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Abstract

We develop tests for structural breaks of factor loadings in dynamic factor models. We focus on
the joint null hypothesis that all factor loadings are constant over time. Because the number
of factor loading parameters goes to infinity as the sample size grows, conventional tests cannot
be used. Based on the fact that the presence of a structural change in factor loadings yields a
structural change in second moments of factors obtained from the full sample principal compo-
nent estimation, we reduce the infinite-dimensional problem into a finite-dimensional one and
our statistic compares the pre- and post-break subsample second moments of estimated factors.
Our test is consistent under the alternative hypothesis in which a fraction of or all factor loadings
have structural changes. The Monte Carlo results show that our test has good finite-sample size
and power.
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1 Introduction

Dynamic factor models have become popular in the recent macroeconometrics literature because a
few factors can often explain a substantial amount of variations of many macroeconomic time series
(Sargent and Sims, 1977). For example, they have been successfully used in forecasting (Stock and
Watson, 2002a), factor augmented vector autoregressive (FAVAR) models (Bernanke, Boivin and
Eliasz, 2005; Stock and Watson, 2005) and DSGE models (Boivin and Giannoni, 2006). While
most of these applications implicitly assume that the factor loadings in dynamic factor models are
time-invariant, there is strong evidence of structural instability in macroeconomic time series (Stock
and Watson, 1996). If the common factors are driven by some structural shocks, it is possible that
macroeconomic variables react to these structural shocks differently during different sample periods,
resulting in time-varying factor loadings. For example, Eickmeier, Lemke and Marcellino (2011)
consider time-varying FAVAR models to take into account changes in the monetary transmission
mechanism. If parameter instability is ignored, the dynamic factor models may perform poorly or
give misleading results. For example, Banerjee and Marcellino (2008) provide simulation evidence
that the performance of forecasts based on dynamic factor models will be significantly worse off if
the structural breaks in factor loadings are not taken into account.

While the estimated factors still consistently span the original factor space if the size of break
is small enough (Stock and Watson, 2002b; Bates et al., 2012), such results do not hold when the
size of breaks is large. Large break can augment the factor space, but simply introducing more
factors cannot solve all the problems for two reasons. First, when structural break leads to an
augmented factor space, the factor dynamics is changed as well. Stock and Watson (2009) argue
that one should take into account such change in the forecasting regression if estimated factors are
used as predictors. Second, the augmented factor space does not contain more information than the
original factor space, so introducing more factors can reduce the efficiency and worsen the forecast
performance. Hence, it is essential to know the existence of structural breaks in factor loadings and
break dates for forecasting based on dynamic factor models.

In this paper, we consider testing the joint null hypothesis that factor loadings are constant



over time against the alternative that a non-negligible fraction of or all factor loadings are not. We
are interested in the joint null hypothesis rather than the null hypothesis that a specific individual
factor loading is constant over time because it is the joint null hypothesis under which one can
estimate the factors consistently. Conventional tests of structural change, such as Andrews (1993),
are designed to deal with finitely many parameters and cannot be used to test our null hypothesis
that involves parameters whose number goes to infinity as the sample size grows. Directly extending
the conventional test to our setup is challenging for two reasons. First, one needs to estimate an
infinite dimensional covariance matrix and its inverse. This brings several technical difficulties: (1)
the norm of the difference between the estimated and true covariance matrices can be very large
even if each entry of the estimated matrix converges in probability; (2) taking the inverse of a high
dimensional matrix will amplify the estimation error dramatically and lead to very poor results
(Ledoit and Wolf, 2004); and (3) the number of time periods, 7', can be even smaller than the
dimension of the estimated covariance matrix, so the sample covariance matrix can be singular.
Second, because the degree of freedom also goes to infinity, the limit distribution of such test
statistics, even if it is well-defined, is likely to be nonstandard.

