem holds:

Theorem 2 (Nikaido, 1972): If cj (w) satisfies Assumption 2.1.1~2.1.4, then the price equation, p = c (w),

is completely invertible for the given p > 0.12

Proof : See appendix.

Theorem 2 verifies Samuelson’s conjecture.13

Stolper and Samuelson (1941) also investigated the relationship between final commodity prices and factor

prices; thus, the approach of using the cost function’s Jacobian matrix is applied to the generalisation of the

Stolper-Samuelson Theorem. Chipman (1969) proposed the following two criteria:

i) Weak Stolper—Samuelson Criterion (WSS): An increase in pj leads to a more than proportional

increase in the price of the corresponding factor wj . The price of factor wi (i 6= j) may increase, but the rate
of increase is smaller than that of wj :

∂ lnwj

∂ ln pj
> 1,

∂ lnwj

∂ ln pj
>

∂ lnwi

∂ ln pj
.

ii) Strong Stolper—Samuelson Criterion (SSS): An increase in pj decreases all factor prices except for

that of wj :

∂ lnwi

∂ ln pj
< 0, if i 6= j.

In order to satisfy the WSS condition, the inverse of eA must exist and its diagonal elements must be

greater than 1 and its non-diagonal elements.14 In other words, letting eA−1 ≡ £αij¤ (i, j = 1, 2, · · · , n), the
WSS condition implies αjj > 1 and αjj > αij (i 6= j). Similarly, the SSS condition, in terms of eA−1, implies
that αij < 0 (i 6= j). While Chipman (1969) proves the case of n 5 3, Uekawa (1971) and Uekawa et al.

(1972) rigorously prove the condition for the validity of the Stolper—Samuelson theorem in the case of n = 4.15
12 ‘Completely invertibility’ means that p = c (w) 6= c (w0) = p0 for arbitrarily positive vectors w 6= w0 and a unique w > 0

exists such that p = c (w) for ∀p > 0.
13 Samuelson’s own summary can be found in Samuelson (1967). Moreover, Stiglitz (1970) constructs a dynamic HOS model

by introducing a relationship between savings and investment, and he derives the condition for the FPET. See Smith (1984)

with respect to the dynamic HOS model in detail.
14Chipman (1969) discusses the relationship between Gale and Nikaido’s (1965) condition for the FPET and the WSS condition.

When n = 2, the condition is equivalent to the WSS condition, but is not if n = 3. Suppose that w0 is determined for a given

p and π0 = ϕ

ω0

(which is defined in the proof of Theorem 2). Let us suppose that its Jacobian matrix is given as follows:

ϕ0

0

=

0.55 0.40 0.05

0.05 0.50 0.45

0.25 0.35 0.40

 .
ϕ0

0

is a stochastic matrix. Furthermore, ϕ () is the differentiable and monotonically increasing function, and all principal

minors of ϕ0

0

are positive, namely ϕ0


0

is a P-matrix and satisfies Theorem 1. This means that the FPET holds. However,

we obtain:


ϕ0

0
−1

=

 0.77 −2.59 2.82

1.68 3.77 −4.45
−1.95 −1.68 4.64

 .
This means that the WSS condition does not hold.
15The Stolper—Samuelson theorem is similarly generalised by Inada (1971), Kemp and Wegge (1969), Morishima (1976), and

Wegge and Kemp (1969). See Ethier (1984) for further research on the theorem.
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2.3 Kuga (1972)

The preceding analyses can only be applied to cases wherein the number of final commodities is equal to

that of factors. In order to overcome this limitation, Kuga (1972) uses a new approach to characterise the

condition for the FPET, which he terms the ‘differentiation method’.

Let us assume that the general production possibility frontier is given as follows:

X1 = T (V;X) ,

where X1 denotes the output of commodity 1, V ∈ Rr+ is the factor endowment, and X ∈ Rn−1+ is the output

vector of commodity 2 to n. Moreover, T satisfies the following assumptions:

Assumption 2.3.1: T is positively homogeneous of degree one with respect to (V;X).

Assumption 2.3.2: T is concave with respect to (V;X).

Assumption 2.3.3: T is strictly concave with respect to X for any fixed V.

Assumption 2.3.4: T is twice differentiable with respect to (V;X).

Let the price of commodity 1 be the numéraire; then, the problem is expressed as follows:

maxT (V;X) +

nX
j=2

pjXj , (11)

the solution of which is given by:

pj = −∂T (V;X)
∂Xj

, j = 2, 3, · · · , n, (12)

Thanks to the Berge maximum theorem, we can see that the set of solutions to (11), Xj , is upper hemi-

continuous with respect to V for a given p. Moreover, because of Assumption 2.3.3, the set is singleton.

Therefore, the solution, Xj , is the continuous single valued function of V:

X =X (V;p) .

The price of factor i is given by:

wi =
∂T (V;X (V;p))

∂Vi
, i = 1, 2, · · · , r. (13)

The equalisation of factor prices in this model implies that factor price wi is solely dependent on the

commodity price that is determined by free trade, and thus the right-hand side of (13) is kept constant with

respect to the variation of V.

By partially differentiating (13) with respect to Vτ (τ = 1, 2, · · · , r), we obtain:

∂wi

∂Vτ
=

∂2T

∂Vτ∂Vi
+

nX
j=2

∂2T

∂Xj∂Vi

∂Xj

∂Vτ
, τ = 1, 2, · · · , r, (14)

in matrix form this is written as

wV =M1 +M2XV , (15)

where wV ≡

⎡⎢⎣
∂w1
∂V1

· · · ∂wr
∂V1

...
. . .

...
∂w1
∂Vr

· · · ∂wr
∂Vr

⎤⎥⎦, M1 ≡

⎡⎢⎢⎣
∂2T
∂V 2

1

. . . ∂2T
∂V1∂Vr

...
. . .

...
∂2T

∂Vr∂V1
· · · ∂2T

∂V 2
r

⎤⎥⎥⎦,
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M2 ≡

⎡⎢⎢⎣
∂2T

∂V1∂X2
· · · ∂2T

∂V1∂Xn

...
. . .

...
∂2T

∂Vr∂X2
· · · ∂2T

∂Vr∂Xn

⎤⎥⎥⎦, XV ≡

⎡⎢⎣
∂X2

∂V1
· · · ∂X2

∂Vr
...

. . .
...

∂Xn

∂V1
· · · ∂Xn

∂Vr

⎤⎥⎦.
Similarly, partially differentiating (12) with respect to Vτ yields:

∂2T

∂Xj∂Vτ
+

nX
l=2

∂2T

∂Xl∂Xj

∂Xl

∂Vτ
= 0, j = 2, 3, · · · , n, τ = 1, 2, · · · , r. (16)

In matrix from, this is written as MT
2 +M3XV = 0, where M3 ≡

⎡⎢⎢⎣
∂2T
∂X2

2

· · · ∂2T
∂X2∂Xn

...
. . .

...
∂2T

∂Xn∂X2
· · · ∂2T

∂X2
n

⎤⎥⎥⎦ and the

superscript T denotes the transpose. Thanks to Assumption 2.3.3, the Hessian matrix M3 has an inverse

such that XV = −M−13 MT
2 holds.

16 When this is combined with (15), we obtain:

wV =M1 −M2M
−1
3 M

T
2 . (17)

In order for the FPET to hold, wV = 0 must hold:

M1 =M2M
−1
3 M

T
2 (18)

(17) and (18) have economic implications. Partially differentiating (12) with respect to pj yields 1 =

−
nP
k=2

∂2T
∂Xk∂Xj

∂Xk

∂pj
, which can be rewritten in matrix form as:

I = −M3Xp, (19)

where I is an identity matrix of order n− 1 and Xp ≡

⎡⎢⎣
∂X2

∂p2
· · · ∂X2

∂pn
...

. . .
...

∂Xn

∂p2
· · · ∂Xn

∂pn

⎤⎥⎦. Similarly, partially differentiating
(13) with respect to pj yields

∂wi

∂pj
=

nX
l=2

∂2T

∂Xl∂Vi

∂Xl

∂pj
(i = 1, 2, · · · , r, j = 1, 2, · · · , n) ,

which can be written in matrix form as:

wp =M2Xp, (20)

where wp ≡

⎡⎢⎣
∂w1
∂p2

· · · ∂w1
∂pn

...
. . .

...
∂wr
∂p2

· · · ∂wr
∂pn

⎤⎥⎦. Consequently, M−13 = −Xp holds from (19), as does M2 = wpX
−1
p from

(20). Because of (17), we therefore obtain:

wV =M1 +wpM
T
2 . (21)

The variations in factor endowments, Vτ , tend to give rise to the variations in factor prices and output.

The elements ofM1,
∂2T

∂Vi∂Vτ
(i = 1, · · · , r), indicate the variation of factor prices vary in response to variation

in Vτ when there is no adjustment in Xj by an amount of
∂Xj

∂Vτ
(j = 1, · · · , n) (i.e. ∂Xj

∂Vτ
= 0). The elements

16Assumption 2.3.3 says that T is strictly concave with respect to X. This implies that the Hessian matrix of T is negative

definite. A square matrix is negative definite if and only if its inverse is negative definite (Mas-Colell et al., 1995, p. 936);

therefore, M3 is invertible.
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ofM2,
∂2T

∂Vτ∂Xj
, indicate the discrepancies between international prices, pj , and domestic commodity produc-

tion prices, ∂T
∂Xj

, in response to variations in Vτ when there is no adjustment in
∂Xj

∂Vτ
(i.e.

∂Xj

∂Vτ
= 0). On the

contrary, the elements of wp convey the adjustment in the wi’s through the adjustments in the Xj ’s corre-

sponding to the marginal discrepancies in international prices. Therefore, wpM
T
2 in (21) can be interpreted

as the potential amount of adjustment in the wi’s through the Xj ’s corresponding to the discrepancies inM
T
2 .