To the best of our knowledge there are three existing tests for structural instability of factor
loadings.! One is proposed by Stock and Watson (2009) (henceforth SW), who regressed each
variable on the estimated factors and implemented a Chow test for each of these regressions. Using
a post-war quarterly data set for the United States, they found a substantial amount of instability in
factor loadings: 41% (23%) of these Chow tests reject at the 5% (1%) significance level. This method
cannot control the overall type I error for testing our joint null hypothesis and it may overstate the
parameter instability in factor loadings. Another test is proposed by Breitung and Eickmeier (2011)
(henceforth BE). They constructed a joint test that controls the overall type I error as well as tests
for individual factor loadings allowing for an unknown break date. To test the joint null hypothesis
they use the sample average of the Chow test statistics for each of the factor loadings. They require
the idiosyncratic shocks to be cross-sectionally independent, however. This is more restrictive than

Bai and Ng’s (2002) setup for approximate factor models where idiosyncratic shocks are allowed to

'Recently, Cheng et al. (2013) consider detecting structural changes of factor loadings using LASSO estimator.



have weak cross-sectional correlation. Also, their joint test is severely oversized in the presence of
serial correlations in the idiosyncratic shocks when the HAC covariance matrix estimator is used.?
More recently, Chen, Dolado and Gonzalo (2012) (CDG hereafter) develop Wald and LM tests of
structural change in factor loadings using a regression of the first estimated factor on the remaining
factors. Their tests are simple to implement in practice.

This paper proposes new joint tests and contributes in the following ways: First, we reduce
the infinite-dimensional problem to a finite-dimensional one. Because the principal component
analysis (PCA) implicitly imposes the restriction that the factor loadings are time-invariant, the
estimated factors can demonstrate a higher dimension under the alternative hypothesis than under
the null as pointed out by SW and BE. Based on this fact, our statistic compares the pre- and
post-break subsample second moments of estimated factors. We allow for unknown break dates and
our statistic has the same asymptotic distribution as the conventional supreme Wald test proposed
by Andrews (1993). Second, we follow Bai and Ng’s (2002) approximate factor setup in which serial,
cross-sectional correlation and heteroskedasticity are allowed in the idiosyncratic shocks, and the
knowledge about the form of such correlations and heteroskedasticity is not required to implement
our test. This is more general than BE’s framework which requires cross-sectional independence
and AR(p) assumption on the idiosyncratic shocks. Third, we consider different types of structural
breaks which have different impacts on the dimension of factor space. Besides the case pointed out
by SW and BE where the number of factors is enlarged due to structural breaks in factor loadings,
we also consider the case where structural change in the loading matrix does not change the number
of factors. We establish conditions under which our tests are consistent against different types of
breaks. Fourth, the number of factors are unknown and to be determined by the information criteria

(IC) proposed by Bai and Ng (2002). We show that Bai and Ng’s IC remain consistent for estimating

2In the working paper version of their paper, BE provide simulation evidence that the effective size of their test
can be greater than 90% in some setups if HAC estimators are used. This may be explained by possible invalidity of
the sequential asymptotics their test is based on. When the HAC estimator is used, each individual statistic converges
to a chi-square distribution at a slower rate as the time series dimension diverges. When the cross-sectional average
of these statistics are taken, the cross-sectional average of these errors may not vanish even asymptotically. BE also
suggest fitting an AR(p) model for the residuals of factor models in the first stage and then compute the covariance
using the filtered residuals, but this operation requires correct knowledge about the serial correlation structure of the
residuals.



the dimension of an equivalent factor model with time-invariant loadings under the one-time break
alternative. This helps our test statistic distinguish the null and alternative hypotheses. Finally, we
establish the regularity conditions on N, T" and bandwidth parameters for different kernel functions
so that HAC estimators are applicable to our test statistics.

The test of CDG is also based on the fact that the dimension of factor space estimated by
the information criterion is larger under the alternative hypothesis than under the null hypothesis.
Testing structural change in their regression model is equivalent to testing structural change in
a subset of the elements of the covariance matrix of the estimated factors. In contrast, our test
statistics make use of all the elements of the covariance matrix. Also, our tests allow for the case
where the break in factor loadings does not enlarge the number of factors, which is ruled out in
CDG’s framework. We compare the finite sample performance of their tests and ours in a Monte
Carlo experiment in section 3.

In this paper, all limits are taken as both N, T" — oo simultaneously. || - || denotes the Eu-
clidean norm of a vector or matrix, — denotes convergence in probability, % denotes convergence
in distribution, = denotes weak convergence of stochastic processes, and |-] is the integer part oper-
ator. vech(-) is equal to the column-wise vectorization of a square matrix with the upper triangular
excluded.

The remainder of this paper is organized as follows: Section 2 proposes a structural break test
for factor loadings, and the asymptotic properties are established under the null and alternative
hypotheses. Section 3 shows Monte Carlo results under various data generating processes (DGPs).

Section 4 concludes. Proofs are relegated to appendices A and B.

2 A Structural Break Test in Factor Loadings

2.1 Factor Models and the Null Hypothesis of Interest

Let z;; denote the observation for the ith cross section at period t fort =1,2,..., Nandt =1,2,...;T.

Let |7*T| + 1 denote the break date of factor loadings and 7* € (0,1). Suppose that z; has r



common factors and follows the static factor representation:

foiroi+ fldi+e  if 1<t < [n*T)
Tit — (21)

foroi+ fighoitenw i [TT]+1<t<T

where fo; is a gox1 vector that denotes the factors with time-invariant factor loadings, fi;isa g1 x1
dimensional factor whose loadings have structural change at [7*T| + 1, Ao; is the factor loading
on fot, A1,; and Ag; are the pre- and post-break factor loadings on fi ¢, respectively, and e; is the
idiosyncratic shock for cross section i at period t. Let fy = (fj,, fi,)" denote the r x 1 vector of
common factors at period ¢, so we have r = qo + ¢1. Define the vectors: X; = (21, Z42, ..., z;7)" and

ei = (ei1, €2, ..., e;7)". The matrix notation of the factor model is:

F071A6 + F171A/1
Fy oAl + Fi 2/

where X = (X1, X2,..., Xn), Fo1 = (fo1, fo2, - foxor))'s Fo2 = (fo,lm1)+15 fo, w1425 -+ for)s
Fip = (i, frzs o fieer)s Fi2 = (fieor) 40 Jumr 420 5 frr)s Ao = (Ao, Aoz, - Adon),
Al = ()\1,1>>\1,2, --~,)\17N)/, A2 = ()\271,)\272, ...,)\271\[)/, and e = (61,62, ...,eN).

We are interested in testing the null hypothesis of no break in factor loadings:

H() : )\177; == )\271' Vi (23)

The test of Breitung and Eickmeier (2011) is designed to test the null hypothesis

Hpro: M= Ay, for given i (2.4)

While their test is useful when one is interested in a specific factor loading, it is (2.3) under which
factors are consistently estimated. If their test for (2.4) is applied to test (2.3), the null hypothesis
(2.3) will be rejected with probability approaching one because the test is applied to factor loadings

whose number goes to infinity. Breitung and Eickmeier (2011) also suggest a pooled LM test for



testing (2.3) but their pooled test requires that the idiosyncratic shocks e;; and ej; are independent
for all ¢ # j, which is too restrictive compared with the approximate factor structure. Below we
propose a test for the null hypothesis (2.3) that is valid under assumptions allowing cross-sectional

correlated idiosyncratic errors.