Consequently,M1 and wpM
T
2 shall be termed the ‘direct effect’ and the ‘adjustment effect’, respectively. In

order for the FPET to hold in this model (wV = 0), the direct effect must be just offset by the adjustment

effect. By summarising the above analysis, we obtain:

Theorem 3: Under Assumption 2.3.1~2.3.4, the FPET holds if and only if the direct effect is offset by the

adjustment effect.

Kuga (1972) assures the validity of the FPET by keeping the factor price independent of the factor

endowment, which was an entirely different approach than previous models had used.

2.4 Mas-Colell (1979a, b)

Mas-Colell (1979a, b) uses the relative share matrix, eA, rather than the Jacobian matrix of the cost function
to characterise the condition for the FPET. In doing so, he makes the following assumptions regarding the

cost function:

Assumption 2.4.1: c (w) is a continuously differentiable function and homogeneous of degree one.

Assumption 2.4.2: c : Rn++ → Rn++

Although the cost function is usually assumed to be concave with respect to w, only homogeneity is

assumed here. Because of Assumption 2.4.2, the iso-cost curve is unbounded.

As the definition of the WSS condition shows, the relative cost share is related to the cost function in the

following manner:

αij ≡ wi

cj (w)

∂cj (w)

∂wi
.

Consequently, the following theorem holds.

Theorem 4 (Mas-Colell, 1979a): Under Assumptions 2.4.1~2.4.2, if, for some ε > 0,
¯̄̄
det eA¯̄̄ > ε holds for

all w ∈ Rn++, then c (w) is a homeomorphism.

Proof : See the Appendix.

In other words, Theorem 4 implies that for all p ∈ Rn++ the equation p = c (w) has a unique solution

that continuously depends on p.

Moreover, Mas-Colell (1979a) presented the condition that allows the cost function to be a homeomor-

phism when it is bounded (i.e. cj : Rn+ → Rn+) by utilizing the relative share matrix.
Mas-Colell’s assumptions regarding the cost function are generalisations of Nikaido (1972); the difference

lies in the fact that the space of the commodity prices and that of factors are homeomorphisms. The

linear homogeneity and concavity of the cost function allow Nikaido (1972) to claim complete invertibility,

but complete invertibility does not require that the invertible mapping be continuous. Incidentally, global

univalence does not require this continuity either.
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2.5 Blackorby et al. (1993)

Blackorby et al. (1993) also characterise the necessary and sufficient conditions for the factor price equlisation,

which is a generalisation of Kuga (1982) in that they allow the possibility of joint production and decreasing

returns to scale. Note that, as Kuga (1972) does, Blackorby et al. (1993) also argue that the factor price

equlisation must be solely dependent on commodity prices and, therefore, independent of factor endowments

in all countries.

Suppose that the international economy consists of C countries, indexed as c = 1, · · · , C. Moreover, there
are M final commodities which are traded freely in international markets and N primary factors that each

country is endowed with. Let Xc ∈ RM denote the production vector of country c, the positive elements

of which represent the outputs and the negative elements of which represent the inputs. Vc ∈ RN denotes

factor endowments of country c. Given the transformation function T c : RM+N → R, a net output and factor
endowment vector, (Xc,Vc), is feasible if and only if T c (Xc,Vc) 5 0. Furthermore, it should be noted that
T c satisfies the following assumptions:

Assumption 2.5.1: (i) Dc ≡ ©
(Xc,Vc) ∈ RM+N

¯̄
T c (Xc,Vc) 5 0} is a non-empty and closed convex

set, and (0, 0) ∈ Dc; (ii) T c is increasing in Xc ∈ RM and decreasing in Vc ∈ RN ; (iii) T c is convex in
(Xc,Vc) ∈ RM+N .

Assumption 2.5.2: T c is continuous and twice differentiable.

The transformation function is related to the production function, Gc, as follows:

T c (Xc,Vc) = 0⇐⇒ Yc = Gc (Zc,Vc) ,

where Xc ≡ (Yc,Zc). Yc and Zc denote the net output and net input, respectively. Due to Assumption

2.5.1, Gc is concave and decreasing in Zc as well as increasing in Vc. Therefore, the two expressions shown

below represent the same profit maximisation problem:

Rc (p,Vc) = max
Xc

{pXc|T c (Xc,Vc) 5 0}, (22)

Rc (p,Vc) = max
Yc,Zc

{pyYc + pzZc|Yc 5 Gc (Zc,Vc)}, (23)

where p ≡ (py,pz) is the price vector. Rc (p,Vc) satisfies the same properties that the profit function

generally does; that is, Rc (p,Vc) is a homogeneous function of degree one, non-decreasing convex, and

increasing concave in Vc.

An equilibrium factor price vectorWc ∈ RN and a corresponding equilibrium production vectorXc∗ ∈ RM
of country c = 1, · · · , C, are respectively defined as follows:

Wc

½
= ∇VRc (p,Vc) , if Rc is differentiable,

∈ ∂VR
c (p,Vc) , if Rc is not differentiable,

(24)

Xc∗
½

= ∇pRc (p,Vc) , if Rc is differentiable,

∈ ∂pR
c (p,Vc) , if Rc is not differentiable,

(25)

where ∂iR
c (p,Vc) denotes the sub-gradient set at (p,Vc), where i = p,Vc.

Here, the equalisation of factor prices is defined as follows:

Definition 2.5.1 (factor price equalisation (FPE)): Equilibrium factor prices are equalised for countries

c = 1, · · · , C if and only if there exists a non-empty, open, convex subset of commodity prices Π ⊆ RM+ , and
for each p ∈Π, there exists a profile of non-empty, open, convex subsets of factor endowments, (Γc (p))c=1,··· ,C
such that for each p ∈Π there exists a vector W ∈ RN+ such that W = ∇VRc (p,Vc) for each country

c = 1, · · · , C and for an arbitrary profile of factor endowments, (Vc)c=1,··· ,C ∈ ×
c=1,··· ,C

Γc (p).
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As a preliminary step, let us introduce the following two concepts which play important roles in this

model:

Definition 2.5.2 (Linear Segment): A vector (ψc, δc) =
¡
ψcy,ψ

c
z, δ

c
¢
is a linear segment of Gc at (Zc,Vc) if

and only if there exists an ε > 0 such that

Gc (Zc,Vc) + λψcy = G
c (Zc + λψcz,V

c + λδc) ,

for all λ ∈ (−ε, ε).

Definition 2.5.3 (Direction of linearity): A vector (ψc, δc) ∈ RM+N is a direction of linearity of T c at

(Xc,Vc) if and only if there exists an ε > 0 such that

T c (Xc + λψc,Vc + λδc) = 0,

for all λ ∈ (−ε, ε).

While changes in factor endowments generally produce changes in the production vector, a direction of

linearity means that a change in the feasible and efficient production vector, Xc, precipitated by a change

in factor endowments, δc, is linear; in other words, ∂T c (Xc + λψc,Vc + λδc) = ∂T c (Xc,Vc). Therefore, a

change in the production vector along a direction of linearity does not change the gradient vector of T c.

According to Definitions 2.5.2 and 2.5.3, it is clear that (ψc, δc) is a direction of linearity of T c if and only

if (ψc, δc) is a linear segment of Gc. In what follows, for c = 1, · · · , C, Π and Γc (p) are of full dimension,
and as such, the notation ΓcN (p) is used to emphasise this. Here, the necessary and sufficient condition for

the FPE to hold is given by the following theorem.

Theorem 5: Under Assumption 2.5.1, the FPE holds for each p ∈ Π and each (Vc)c=1,··· ,C ∈ ×
c=1,··· ,C

ΓcN (p)

if and only if the following conditions hold:

1) there exist N vectors, (ψi (p) , δi (p)), for i = 1, · · · ,N that are directions of linearity of T c at (Xc∗,Vc);

2) for i = 1, · · · ,N , the vectors δi (p) are linearly independent and the same for all countries;
3) the mappings ψi : Π→ RM for i = 1, · · · ,N are the same for all countries.

Proof : See the Appendix.

Suppose that the economy has a price vector, p, and a factor endowment of Vc ∈ ΓcN (p). Now imagine
a change in the economy’s endowment of its ith factor, δi (p). The directions of linearity, (ψi (p) , δi (p)),

at each (Xc∗,Vc) allow the gradient vector of T c to remain constant if the net output, Xc∗, changes by the
amount of ψi (p). Since the N independent vectors (δi (p) for i = 1, · · · ,N) span an N dimensional space,

any change in the economy’s factor endowment can be allocated to N directions of linearity. Therefore, it is

possible for the economy to adjust production to any local change in its factor endowment so that the gradient

vector, ∇T c (Xc∗,Vc), remains constant. Based on (24) we can see that ∂Rc/∂Vi = p (∂Xc∗/∂Vi) = Wi.

Since Theorem 5 ensures that ∂Xc∗/∂Vi = ψi (p) is the same for all countries, the FPE holds.

Theorem 5 implies that even though the equilibrium production vectors differ from country to country

(i.e. free trade is achieved), the factor prices can still be equalised. The following theorem emphasises this.

Theorem 6: Under Assumptions 2.5.1 and 2.5.2, the FPE holds for p ∈ Π and (Vc)c=1,··· ,C ∈ ×
c=1,··· ,C

ΓcN (p)

if and only if there exist ψi (p) for i = 1, · · · , N that are the same for all countries such that:

∇XVT c (Xc∗,Vc) = −∇XXT c (Xc∗,Vc)Ψ, (26)

∇VVT c (Xc∗,Vc) = ΨT∇XXT c (Xc∗,Vc)Ψ, (27)

∇XT c (Xc∗,Vc)Ψ+∇VT c (Xc∗,Vc)Ω = 0, (28)
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whereΨ ≡

⎡⎢⎣ ψ11 (p) · · · ψ1N (p)
...

. . .
...

ψM1 (p) · · · ψMN (p)

⎤⎥⎦, Ω is an identity matrix of order N defined by Ω ≡ (δ1, · · · , δN), the ele-

ments of which, δi, are the basis vectors for i = 1, · · · ,N ,∇XT c (Xc∗,Vc) ≡
h
∂T c

∂Xc
1

∂T c

∂Xc
2

· · · ∂T c

∂Xc
M

i
,∇VT c (Xc,Vc) ≡h

∂T c

∂V c
1

∂T c

∂V c
2

· · · ∂T c

∂V c
N

i
, and ∇XXT c (Xc∗,Vc) ,∇XVT c (Xc∗,Vc), and others denote the Hessian matrices

of T c.

Proof : See the Appendix.

(26) and (27) demonstrate that substitutability of the factor endowments, ∇VVT c (Xc∗,Vc), and the

interaction between endowments and commodities (∇XVT c (Xc∗,Vc)) are determined by ∇XXT c (Xc∗,Vc)

and ψi (p), i = 1, · · · , N . This implies that there is no restriction to the substitutability between commodities.
Therefore, if the price of commodities, p, changes, then the equilibrium production vector can vary from

country to country. Since ψi (p) are the same for all countries, however, the production vector’s response to

changes in factor endowments must be the same for every country.

Furthermore, this model can be also applied to the case wherein Π and Γc (p) are not of full dimension,

that is, when N dimensional space cannot be spanned while there are N primary factors. Let ΓcK (p) for

p ∈ Π denote a K dimensional subset of endowment space where K 5 N . Furthermore, we assume that

ΓcK (p) is convex.

Definition 2.5.4: The vectors δi (p) for i = 1, · · · ,K are said to locally span ΓcK (p) at V
c ∈ ΓcK (p) if they

span the K dimensional affine subset that contains ΓcK (p).

As is shown by Theorems 5 and 6, and given the above concept, factor prices equalise in theK dimensional

subspace (Blackorby et al., 1993).

Blackorby et al. (1993) is more general than Kuga (1972) and Mas-Collel (1979a, b) in that the assumption

of production technique allows for decreasing returns to scale, joint production, and the existence of inputs

other than primary factors (i.e. intermediate goods). In order to derive the condition for factor price

equalisation, it is crucial that the transformation functions, T c, are directions of linearity. Kuga (1972) is

similar to Blackorby et al.’s (1993) in that they both allow the number of final commodities to differ from

the number of primary factors and both of their conditions for factor price equalisation hold that factor

prices are solely dependent on commodity prices and independent of factor endowments. It should be noted,

however, that Kuga’s definition of factor price equalisation differs slightly from that used by Blackorby et al.;

specifically, the former is stronger than the latter. Additionally, both models rely on different mechanisms to

equalise factor prices. Kuga (1972) uses the method presented in Theorem 3 because the direct effect would

be offset by the adjustment effect, not because the gradient vector of the transformation function would

remain constant in the face of changing factor endowments. The necessary and sufficient condition derived

from Blackorby et al. (1993) is weaker than Kuga (1972) in that the class of production economies supposed

in the former is broader than that in the latter and the definition of factor price equalisation is weaker.

It is unclear how broad the class of production economies that satisfy Blackorby et al. (1993) necessary

and sufficient conditions are. However, we can check whether or not the factor prices equalise in a production

economy by using Theorem 5.

3 The HOS Model with Reproducible Capital

In the previous section, capital is a primary factor of production. As the classical economists and Marx

emphasised, however, the capitalist economic system has been based on the establishment of industrialised

societies since the 19th century. An essential feature of this system is that capital follows a circuit between

a monetary form of value and heterogeneously reproducible commodities.

The Cambridge capital controversies revealed that it would be problematic to introduce the idea of

capital as a bundle of reproducible commodities into neo-classical economic theory. These controversies
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arose in the 1960’s and 1970’s between the neo-classical economists who resided mainly in Cambridge, Mass.

(e.g. Samuelson, Solow, Modigliani, Burmeister, Meade, and Hahn) and those who resided in Cambridge,

UK (J. Robinson, Pasinetti, Garegnani, Kaldor, and Sraffa). The primary sources of the controversies were

the concept of capital, the logical validity of the neo-classical production function and principle of marginal

productivity.

The controversies brought to light several problematic issues with the HOS model, namely the questions

of whether ‘reswitching of techniques’ or ‘capital reversing’ could occur when capital is taken as a bundle of

reproducible commodities. The former is a phenomenon in which one technique could correspond to some

rate of profit and the latter is that the decreasing monotonicity between the rate of profit and the capital

intensity would not necessarily hold. These phenomena imply that the properties of the neo-classical cost

function may not hold.

As Sraffa (1960) shows, when capital consists of a bundle of reproducible commodities, the price of capital

must be determined simultaneously with the price structure and the rate of profit, and as such, the capital

endowment cannot be formulated independently of the income distribution, like V in the previous section.

When countries are allowed to choose their techniques, one technique might correspond to some rate of profit.

If the rate of profit is regarded as the factor price, then it would imply that there is a possibility that the

commodity price and the factor price are not global univalent. Therefore, it is unclear whether or not factor

price equalisation can still be characterised by the theorems described in the previous section when capital

consists of a bundle of reproducible commodities.

3.1 The Cambridge Capital Controversies

First, let us briefly review the most relevant issues highlighted by the Cambridge controversies.17

This paper will focus on ‘capital reversing’. According to the neo-classical production function, the wage-

profit curve (or factor price frontier) is convex toward the origin, there is a one-to-one correspondence between

the rate of profit and a technique, and capital intensity is monotonically decreasing with respect to the rate of

profit (i.e. the marginal productivity of capital principal is at work). In the neo-classical production function,

capital is, of course, a primary factor.

Samuelson (1962) attempts to apply the aforementioned properties of the neo-classical production function

to the case where capital consists of a bundle of reproducible commodities. He constructs a simple model

in which one kind of consumption commodity is produced by using labour and capital, which is, itself,

reproducible. This technique is characterised by fixed coefficients. Moreover, this model assumes capital

to be heterogeneous; it is indexed by capital α,β, γ · · · . Therefore, we cannot produce capital, α, by using
labour and other capital, like β, γ · · · . Furthermore, it is assumed that the capital-labour ratio used to produce
capital, α, is technologically given and is the same as the capital-labour ratio for the consumption commodity

when it is produced by using capital α. The capital-labour ratio to reproduce capital β is different from the

ratio to reproduce capital α, but it is the same as the capital-labour ratio for the consumption commodity

when it is produced by using capital β. The same assumption is imposed on the reproduction of all capital.

In this case, the wage-profit curves that correspond to the different capitals become straight. This is

because, thanks to the assumptions that the techniques are represented by fixed coefficients and both con-

sumption commodity and capital require the same capital-labour ratio, the price structure remains unaffected

by changes in the income distribution. The technological relationship concerning income distribution is de-

scribed by the envelope of all the straight wage-profit lines. The envelope is convex to the origin.

Samuelson concludes that the envelope, which he obtains from heterogeneous capital, could sufficiently

approximate the wage-profit curve that is obtained if one assumes that capital is a primary factor. The

approximation of the production function is termed the ‘surrogate production function’, and the approximated

capital is termed ‘surrogate capital’.

If Samuelson were correct, then the principle of marginal productivity of capital could be utilised even if

capital were heterogeneous. This is because there is a one-to-one correspondence between the rate of profit

and the technique. The ‘non-switching’ theorem proven by Levhari (1965) holds that one technique would

17The controversies covered a wide range issues; see Blaug (1975), Cohen and Harcourt (2003), Harcourt (1972), and Pasinetti

(2000) for further details on their scope.
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not correspond to the same rates of profit throughout the entire economic system, which seems to further

support Samuelson’s conclusion.

However, Samuelson’s conclusion relies heavily on the assumption that the capital-labour ratio of cap-

ital production is the same as that of consumption production, which is a singularly peculiar assumption.

Pasinetti (1966) is the first to produce a counter-example to Levhari (1965)’s non-switching theorem; as

a result, it is made clear that the surrogate production function had no general foundation for economic

analysis.18 Without the assumption, capital reversing can occur; in other words, capital intensity may not

be a monotonically decreasing function of the rate of profit, which contradicts the principle of marginal

productivity.

Moreover, some rates of profit may correspond to one technique, which is termed the ‘reswitching of

techniques’. Suppose that α and β are alternative techniques available in an economic system and r denotes

the rate of profit; the reswitching of techniques occurs if α is the cost minimising technique at r ∈ [0, r1],
β is the cost minimising technique at r ∈ [r1, r2] where r1 < r2, and α is the cost minimising technique at

r ∈ [r2, Rα] where Rα is the maximum rate of profit under technique α.19 This is also a phenomenon that is

inconsistent with the principle of marginal productivity. Moreover, it is made clear that the reswitching of

techniques can take place regardless of whether the techniques are decomposable or not.20

The Cambridge capital controversies provide sufficient reason to doubt the validity of theorems derived

from the HOS model, which relies on a cost function derived from the neo-classical production function.

3.2 The Model with Reproducible Capital: the case of n = 2

In the 1970s and 1980s, the HOS model was criticised by Mainwaring, Metcalfe, and Steedman exclusively on

the basis of the critiques raised by the controversies (Metcalfe and Steedman, 1972, 1973; Mainwaring, 1984;

Steedman, 1979). Although they present a number of numerical examples and criticised the FPET, they do

not rigorously argue the (in)validity of the FPET under the Leontief production model. Consequently, we

shall derive a theorem that states that the FPET is valid under the Leontief production model with n = 2.