2.2 The Test Statistic

We consider testing the null hypothesis Hp: all factor loadings are constant over time against the
alternative hypothesis H;: |alV| many variables have structural changes in factor loadings at a
common break date, where o € (0,1]. To motivate our test statistic, let us first consider the
behavior of the model under the null hypothesis. Since A; = Az, (2.2) can be rewritten in the
following form:
X = i AN +e
Fy
= FN +e (2.5)

where [y = [Fo1:F1 1], Fy = [Fo2:Fi2), F = [F]:F)', and A = [Ag:Ay]. If the fourth moment of
ft is time-invariant and some regularity conditions hold, a Wald statistic comparing the subsample
means of f; f/ should converge to a chi-square distributed random variable under the null hypothesis.
Under the alternative hypothesis, (2.2) has time-varying factor loadings, but PCA implicitly imposes
the restriction that factor loadings are constant over time. To see why the above Wald statistic
has power, consider a simple example where all factors have time-varying loadings, i.e., A1 and As
are both N x r and gg = 0. The PCA will estimate an equivalent factor model with time-invariant

factor loadings:



Let Gl = [Fl,lfoLw*TJw] and G2 = [O(T— \_ﬂ*TJ)XrEFI,Q]a so it follows that

1 /
1 — P F171 0
7T*TG/1G1 = | T e
0r><r 0r><7"
and
1 Opxr Orxr
—GLGy =
(1—m)T 272 1

O xr (1_W*)TF1/,2F1,2

have different limits, so the Wald statistic that compares the second moments of G; and G will reject

the null hypothesis under the alternative. This example shows that the presence of a structural

break in factor loadings implies structural change in the subsample second moments of factors.

Using this fact, we can reduce the infinite-dimensional problem to a finite-dimensional one.
Therefore, we base the proposed test statistic on the pre- and post-break subsample means of

ft ft/ , where ft is the PCA estimate of the factors. Let

A(m, F) =vech [ VT | —= fift — =———— ffi) -
I7T] = T~ |rT] t=|nT | +1
S(x, F) and S(m, F) denote unrestricted and restricted estimates of the long-run covariance matrix
of A(m, F ), respectively, and will be defined more precisely in the next subsection. We define two

test statistics by

sup Wr(m, F) =  sup A(r, F)'S(m, F)'A(n, F), (2.6)
wE[m1,m2] wE[m1,m2]

sup LMp(m,F) =  sup A(m,F)S(x, F) 'A(r, F), (2.7)
wE[m,m2] wE([m,m2]

where Wy (m, F') and LMp(r, F)) are Wald and LM-like statistics for testing whether the subsample
means of ft ft’ are equal or not at a predetermined break date wT. The following subsections will

discuss the assumptions and detailed properties of the proposed test statistics.



2.3 Assumptions

Recall that A = [AgiAq] in (2.5). Let \; denote the transpose of the it row of A. Let t1; and 1o

denote two indicator functions: ¢y, = 1{t < [7#*T'|} and 19, = 1{t > [7*T'] + 1}.

Assumption 1: E || f;||* < oo, E(fif]) = Sp and T YL fif/ & Bp as T — oo for some positive

definite matrix X p.

Assumption 2: || \;]| < X < oo, |[AA/N — 2, || — 0 for some r x r positive definite matrix X, and

IAA/N = Sall = 0 ().

Assumption 3: There exists a positive constant M < oo such that for all N and T,
(a) E(eir) =0, Eley|® < M for all i and t.
(b) E(eies/N) = E(N"YSN eiseir) = v (s, 1), |y (s, s)] < M foralls,and T 27, S5 |yn (s, )] <
M.
(c) Eleiejt) = Tij4 with |7554| < |7i;| for some 7;; and for all t. In addition, N=!' SN, Z;V:l |7i5] <
M.
(d) E(eiejs) = Tijus, and (NT) P2 SN ST ST [mijas] < ML
4
(e) for every (t,s), E ‘N_l/z SN [eiseir — E(eiseit)]‘ <M.

- 1N || 1 T 2
Assumption 4: E (N Doiet Hﬁ i freit - Lth > <M form=1,2.