In this case, however, the necessary and sufficient conditions for factor price equalisation will be extremely

restrictive. Therefore, we shall show that the theorem’s implications may be interpreted as the impossibility

theorem.

The basic premise of the model is that labour is only a primary factor and that all physical input is

composed of reproducible commodities. One technique is represented by the Leontief production model;

consequently, the equilibrium price of commodity j (j = 1, · · · , n) is given as follows:

pj = ljw + (1 + r)

nX
i=1

aijpi,

where lj > 0, aij = 0, w = 0, r = 0 denote the labour coefficient, physical coefficient, the wage rate, and the
rate of profit, respectively. For simplicity, we assume that capital is circulating. In general, there are some

Leontief techniques available for the production of commodity j. The criterion for the choice of techniques

is that it minimise the production cost given a certain price system. Suppose that the following is the cost

minimising technique under price system (p, w, r):

18 See the set of papers published in the ‘Paradoxes in Capital Theory’ symposium in the Quarterly Journal of Economics :

Bruno et al. (1966), Garegnani (1966), Levhari and Samuelson (1966), Morishima (1966), Pasinetti (1966), Samuelson (1966b).
19 See Pasinetti (1977, chap. 6). There were three types of reactions from neo-classical economics against the critiques levelled

by the neo-Ricardians; the first was to describe the phenomenon as a ‘paradox’, ‘perverse’, ‘exceptional’, ‘inconvenient’, or

‘anomalous’, that is, contending that the phenomenon was rarely observed in reality and therefore irrelevant (Blaug, 1975;

Samuelson, 1966b); the second was to attempt to investigate the conditions under which capital reversing or reswitching of

techniques would not take place (Burmeister and Dobell, 1970; Burmeister, 1980); the third was to assert that the neo-Ricardian

model was merely a special case of the intertemporal general equilibrium model and that it could consequently be freed from

the neo-Ricardian critiques (Hahn, 1982). See Pasinetti (2000) concerning this topic in detail.
20Burmeister (1980, pp. 114—115) asserts that the reswitching of techniques is an irrelevant phenomenon within the field of

neo-classical economics. This is because it does not necessarily accompany the paradoxical behaviour of consumption. Neo-

classical economic thought maintains that the steady state consumption level per capita is a monotonically decreasing function

of the rate of profit. This simple relation is a parable derived from a one-commodity model. According to Burmeister, any

phenomenon which is not inconsistent with the neo-classical parable does not vitiate the essence of neo-classical economics.
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³
(aij (p, w, r))i=1,...,n , lj (p, w, r)

´
for ∀j = 1, · · · , n.

Then, the following theorem is valid.

Theorem 7: In the case of n = 2 under the Leontief production model, the commodity price and the rate

of profit are global univalent if and only if there is no capital intensity reversal.

Proof : See the Appendix.

The relationship between the wage-profit curve and relative price is such that:

dp

dr
= − l1 (p, w, r) {1− (1 + r) a22 (p, w, r) + (1 + r) l2 (p, w, r) a21 (p, w, r)}

2a21 (p, w, r)

d2w1

dr2
,

which implies:

sign

µ
d2w1

dr2

¶
= −sign

µ
dp

dr

¶
.

As Mainwaring (1984) points out, the relative capital intensity determines the sign of dp
dr
, which in turn,

determines the form of the wage-profit curve as far as the two-commodity Leontief production model is

concerned. In the two-commodity Leontief production model, if the numéraire industry is more capital

intensive (labour intensive) than the other industry, then the relative price will be a decreasing (increasing)

function of the rate of profit and the wage-profit curve will be concave (convex) to the origin.

Under a convex production set, the technical change that reverses the size of
l1(p,w,r)a12(p,w,r)+l2(p,w,r)a22(p,w,r)

l2(p,w,r)

and
l1(p,w,r)a11(p,w,r)+l2(p,w,r)a21(p,w,r)

l1(p,w,r)
is not peculiar at all. Therefore, in some limited cases, factor intensity

reversal may not occur. Therefore, we may interpret Theorem 7 as a de facto impossibility theorem of factor

price equalisation.

3.3 The Neo-Ricardian Critique of the HOS Model

The previous subsection demonstrates that factor intensity could be easily reversed when capital consisted of

reproducible commodities. This leads us to wonder whether we can show that factor prices will not necessarily

equalise in the absence of factor intensity reversals if capital consists of a bundle of reproducible commodities.

In order to answer this question, we utilise a two-integrated-sector model.21 Both Sectors 1 and 2 are

composed of consumption good and capital good producing industries. Sector 1’s consumption good pro-

ducing industry is termed Industry 1 and its capital good producing industry is Industry 2; similarly, the

consumption good producing industry of Sector 2 is Industry 3, and the capital good producing industry of

Sector 2 is Industry 4.

Let us assume that Industry 1 has three available techniques:

(aα11, a
α
21, l

α
1 ) = (0.38, 0.63, 0.06) ,³

a
β
11, a

β
21, l

β
1

´
= (0.4188, 0.424, 0.265) ,

(a
γ
11, a

γ
21, l

γ
1 ) = (0.52, 0.01, 0.65) .

aιij , l
ι
j denote the amount of commodity i and labour that are required to produce a unit of commodity j

under technique ι (ι = α,β, γ). On the other hand, Industry 2 has only one available technique:

(a12, a22, l2) = (0.08, 0, 1) .

21Takamasu (1991) attempts to criticise the FPET by using a numerical example. Unfortunately, however, the capital intensity

reversal occurs in his example. Therefore, he fails to criticise the FPET. Our forthcoming numerical example is a modification

of his example.
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Figure 1 depicts the envelope of the wage-profit curves that were obtained under each technique. The

vertical axis of the figure represents the wage rate in terms of the commodity produced by Industry 1, w1.

Insert Figure 1 here.

There are four switching points; technique α is chosen if 0 5 r 5 r1 ∼= 0.18; technique β is chosen

if r1 5 r 5 r2 ∼= 0.317; technique γ is chosen if r2 5 r 5 r3 ∼= 0.503; technique β is chosen again if

r3 5 r 5 r4 ∼= 0.9003;and technique α is chosen again if r4 5 r 5 Rα
∼= 1.066, where Rα is the maximum

rate of profit in Sector 1. The reswitching of techniques occurs.

Let wι1 (r) and k1 (r) denote the wage rate measured by the consumption commodity produced in Sector

1 under technique ι and the capital intensity in terms of the consumption good, respectively. k1 (r) is defined

as follows:22

k1 (r) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

¯̄̄
dwα1 (r)

dr
|r=0

¯̄̄
, if r = 0,

wα1 (0)−wα1 (r)
r

, if 0 < r 5 r1 and r4 5 r 5 Rα,
w
β
1 (0)−wβ1 (r)

r
, if r1 5 r 5 r2 and r3 5 r 5 r4,

w
γ
1 (0)−wγ1 (r)

r
, if r2 5 r 5 r3,

(29)

The switch from γ to β at r = r3 and that from β to α at r = r4 does not adhere to the monotonically

decreasing relationship between the rate of profit and capital intensity; in other words, there is capital

reversing.

With respect to Sector 2, let us assume that Industry 3 has two technique alternatives:

¡
aδ33, a

δ
43, L

δ
3

¢
= (0.2, 0.485, 0.03) ,

(a²33, a
²
43, L

²
3) = (0.3, 0.41, 0.02) .

On the other hand, Industry 4 has only one available technique:

(a34, a44, L4) = (0.29, 0, 1.61) .

Letting w2 be the wage rate in terms of Sector 2’s consumption commodity (the product of Industry 3),

Figure 2 depicts the wage-profit curves.

Insert Figure 2 here.

In Sector 2, ε switches to δ at r = r5 ∼= 0.205 but the techniques do not reswitch and there is no capital
reversing. Using the same procedure as described in (29), we can obtain capital intensity in terms of Sector

2’s consumption commodity, which is denoted as k2 (r).

Let p1 and p2 be the price of Sector 1’s and Sector 2’s consumption commodities, respectively. In order

to compare the capital intensity of both sectors, it must first be measured in terms of the same commodity

price. Let k2 (r) be the capital intensity of Sector 2 in terms of Sector 1’s consumption commodity. Then,

k2 (r) = k2 (r) × p2
p1
is, by definition, given. Since the wage rate is uniform in both sectors, p2

p1
= w1

w2
, which

implies that k2 (r) = k2 (r)× w1
w2
.

Table 1 presents a summary of the above model.

Insert Table 1 here.

22See Garegnani (1970).
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Table 1 shows that Sector 2 is always more capital intensive than Sector 1, which means that no capital

intensity reversal occurs in this model (see Figure 3 as well). Moreover, it shows that the relative price,

p2/p1, is not a monotonic function of the rate of profit (see Figure 4). This means that the relative price and

the rate of profit are not global univalent.

Insert Figures 3 and 4 here.

In other words, the FPET does not necessarily hold if capital consists of a bundle of reproducible com-

modities. This is a problem that neo-classical economists, who treat capital merely as a primary factor,

cannot neglect.

Our numerical example featured four commodities, two of which are, so to speak, the intermediate goods,

while the other two are consumption goods that are usually traded in the international market. Here, we

argue that, with respect to the two consumption goods, there is global univalence between the relative price

and the rate of profit. In this sense, the numerical example is essentially equivalent to a two-good, two-factor

model (the factor is not primary but reproducible here). The setting of the numerical example is parallel to

the model used in the proof of Theorem 7. Notwithstanding, if capital consists of a bundle of reproducible

commodities, then the global univalence between the relative price and the rate of profit may not necessarily

be ensured.