Assumption 5: There exists M < oo such that for all T and N, and for every ¢ < T and for every
i < N:

(8) Xsma [y (s, )] < M.

(b) ity I7wil < M.

Assumption 6: There exists an M < oo such that for all N and 7"

2
<M.

(a) for each t and m = 1,2, E Hﬁ 2221 Z,i\;l fslexsert — Eegsert)] - tms
2
(b) B|| A Ty Sy fiX) ekt tout]| < M for m=1,2.and £=0,1,2.



4
(c) for each t and £ =0,1,2, E Hﬁ >N Avgieit|]| < M.

Assumption 7: The eigenvalues of r x r matrix (XX ) are distinct.

Assumption 8: For any constants m; and g that satisfy 0 < m < 7" < mp < 1,

(a)

1 [7T] N
Sup || == Z ft)\é,kekt “lmt = 0Op(1)
wE[my,m2] NT = =1
1 T N 2
sup - ft/\/ €kt " lmt = 0O (1)
TE[m1,m2] NT Z Z o " P

form=1,2and £=0,1,2.

7T
Y S it = Sr) | = 0p(1) and sup ez,

(b) SUPrepry o) ‘ﬁ% S ey (feff = EF)H =

0,(1).

These assumptions are either from or slight modifications of those in Bai (2003) and enable us to
conduct inference about subsample means of ft ft’ . Assumption 1 is the same as Assumption A in Bai
(2003) except that it requires time-invariant second moment of f;. This assumption is made under
both the null and alternative hypotheses. Note that factors and factor loadings are multiplicative
and identified under some normalization, a factor model with a break in E(f;f/) and no break in
factor loadings is observationally equivalent to a factor model with time-invariant E(f;f;) but a
rotation in the post-break factor loading matrix. More details about the rotation in the loading
matrix are discussed are discussed in Section 2.5 (See footnote 5). Given this identification issue,
it is not restrictive to assume that factors have constant second moment.

The Assumption 2 is slightly different from Assumption B of Bai (2003) in that it specifies
the convergence speed of A’A/N.3 Assumptions 3, 5 and 7 exactly follow from Bai’s (2003) setup.

Assumption 3 allows weak serial and cross-sectional dependence in the idiosyncratic shocks, and As-

3Since the factor loadings are assumed to be non-random, A’A/N can converge to ¥, at any rate. We assume
that the rate is no slower than 1/+/ N, which is not stringent compared to usual convergence rate in the Central Limit
Theorem.



sumption 5 is a strengthened version of Assumption 3. Assumptions 3 and 5 also allow heterogeneity
in time and cross section dimensions. Thus, this paper allows weaker assumptions on idiosyncratic
shocks than BE who assume that the idiosyncratic shocks are independent in cross section dimension
and follow AR(p) processes. Assumption 4 implies that E(N~' N |[T-Y2 L | fieq|?) < 4M.
Parts (a) and (b) of Assumption 6 imply that (a) for each t, E||[(NT)" Y21, SN | flersens —
E(egsers)]|I> < 4M; and (b) E|(NT)" Y2 SN fidier?> < 8M, which are Assumptions F1
and F2 of Bai (2003). The role of the indicators functions ¢1; and oy will become clear under

4 Assumption 6(c) is slightly stronger than Assumption F3 of Bai

the alternative hypothesis.
(2003) which only requires the existence of the second moment, but the asymptotic normal dis-
tribution of ﬁ Zi]\il Aie;r in Bai (2003) is not necessary in this paper. Assumption 8 requires
that the sample sizes before and after the hypothesized break date go to infinity. Assumption
8 also states that the terms in ||.|| are O,(1) uniformly in 7. Hence, model (2.5) satisfies that
‘ﬁ ZttlilFJ SN ft)‘zektHQ = Op(1) and SUpP ¢ ir; my] H2

‘ﬁ Z;r:LﬂTJH Sy fi\eer

SUPre[ny,m2]
Op(1) under the null hypothesis. Note that all summands have zero means, so Assumption 8 is an

implication of the conventional functional central limit theorem.