Note that Dixit (1981, pp. 291-292) argues that the existence of non-tradable goods as circulating

capital inputs other than the two tradable, final consumption goods causes the impossibility to derive a

‘simple condition’23 ensuring the univalent relation between prices of commodities and factor prices, since

the expression for the elasticity of a wage and profit rate frontier involves indirect effects working through

induced changes in prices of non-tradable goods. In comparison to Dixit’s (1981) claim, what we have

discussed above provides a strengthening of the impossibility of the univalence relation, since the standard

condition of no capital intensity reversal is satisfied by the economy constructed in this subsection. It may

suggest a more fundamental source of the impossibility of the univalence relation, which remains to be a

future agenda.

4 The HOS Model after the Controversies

In regard to the introduction of capital as a bundle of reproducible commodities into the HOS model,

Samuelson first argues:

Now suppose there are uniform differences in factor intensity, so that for some two goods that

are simultaneously produced in both countries, say goods 1 and 2, p1 (r) /p2 (r) = p12 (r) is a

monotone, strictly increasing (or decreasing) function of r [the interest rate]. Then, the interest

rate will be equalized by positive trade in those goods alone’ (Samuelson, 1965, p. 49).

Bliss (1967) criticises Samuelson (1965), arguing that the problem is the condition for the monotonic

relationship between the relative price and the rate of profit. However, Samuelson said nothing of this.24

In light of Bliss’ (1967) and Metcalfe and Steedman’s (1972, 1973) critiques, Samuelson (1975) acknowl-

edges the possibility that the FPET might not hold globally but rather just locally when capital consists of a

bundle of reproducible commodities (i.e. the local factor equalisation theorem). However, Samuelson (1975,

p. 351) believes that Metcalfe and Steedman’s (1972, 1973) warning is non-academic and thus gives little

credence to it. Just as the neo-classicals argue about the Cambridge capital controversies, he contends that

the phenomena described by Metcalfe and Steedman are unlikely to occur in reality.

Following the neo-Ricardian critiques, Burmeister (1978) constructs the most rigorous model with repro-

ducible capital.

23Here, the simple condition seems to be the standard condition of no capital intensity reversal.
24 See Samuelson (1978) for more on this point.
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4.1 Burmeister (1978)

As Samuelson frankly admits, the FPET does not necessarily hold if capital consists of a bundle of repro-

ducible commodities. Therefore, stronger conditions must be imposed on the model in order for the FPET

to hold.

Burmeister (1978) specifies the conditions by using a P-matrix, which generalised the Stolper—Samuelson

Theorem put forward by Chipman (1969), Inada (1971), and others. Inada (1971) modifies the SSS condition

defined in Section 2.2 as follows:

SSS-I Condition: All the diagonal elements of A−1 are positive and all the non-diagonal elements are
negative.

SSS-II Condition: All the diagonal elements of A−1 are negative and all the non-diagonal elements are
positive.

Here, A has no restriction except a square and non-negative matrix, while the SSS condition in Section 2.2

is characterised by eA−1 = £αij¤.
Burmeister (1978) assumes that there are m consumption goods, n reproducible capital goods, and h

primary factors, where h 5 m. First, let us consider an economy in which there is no opportunity to choose
techniques. The rate of profit is denoted by r, the capital good price vector by p ≡ [pi] (i = 1, 2, · · ·n),
the consumption good price vector by s ≡ [si] (i = n+ 1, n+ 2, · · · , n+m), and the primary factor price
vector by w ≡ [wi] (i = 1, 2, · · · , h). Furthermore, the capital coefficient matrix is represented by A ≡⎡⎢⎣ a11 · · · a1n

...
. . .

...

an1 · · · ann

a1,n+1 · · · a1,n+m
...

. . .
...

an,n+1 · · · an,n+m

⎤⎥⎦, and the primary factor coefficient matrix is represented by e ≡
⎡⎢⎣ e11 · · · e1n

...
. . .

...

eh1 · · · ehn

e1,n+1 · · · e1,n+m
...

. . .
...

eh,n+1 · · · eh,n+m

⎤⎥⎦.
Consequently, the price equation is given as follows:

[p, s] = we+(1 + r)pA, (30)

where [p, s] = [p1, · · · , pn, sn+1, · · · , sn+m]. It is assumed that m consumption goods and at least one capital

good are freely traded internationally and that consumption good 1 is adopted as the numéraire (sn+1 = 1).

Following Sraffa’s (1960) terminology, consumption goods are the ‘non-basic’ goods under the above

assumptions, and as such, the production condition of those ‘non-basic’ goods has no effect on the rate of

profit or the prices of the ‘basic’ goods.25 This implies that, without losing generality, we can assume that

m = h. As such, matrices A and e can be compiled as follows:

A ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 · · · a1n
...

. . .
...

an1 · · · ann

a1,n+1 · · · a1,n+h
...

. . .
...

an,n+1 · · · an,n+h
e11 · · · e1n
...

. . .
...

eh1 · · · ehn

e1,n+1 · · · e1,n+h
...

. . .
...

eh,n+1 · · · eh,n+h

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

∙
A1 A2

A3 A4

¸
.

Let us assume that A is non-singular and defined as follows:

B ≡ A−1 =
∙
B1 B2
B3 B4

¸
.

25 In order to properly analyse techniques and income distributions, it is important to clearly distinguish between basic and

non-basic goods. According to Sraffa (1960), a ‘basic’ good is a commodity that is directly or indirectly required for the

production all commodities, while ’non-basic’ goods encompass all other commodities.
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B1,B2,B3,B4 denote a square matrix of order n, a (n× h) matrix, a (h× n) matrix, and a square matrix
of order h, respectively.

Letting s ≡
h
1,

sn+2
sn+1

, · · · , sn+h
sn+1

i
be the consumption good price vector when sn+1 = 1 allows us to rewrite

(30) as follows:

[p, s] = [(1 + r)p,w]A, or (31)

[p, s]A
−1
= [p, s]B = [(1 + r)p,w] . (32)

Here, s is regarded as a given vector, as it is assumed to be determined by free trade. Because of the

assumption that A is non-singular, sB3 = w holds, which implies that primary factor prices will equalise.

By transforming the first n equations of (32), we obtain:

p [B1 − (1 + r) I] = −sB3, (33)

where I is an identity matrix of order n. Because of (33), we can confirm that, given the consumption good

price vector, the capital good price vector uniquely determines the rate of profit if the price of capital goods

is a monotonic function of the rate of profit, which validates the FPET. As such, we obtain the following

theorem:

Theorem 8: If the production of m capital goods and h (5 m) consumption goods is satisfied by the SSS-II
(the SSS-I) condition, then dp

dr
< (>) 0.

Proof : See the Appendix.

Theorem 8 implies that, given A and the consumption good price vector, the capital good price vector is

a monotonic function of the rate of profit if the SSS-I or SSS-II condition is satisfied. Under this condition,

the prices of not only primary factors but also of capital goods are equalised.

Next, let us consider an economy in which there is a choice of techniques, as in the neo-classical production

function. The relationship between factor rent, qi, and capital good prices, pi, can be obtained in equilibrium:

pi =
qi
1+r

. Differentiating (31) with respect to r yields:∙
dp

dr
,
ds

dr

¸
=

∙
dq

dr
,
dw

dr

¸
A+ [q,w]

dA

dr
,

where q ≡ [qi] (i = 1, 2, · · · , n). Since we assume the neo-classical production function, [q,w] dAdr = 0 holds;
therefore, we obtain: ∙

dp

dr
,
ds

dr

¸
B =

∙
dq

dr
,
dw

dr

¸
. (34)

We assume that B = A
−1
is ensured for all the possible technique choices. In other words, we assume that

while the price structure changes as the optimally chosen techniques change (and thus the elements of A

change as well), the change in techniques is limited only in cases where A is non-singular.

As before, we can confirm that, given the consumption good price vector, the capital good price vector

uniquely determines the rate of profit if the price of capital goods is a monotonic function of the rate of

profit. If we can confirm this, then we can say that the prices of capital goods equalise even when there is a

choice of techniques. Consequently, we obtain the following theorem:

Theorem 9: If all countries produce n capital goods and h (5 m) consumption goods subject to the neo-
classical production function (4), and if the SSS-II (or SSS-I) condition is satisfied at every feasible factor

price (q1, · · · , qn, w1, · · · , wh) where qi = (1 + r) pi, then dp
dr
< (>)0.

Proof : See the Appendix.
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Theorem 9 implies that, given the consumption good price vector, the capital good price vector is a

monotonic function of the rate of profit if capital goods are produced on the basis of the neo-classical

production function and the SSS-I or SSS-II condition is satisfied. This means that there is a one-one

correspondence between the capital good prices and capital rental rates, and thus, capital good rental rates

are internationally equalised under the equilibrium price system. On the other hand, due to the implicit

assumption that B3 always exists, there is a one-to-one correspondence between the primary factor price

vector and the consumption good price vector, and as such, factor prices equalise.

On first inspection, the economic meaning of the SSS-I and SSS-II conditions seems unclear. The SSS-I

condition implies that A−1 is a Minkowski matrix, and the SSS-II condition implies that A−1 is a Metzler
matrix. As Uekawa et al. (1972) point out, the SSS-I and the SSS-II conditions are equivalent to the SSS-I0

and the SSS-II
00
conditions, respectively.

SSS-I0 Condition: The inverse of the non-negative matrix A ≡ [aij ] is a Minkowski matrix if and only if, for
any non-empty proper subset J of N = {1, 2, · · · , n} and any given xi > 0, i ∈ JC , there exists xi > 0, i ∈ J ,
such that

X
i∈J

aijxi >
X
i∈JC

aijxi for j ∈ J ,X
i∈J

aijxi <
X
i∈JC

aijxi for j ∈ JC .