2.4 Asymptotics under the Null Hypothesis

Before discussing the properties of our test statistic, it is useful to describe some useful notations
and existing results. Let Vyr be the r x r diagonal matrix of the first r largest eigenvalues of
(1/TN)XX' in decreasing order. Lemma A3 of Bai (2003) shows that Viyp converges to V in
probability, where V is the diagonal matrix consisting of the eigenvalues of ZiZ FE/%\ in descending
order. Let Y denote 2/%\2 FEI%’S eigenvectors that corresponds to V such that Y'Y = I,.. Recall that
the estimated factor matrix F is /T times eigenvectors corresponding to the r largest eigenvalues
of XX'. Let H = (NA/N)(F'F/T)Vy2 be an r x r matrix. Proposition 1 of Bai (2003) show that
F'F/T converges to EX%TV%. Thus, it follows that H 5 E/%\vaé. Let Ho = plimp y_,oo H , s0
it is obvious that

E(Hg fif{Ho) = HyXpHy = I, (2.8)

4See the proof of Lemma 10 in the appendix.
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which is implied by the definition of Ho and the fact that V- 3T'SISpSITV "3 = V-3VV 3 = .

Equation (2.8) provides a bridge connecting the statistics using estimated factors and true fac-
tors. Let A(m, FHo) = vech (VT (e S0 Hyfif{Ho = oy S0 oy 1 HoSuf{Ho ) ). Under
Assumption 1 that E(fif/) = X, the central limit theorem implies that A(w, FHy) converges in
distribution to some normally distributed random variable, and Wald statistics can be constructed
based on A(rw, FHy) and its sample variance. Although both F' and Hj are not observable, Fis
a consistent estimate of FFH (see Bai, 2003) and H 2 Hy, so replacing Hy f; by ft is a potential

solution.

Theorem 1: Under Assumptions 1 - 8, if % —0as N, T — oo, then

sup HA(TI‘, F) — A(r, FHO)H 20
mE[m,m2]
Theorem 1 shows that the difference between A(w, F') and A(r, FHp) is 0,(1) uniformly in 7, so
A(m, F) and A(r, FHy) will have the same asymptotic distribution. To construct a Wald statistic,

we also need the sample variance of A(w, F Hp). Let

T
Q= TJEI;OVar (vech (\/1? <; H(’)ftft'Ho — Ir>>> .

Let Ql(W,FHo) and QQ(W,FHO) be consistent estimates of €, where the subscripts “1” and “2”
denote the pre- and post-break subsamples, respectively, m denotes the break date that splits the
sample, and F'Hy means that the sample variance is computed using unobserved f;Hy. Since the
common factors f; are likely to be serially correlated, we consider the following estimates for the

sample variances:

|7=T]—1
Ql(ﬂ',FHo) = Fl)o(ﬂ',FHo)—I— Z k (SL TJ) (Fl,j(ﬂ,FHo)+F1,j(7T,FHO)/)
=1 8
T—|nT]-1 .
Q2(7T,FHQ) = FQ@(?T,FH()) + Z k <ST jL TJ) (FQJ(?T,FH()) +F27j(7T7FH0)/) (29)
j=1 o

11



where k(-) is a real-valued kernel

| T

f‘Lj(ﬂ',FHO) = L?TTJ Z vech(H{, fi fiHo — )Vech(H{)ft,jfg_jHo—Ir)'
t=7+1
. 1 T
Lyj(m,FHy) = ————— > vech(Hyfif{Ho— I.)vech(Hgf—;fi_ iHo — I,,) (2.10)
T—|nT) t=j+ T |+1