SSS-II0 Condition: The inverse of the non-negative matrix A ≡ [aij ] is a Metzler matrix if and only if, for
J ⊂ N and any given wj > 0, j ∈ JC , there exists wj > 0, j ∈ J , such that

X
j∈J

wjaij <
X
j∈JC

wjaij for i ∈ J ,X
j∈J

wjaij >
X
j∈JC

wjaij for i ∈ JC .

According to Uekawa et al. (1972), the SSS-I0 and SSS-II0 conditions bear the following economic impli-
cations:

SSS-I0 Condition: Suppose that commodities are randomly grouped into two composite commodities, J
and JC , and let xi be the output of the ith commodity. Then, for any non-trivial J and any set of outputs

xi > 0, i ∈ JC , there exists xi > 0, i ∈ J , such that more of the jth factor (j ∈ J) and less of the jth factor
(j ∈ JC) is used to produce the composite commodity J than to produce JC .
SSS-II0 Condition: Suppose that the primary factors are randomly grouped into two composite factors,
J and JC , and let wj be the price of factor j. Then, for any non-trivial J and any set of factor prices,

wj > 0, j ∈ JC , there exists wj > 0, j ∈ J , such that the composite factor J contributes less to the cost of
production of the jth commodity (j ∈ J) and more to the cost of production of the jth commodity, j ∈ JC .

Therefore, the SSS-I and SSS-II conditions characterise the factor intensity. Clearly, these conditions are

extremely strong.

Unlike the traditional HOS model, Theorem 9 treats capital as a bundle of reproducible commodities.

This begs the question as to how Burmeister’s model is related to the outcome of the Cambridge capital

controversies, which we can evaluate by simplifying the model.

The simplest case of the model features one consumption good, one capital good, and one primary factor

(i.e. labour).26 In this case, (31) is rewritten as follows:

26 In fact, the modern dynamic HOS model features the same structure. See, for example, Chen (1992), Nishimura and

Shimomura (2002, 2006), and Bond et al. (2011, 2012).
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[p, s] = [(1 + r) p,w]A, (35)

A ≡
∙
a11 a12
l1 l2

¸
.

Despite the fact that capital goods are reproducible, (35) is a de facto one-good model with respect to

the determination of factor prices because the consumption goods are non-basic goods. Since dp
dr
> 0 holds

because of (35), the model maintains a one-to-one correspondence between the rate of profit (or factor rental)

and the price of capital goods, given the price of consumption goods.27 This implies that the factor prices

equalise. However, it is obvious that the simplified model simply avoids the difficulties pointed out by the

Cambridge capital controversies because it is a de facto one-good model.

In other words, Burmeister’s (1978) model is structured so as to circumvent the issues pointed out in

the Cambridge capital controversies as it assumed away several economic environments. For instance, unlike

in the Leontief production model, there are never reproducible goods, like corn, which can be used as both

capital and consumption goods.

The simplest example in which there exist commodities that can be used as both capital and consumption

goods is a two-good economy in which both commodities are basic goods. In this case, we obtain:

A ≡
∙
a11 a12
a21 a22

¸
> 0; L ≡ (l1, l2) > 0.

By applying Burmeister (1978) to this case, we find that A is given as follows:

A ≡
⎡⎣ a11 a12 0

a21 a22 0

l1 l2 0

⎤⎦ .
Here, detA = 0, which means that A is singular. Therefore, we cannot obtain the property that is ensured

by Theorems 8 and 9.

5 Concluding Remarks

In this paper, we surveyed the HOS model in order to determine how it was modified in reaction to the

neo-classical economists’ critiques in the Cambridge capital controversies.

Burmeister (1978) makes one of the most significant contributions to the HOS model in light of the

controversies. He derives the conditions for factor price equalisation under the assumption that there exist

reproducible capital goods. The modern dynamic HOS models that feature reproducible capital goods, such

as Chen (1992), Nishimura and Shimomura (2002, 2006), and Bond et al. (2011, 2012), have essentially the

same structure as Burmeister (1978). As previously mentioned, these models use assumptions to avoid the

phenomena which the controversies highlighted, and thus, they exclude many economic environments that

could arise in reality.

If there is no room to consider capital as a bundle of reproducible commodities rather than a primary

factor, then the validity of the HOS model should be carefully reconsidered. First, if capital is treated as a

bundle of reproducible commodities, then capital intensity reversal may easily arise. Second, even if there is

no reversal of capital intensity, the global univalence between the rate of profit and the relative price may not

hold. In other words, even in a two-good model, the FPET may not necessarily hold if capital is treated as a

bundle of reproducible commodities. All of these arguments suggest that it is necessary to construct a basic

theory of international trade that does not rely on factor price equalisation and treats capital as a bundle of

reproducible inputs.

27 In this case, not only the price of capital goods but also that of consumption goods has a one-to-one correspondence with

the rate of profit. Due to p = wl1
1−(1+r)a11 , we obtain:

ds

dr
=
wl1a12 [1− (1 + r)a11] + (1 + r)wl1a12a11

[1− (1 + r)a11]2
> 0.
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7 The Appendix

In the Appendix, we show the rigorous proofs of the theorems and a numerical example.

7.1 The Proof of the FPET in the two-good and two-country model

Proof : In order to prove the global univalence of the cost function, c, it is sufficient to show that, for price

equation p = wA (w), the relative price, p01 (w) ≡ p1
p2
, and w are global univalent. In other words, when

the factor prices change in such a way that w → w+ M w ≡ (w1+ M w,w2− M w) for M w > 0, it must be
confirmed that p01 (w) and w are global univalent if p01 (w) → p01 (w+ M w) is monotonic. It is necessary to
show that

∂p01(w)
∂w1

M w− ∂p01(w)
∂w2

M w > 0 or ∂p01(w)
∂w1

M w− ∂p01(w)
∂w2

M w < 0 always holds for ∀p01 (w). Thanks to

∂p01 (w)
∂w1

=
a11 (w) p2 − p1a12 (w)

(p2)
2

=
w2 (a11 (w) a22 (w)− a12 (w) a21 (w))

(p2)
2

and

∂p01 (w)
∂w2

=
a21 (w) p2 − p1a22 (w)

(p2)
2

=
w1 (a12 (w) a21 (w)− a11 (w) a22 (w))

(p2)
2

,

we obtain:

∀w ≥ 0, ∂p
0
1 (w)

∂w1
M w − ∂p01 (w)

∂w2
M w > 0⇔ ∀w ≥ 0, a11 (w) a22 (w)− a12 (w) a21 (w) > 0 and

∀w ≥ 0, ∂p
0
1 (w)

∂w1
M w − ∂p01 (w)

∂w2
M w < 0⇔ ∀w ≥ 0, a11 (w) a22 (w)− a12 (w) a21 (w) < 0.

From (7), we obtain:

∀w ≥ 0, ∂p
0
1 (w)

∂w1
M w − ∂p01 (w)

∂w2
M w > 0; or ∀w ≥ 0, ∂p

0
1 (w)

∂w1
M w − ∂p01 (w)

∂w2
M w < 0.

This implies that p01 (w) is monotonic in relation to the change in factor prices w→ (w1+ M w,w2− M w).
In other words, p01 (w) and w are global univalent. This means that the FPET holds under condition (7).

7.2 The Proof of Theorem 2

First, we shall prove the following lemma.

Lemma 1: Let f : Rn → Rn be a continuous and partially differentiable mapping, where fij ≡ ∂fj
∂xi
. Suppose

that there are 2n positive numbers mk,Mk, for k = 1, 2 · · · , n, such that the absolute values of the successive
principal minors satisfy:

mk 5

¯̄̄̄
¯̄̄det

⎡⎢⎣f11 · · · f1k
...

. . .
...

fk1 · · · fkk

⎤⎥⎦
¯̄̄̄
¯̄̄ 5Mk, for k = 1, 2, · · · , n,

in the whole of Rn. Then, the system of equations, f (x) = a, has a unique solution in Rn for any given
vector, a > 0.

Proof : See Nikaido (1972).

In order to prove Theorem 2, it is useful to transform the variables in the cost function as follows:

ω ≡ lnw = [lnwi] and π ≡ lnp = [ln pi]. Therefore, π = ln c (eω) ≡ ϕ (ω). Function ϕ is continuous and

differentiable in Rn. Therefore, ∂ ln pj
∂ lnwi

= wi
cj

∂cj
∂wi

= wi
cj
× cij (w) = cij(w)wi

pj
= αij holds. In other words,
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∂ ln pj
∂ lnwi

is the share of factor i’s growth rate relative to the growth rate of the production cost of commodity

j. Therefore, matrix eA is the Jacobian matrix of π = ϕ (ω). As such, we can prove Theorem 2.

Proof : The system of equations f (x) = a in Lemma 1 corresponds to ϕ (ω) = π. Because of fij = αij = 0,
δk in (10) can serve as mk in the Lemma. As previously mentioned, eA is a stochastic matrix, which implies

that αij ∈ [0, 1] and that
nP
i=1

αij = 1. Since the determinant is a polynomial of its elements, it is clear that

the principal minors are bounded from above, which justifies the existence of Mk. Therefore, the system of

equations ϕ (ω) = π satisfies Lemma 1. This immediately shows that ϕ (ω) = π has a unique solution for any

given vector, π > 0. Therefore, c (w) = p has a unique solution for any given vector, p > 0.

7.3 The Proof of Theorem 4

Proof : Here, Function π (ω) = ln c (eω) from Theorem 2 is used. From Assumption 2.4.2, we know that

π : Rn → Rn and Jπ (ω) = eA = [αij ], where Jπ (ω) is the Jacobian matrix of π (ω). Since, as previously

mentioned, eA is a stochastic matrix (which implies αij ∈ [0, 1]), the absolute values of all elements of Jπ (ω)
are uniformly bounded. Furthermore, we assume

¯̄̄
det eA¯̄̄ > ε > 0. Let F : Rn → Rn be a continuous and

differentiable function. The sufficient condition for
°°°(JF (x))−1°°° 5 k is that i) |JF (x)| = ε > 0, and ii) the

absolute values of all elements of JF (x) must be uniformly bounded, where kk is a norm defined in Rn as

kTk ≡ maxkxk=1 kTxk. Moreover, if detJF (x) 6= 0 and
°°°(JF (x))−1°°° 5 k for some k > 0, then F will be

a homeomorphism (Berger, 1977, p. 222). Therefore, π : Rn → Rn is a homeomorphism, which means that
c : Rn++ → Rn++ is also a homeomorphism.

7.4 The Proof of Theorem 5

First, we shall present some lemmas necessary for the proof.

Lemma 2: Let F : D ⊂ Rk → R be a concave function and β ∈ ∂F (X0) and β ∈ ∂F (X1). Then,

for ∀μ ∈ [0, 1], β ∈ ∂F (Xμ) where Xμ = μX0 + (1− μ)X1. Furthermore, for ∀μ ∈ [0, 1], F (Xμ) =

F (X0) + β (Xμ −X0) so that {β (Xμ −X0) , (Xμ −X0)} is a linear segment at X0.

Proof : Since β is the sub-gradient of F at X0 and X1, the following inequalities hold for all X ∈D:

F (X) 5 F (X0) + β (X−X0) , F (X) 5 F (X1) + β (Xμ −X1) .

Multiplying the inequalities by μ and 1− μ, respectively, yields:

F (X) 5 μF (X0) + (1− μ)F (X1) + β (X−Xμ) , (36)

for ∀μ ∈ [0, 1]. On the other hand, the concavity of F ensures that

F (Xμ) = μF (X0) + (1− μ)F (X1) . (37)

From (36) and (37), we know that F (X) 5 F (Xμ) + β (X−Xμ), which implies that β ∈ ∂F (Xμ). Conse-

quently, we obtain:

F (X0) 5 F (Xμ) + β (X0−Xμ) and F (Xμ) 5 F (X0) + β (Xμ−X0) ,

from which F (Xμ) = F (X0) + β (Xμ−X0). Therefore, {β (Xμ −X0) , (Xμ −X0)} is a linear segment at
X0.

Lemma 3: Factor prices equalise for p ∈Π,Vc ∈ Γc (p) if and only if
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Rc (p,Vc) = Rc0 (p) +

NX
i=1

Ri (p)V
c
i , (38)

where Vc ≡ [V ci ] for c = 1, · · · , C. In this case, Rc is differentiable so that

W = ∇VRc (p,Vc) = [R1 (p) , · · · , RN (p)] . (39)

for all countries.

Proof : Necessity. If the profit function takes the form presented in (38), then it is differentiable and (39)

holds, which is consistent with (24).

Sufficiency. From Definition 2.5.1, (ΓcN (p))c=1,··· ,C is defined for p ∈ Π where Π ⊆ RM+ is a non-empty

and open convex set. Moreover,W ∈ RN+ exists andW = ∇Rc (p,Vc) , for ∀c = 1, · · · , C, for an arbitrary
profile (Vc (p))c=1,··· ,C ∈ ×

c=1,··· ,C
ΓcN (p). For c = 1, · · · , C, i = 1, · · · , N, and Vc (p,Vc) ∈ ΓcN (p),

Wi = lim
δci→0

Rc (p,Vc + (δci ,0−i))−Rc (p,Vc)

(V ci + δci )− V ci
holds, where 0−i stands for the vector of order N − 1 excluding the ith element. Since, from Definition

2.5.1, the assumption for Lemma 2 is satisfied byW as shown above, the following is satisfied for arbitrary

Vc,V
c ∈ ΓcN (p):

Rc (p,Vc) = Rc
³
p,V

c
´
+W

³
Vc −Vc

´
.

SinceW is independent of Vc, Ri : Π→ R+ exists for i = 1, · · · ,N . Since Wi = Ri (p), we obtain:

Rc (p,Vc) = Rc
³
p,V

c
´
+

NX
i=1

Ri (p)
³
V ci − V

c

i

´
, for ∀c = 1, · · ·C.

By treating V
c
as the vector fixed in ΓcN (p), we obtain: R

c
0 (p) ≡ Rc

³
p,V

c
´
−

NP
i=1

Ri (p)V
c

i .

Lemma 4: Suppose that F : D ⊆ Rk → R is concave and
¡
βδ1, δ1

¢
and

¡
βδ2, δ2

¢
at X are linear segments

where β ∈ ∂F (X) in X ∈ D. Then, (βδ, δ) is also a linear segment at X for δ = μδ1 + (1− μ) δ2 for all

μ ∈ [0, 1].

Proof : Let us define X1 = X+λ1δ
1 and X2 = X+λ2δ

2 where λ1 ∈ (−ε1, ε1) and λ2 ∈ (−ε2, ε2). Then,
β ∈ ∂F (X1) and β ∈ ∂F (X2) hold based on Definition 2.5.2. Since Lemma 2 can be applied, we find that

β ∈ ∂F (Xμ) holds, where Xμ is the convex combination of X1 and X2. Thanks to Lemma 2 F (Xμ) =

F (X) + β (Xμ−X0) holds, which means that (βδ, δ) is a linear segment of F in X.

Lemma 5: Let Rc be the profit function defined by (23). A linear segment of Rc in Vc at (p,Vc
0) is

equivalent to a linear segment of Gc in (Zc,Vc) at (Zc0,V
c
0), where Z

c
0 is the profit maximiser in (23) given

(p,Vc
0) for some p ∈ Π.

Proof : If Rc has a linear segment (Wδ, δ) at (p,Vc
0), thenW = ∇VRc (p,Vc

0 + λδ) for all λ ∈ (−ε, ε) for
some ε > 0. Letting p =(py,pz),

∇VRc (p,Vc
0) =

NX
i=1

p
y
i

∂Gc (Zc0,V
c
0)

∂Vi
= py∇VGc (Zc0,Vc

0) .

From the two equations shown above, we obtain:
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W = ∇VRc (p,Vc
0 + λδ) =

NX
i=1

p
y
i

∂Gc (Zc (λ) ,Vc
0 + λδ)

∂Vi
,

= py∇VGc (Zc (λ) ,Vc
0 + λδ) ,

where Zc (λ) is the profit maximiser at (p,V0 + λδ). Let (Zc1,V
c
1) ≡ (Zc (λ) ,V0 + λδ) for all λ ∈ (−ε, ε).

Since

py∇Gc (Zc,Vc) =

Ãµ
p
y
j

∂Gc (Zc,Vc)

∂Zj

¶
j=1,··· ,M

,

µ
p
y
i

∂Gc (Zc,Vc)

∂Vj

¶
i=1,··· ,N

!
and

∂Rc

∂Zj
= p

y
j

∂Gc (Zc,Vc)

∂Zj
+ pzj = 0 (∀j = 1, · · ·M) ,

as such, we obtain:

py∇ZGc (Zc,Vc) =

µ
p
y
j

∂Gc (Zc,Vc)

∂Zj

¶
j=1,··· ,M

= −pz.

Therefore, py∇Gc (Zc,Vc
0) = (−pz,W) holds. Similarly, py∇Gc (Zc (λ) ,Vc

0 + λδ) = (−pz,W) also holds.

Consequently, we obtain:

(−pz,W) = py∇Gc (Zc0,Vc
0) = p

y∇Gc (Zc1,Vc
1) .

From Lemma 2, therefore, we obtain: (−pz,W) = py∇Gc ¡Zcμ,Vc
μ

¢
, where Zcμ = μZc0 + (1− μ)Zc1,V

c
μ =

μVc
0+(1− μ)Vc

1 for ∀μ ∈ [0, 1]. Here, letting β = (−pz/py,W/p
y
) and δ = (Zc1,V

c
1)− (Zc0,Vc

0),we see that

(βδ, δ) is a linear segment of Gc at (Zc0,V
c
0).

In order to prove the converse, suppose that (ψy,ψz, δ) is a linear segment of Gc at (Zc0,V
c
0). As such,

the following holds:

Gc (Zc0,V
c
0) + λψy = Gc (Zc0 + λψy,Vc

0 + λδ) .

Therefore, the following relationships must hold for all λ ∈ (−ε, ε) for some ε > 0:

py∇ZGc (Zc0 + λψx,Vc
0 + λδ) = py∇ZGc (Zc0,Vc

0) = −pz,
and

py∇VGc (Zc0 + λψx,Vc
0 + λδ) = py∇VGc (Zc0,Vc

0) =W.

Because of ∇VRc (p,Vc
0) = py∇VGc (Zc0,Vc

0), W=∇VRc (p,V
c
0). Similarly, ∇VRc (p,Vc

0 + λδ) =

py∇VGc (Zc0 + λψc,Vc
0 + λδ) holds for ψz, thus satisfying pyψy =Wδ−pzψz. Therefore,W =∇VR

c (p,Vc
0 + λδ)

holds for all ∀λ ∈ (−ε, ε). This means that (Wδ, δ) is a linear segment of Rc in V at (p,Vc
0).

Now, let us proceed to the proof of Theorem 5.

Proof : Necessity. Assume that the factor prices are equalised. As described in Lemma 3, the profit

function, Rc, has N linear segments at any point (p,Vc) ∈ Π× ΓcN (p). Let us denote these linear segments
as (Ri (p) , δi), where δi for i = 1, · · · , N can be chosen as the standard basis vector for RN . Furthermore, let
Zc∗ be the equilibrium production vector given (p,Vc

0). From Lemma 5, we see that if (Ri (p) , δi) is a linear

segment for Rc at (p,Vc) there exists a vector, (ψci , δi), that is a linear segment of G
c at (Zc∗,Vc). Therefore,

at any point (p,Vc) ∈ Π× ΓcN (p), there exist N linear segments (ψci (p,V
c) , δi) for G

c at (Zc∗,Vc
0). Since

(ψi, δi) are linear segments of G
c, they are directions of linearity of T c.
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Since δi for i = 1, · · · , N are the standard basis vectors, the following holds for λ ∈ (−ε, ε) from Lemma

3:

Rc (p,Vc + λ (δi,0−i)) = Rc (p) + λRi (p) .

Moreover, from the definitions of the profit function and linear segments, we can see that:

p {Xc∗ + λψci (p,V
c)} = Rc (p) + λRi (p) .

Since pXc∗ = Rc (p) if λ = 0, we obtain:

pψci (p,V
c) = Ri (p) . (40)

(40) must be satisfied for ∀p ∈ Π. This implies that ψci (p,Vc) is independent of Vc ∈ ΓcN (p) and is the
same for all countries.

Sufficiency. We assume that production function Gc is N linear segments (ψi (p) , δi) for i = 1, · · · , N ,
where δi are standard basis vectors. From Lemma 5, R

c hasN linear segments inV given p. For i = 1, · · · , N ,
therefore, Rc (p,Vc + λ (δi,0−i)) = Rc (p)+λRi (p) holds for ∀λ ∈ (−ε, ε) for some ε > 0. Based on Lemma
4, it is clear that

¡
1
N
R (p) , δ

N

¢
is a linear segment of Rc in V at (p,Vc). In other words, the following holds

for ∀λ ∈ (−ε/N, ε/N) for some ε/N > 0:

Rc (p,Vc + λδ) = Rc (p,Vc) + λ

NX
i=1

Ri (p) δi.

By applying Lemma 2 and using the same logic as that used in the proof of Lemma 3, we obtain what follows:

Rc (p,Vc) = Rc0 (p) +

NX
i=1

Rci (p)V
c
i .

Here, ψi:Π→ R, for i = 1, · · · , N , are common to all countries and, as shown in (40), pψi (p) = Rci (p) , c =
1, · · · , C, holds for i = 1, · · · , N . In other words, we obtain:

Rc (p,Vc) = Rc0 (p) +

NX
i=1

Ri (p)V
c
i , for ∀c = 1, · · · , C.

From Lemma (3), we can see that the factor prices are equalised for arbitrary
³
p, (Vc)c=1,··· ,C

´
∈ Π ×µ

×
c=1,··· ,C

ΓcN

¶
.

7.5 The Proof of Theorem 6

Proof : Necessity. We assume that factor prices are equalised. Theorem 5 shows that there exist N vectors,

(ψi (p) , δi (p)), for i = 1, · · · ,N , that are directions of linearity for T c. In other words, there exists ε > 0

such that for λ ∈ (−ε, ε):

T c (Xc∗ + λψi (p) ,V
c + λδi) = 0,

differentiating which with respect to λ yields:

∇XT c (Xc∗,Vc)Ψ+∇VT c (Xc∗,Vc)Ω = 0.

This is simply a repetition of (28). From the above, we obtain:

∇XXT c (Xc∗,Vc)Ψ+∇XVT c (Xc∗,Vc)Ω= 0,

∇XVT c (Xc∗,Vc)Ψ+∇VVT c (Xc∗,Vc)Ω= 0.
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The former is (26) and pre-multiplying it by ΨT , yields:

ΨT∇XXT c (Xc∗,Vc)Ψ+ΨT∇XVT c (Xc∗,Vc)Ω = 0. (41)

Pre-multiplying the latter by ΩT yields:

ΩT∇XVT c (Xc∗,Vc)Ψ+ΩT∇VVT c (Xc∗,Vc)Ω = 0,

transposing this yields:

ΨT∇XVT c (Xc∗,Vc)Ω+ΩT∇VVT c (Xc∗,Vc)Ω = 0. (42)

Since Ω is an identity matrix, ∇VVT c (Xc∗,Vc) = ΨT∇XXT c (Xc∗,Vc)Ψ is obtained from (41) and (42).

Sufficiency. (26) and (27) imply the following relationships:

£∇XXT c (Xc∗,Vc) ∇XVT c (Xc∗,Vc)
¤ ∙ψi (p)

δi (p)

¸
= 0,

£∇XVT c (Xc∗,Vc) ∇VVT c (Xc∗,Vc)
¤ ∙ψi (p)

δi (p)

¸
= 0.

These equations imply that the Hessian matrix of T c has N eigenvectors that satisfy (28) and that are asso-

ciated with zero eigenvalues. The eigenvectors are given by (ψi (p) , δi (p)), i = 1, · · · , N . These eigenvectors
are directions of linearity of T c. Therefore, Theorem 5 implies that the FPET holds.

7.6 The Proof of Theorem 7

Proof : The wage-profit curve in the case of n = 2 is given as:

w1 (r) =
{1− (1 + r) a11 (p, w, r)} {1− (1 + r) a22 (p, w, r)}− (1 + r)2 a12 (p, w, r) a21 (p, w, r)

l1 {1− (1 + r) a22 (p, w, r)}+ (1 + r) l2 (p, w, r) a21 (p, w, r) ,

where w1 (r) ≡ w(r)

p1
. The relative price of commodity 2 is given by:

p (r) =
l2 (p, w, r) {1− (1 + r) a11 (p, w, r)}+ (1 + r) l1 (p, w, r) a12 (p, w, r)
l1 (p, w, r) {1− (1 + r) a22 (p, w, r)}+ (1 + r) l2 (p, w, r) a21 (p, w, r) .

Therefore, we obtain:

dp (r)

dr
=
l1 (l1a12 + l2a22)− l2 (l1a11 + l2a21)
l1 {1− (1 + r) a22}+ (1 + r) l2a21 .

If the techniques are productive, then the denominator is positive for all feasible rates of profit. Therefore, the

sign of dp
dr
is solely dependent on the numerator. The relative price and the rate of profit have the following

relationship if the techniques are productive:

dp

dr
S 0⇔ a12 (p, w, r) + pa22 (p, w, r)

l2 (p, w, r)
S a11 (p, w, r) + pa21 (p, w, r)

l1 (p, w, r)
.

Here,
a11(p,w,r)+pa21(p,w,r)

l1(p,w,r)
is the capital intensity of industry 1 and

a12(p,w,r)+pa22(p,w,r)

l2(p,w,r)
is that of industry

2. In other words, whether the relative price is monotonically increasing or decreasing with respect to the

rate of profit is dependent on the relative size of the capital intensities. The relative price is a monotonically

decreasing function with respect to the rate of profit if and only if industry 1 is more capital intensive than

industry 2. Conversely, it is monotonically increasing if and only if industry 2 is more capital intensive than
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industry 1.28 In other words, the relative price and the rate of profit have no monotonic relationship (i.e.

global univalent) if and only if capital intensity reversal takes place at the threshold of the relative price.

7.7 The Proof of Theorem 8

Proof : Proving the theorem for the SSS-II condition will be sufficient. Since we assume that −sB3 < 0

holds and matrix [B1 − (1 + r) I] has all positive diagonal elements and all negative off-diagonal elements,
the solution for (33) is p > 0 for r ∈ [0, r∗) where r∗ is the maximum rate of profit as determined by the

Frobenius root of B1 (Takayama, 1985, p. 393). This implies that [B1 − (1 + r) I]−1 < 0. Differentiating

(33) with respect to r, yields dp
dr
[B1 − (1 + r) I]− p = 0. In other words, we obtain:

dp

dr
= p [B1 − (1 + r) I]−1 < 0.

We can prove the theorem for the SSS-I condition in a similar manner.

7.8 The Proof of Theorem 9

Proof : Proving the theorem for the SSS-II condition will be sufficient. The first n equations of (34) are

given as dq
dr
= p+ (1 + r) dp

dr
, which implies that:

dp

dr
B1 +

ds

dr
B3 = p+ (1 + r)

dp

dr
.

Since consumption prices are exogenously given, ds
dr
= 0. Consequently, we obtain:

dp

dr
[B1 − (1 + r) I] = p.

If the SSS-II condition is satisfied, then [B1 − (1 + r) I]−1 < 0. Therefore, we obtain:
dp

dr
= p [B1 − (1 + r) I]−1 < 0.

We can prove the theorem for the SSS-I condition in a similar manner.

28Whether the relative price is monotonically increasing or decreasing can be determined by the technical coefficients, inde-

pendently of the price:

dp

dr
S 0⇐⇒ l1 (p, w, r) a12 (p, w, r) + l2 (p, w, r)a22 (p, w, r)

l2 (p, w, r)
S l1 (p, w, r)a11 (p, w, r) + l2 (p, w, r)a21 (p, w, r)

l1 (p, w, r)
.
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Figure 1: The wage-profit curve of sector 1

Figure 2: The wage-profit curve of sector 2

r w1 w2
p2
p1

k1 k2

0 0.826 0.854 0.966 1.451 1.565

0.1 0.692 0.705 0.981 1.336 1.36

0.2 0.58 0.577 1.004 1.073 1.392

0.3 0.488 0.481 1.015 1.021 1.125

0.4 0.407 0.396 1.0295 0.797 1.075

0.5 0.328 0.319 1.0277 0.796 1.015

0.6 0.258 0.250 1.030 0.894 0.967

0.7 0.193 0.187 1.0320 0.859 0.924

0.8 0.133 0.128 1.0323 0.827 0.884

0.9 0.076 0.074 1.031 0.798 0.846

1.0 0.029 0.023 1.238 0.796 0.978

1.04 0.011 0.004 2.723 0.783 2.118

Table 1: The real wage rate, relative price, and capital intensity
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Figure 3: The capital intensity (real line shows for sector 2 and dashed line for sector 1)

Figure 4: The relative price
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