Alternatively, we can use all data to estimate (7, FHy) and Qu(w, FHy),

T-1

Q(FHy) =To(FHy) + Z k( T) (I';(FHy) + T;(FHy)') (2.11)
where
T
T;(FHp) :% > vech(H} fif{Ho — I,)vech(Hy fi_j f_;Ho — I,.)' (2.12)
t=j+1

In this paper, we focus our analysis on three commonly used kernels that always give positive
definite estimates: Bartlett, Parzen and Quadratic Spectral (henceforth QS). S is a band-width
parameter, and its subscript denotes the size of the sample (or subsample) that is used to estimate

the long-run variance. Let

~ 1 ~
S(w, FHy) = Qo(m, FHy),
— T

N | =

Ql(Tr,FHo)—{— 1

SO S(ﬂ', FHy) is an estimate of the asymptotic variance of A(w, FHp). One can also construct the

restricted estimator S(m, FHy) using Q(F Hy), i.e

~ 1 1 A

S(r, FHy) = ( + ) Q(FHy).
Note that all of O, (7, FHy), Ty j(m, FHp), for m = 1,2, Q(FHy), T;(FHy), S(r, FHp) and
S(r, FHy) are computed using infeasible data f;Hy. We define Q,,(w, ), T, j (7, F), for m = 1, 2,

Q(F), T

/\

J(F), S(m, F) and S(m, F') as the feasible analogs computed using the estimated regressors

12



F.

Condition 1: (a) The Bartlett kernel is used to estimate S(rr, FHy), S(r, F'), S(rr, FHy) and S(, F),
and there exists a constant K > 0 such that Sr, S|zr|, and Sp_|,7| are less than KT 5 for all

2
T € [m,m) C (0,1); and (b) L& = 0as N, T — .

Condition 2: (a) The Parzen kernel is used to estimate S(m, FHy), S(, F), S(x, FHp) and S(r, F),
and there exists a constant K > 0 such that Sr, S|z7|, and Sp_ || are less than KT 5 for all
7 € [m,m] C (0,1); or, the QS kernel is used to estimate S(mw, FHy), S(r, ), S(x, FHy) and
S(W, F), and there exist constants K7, Ko > 0 such that KlT% < S7, S\erJv ST—LwTJ < KQT% for

2
all m € [m,m] C (0,1); and (b) LF - 0as N, T — .

Theorem 2: Under Assumptions 1 - 7, if Condition 1 or Condition 2 holds, then

sup
TE[m,m2]

S(r, ) — §(r, FHO)H 20

sup |[S(x, F) = §(r, F Ho)|| %0.

TE[m1,m2]

Theorem 2 shows that the infeasible sample variances can be replaced by the estimates computed

using F'. Given this result, we can compute the Wald statistic and the LM-like statistics

LMp(m, F) =A(x, F)'S(n, F) Y A(n, F) (2.13)

and sup-Wald and sup-LM defined in (2.6) and (2.7). To establish the asymptotic distributions of

feasible statistics, we define their infeasible analogs as

Wr(m, FHy) =A(w, FHy)'S(w, FHy) "' A(r, F Hy)

LMy (m, FHy) =A(n, FHy)'S(m, FHy) Y A(r, FHy) (2.14)

13



and we make the following assumption:

Assumption 9: (a) Q = limp_,, Var (vech (ﬁ (Zle H)fif{Ho — Ir))> is positive definite, and
19| < 0o. Q4 (7, FHy), Qa(m, FHy) and QU(F Hp) defined in (2.9) and (2.11) are consistent estimators
of € satisfying that

sup HQm(Tr,FHo) - QH =0p(1) form=1,2

me[m,mo]

|Q(F Ho) - 9| = 0,(1)

(b) Wr(m, FHy) = Qp(n), LMy (m, FHy) = Qp(m), SUP i,z Wr(m, FHo) % sup e, 2y Qp(m),
and Supwe[m,m] LMT(W’FHO) i) Supﬂ'G[mﬂrﬂ Qp(ﬂ-)v where Qp(ﬂ-) = [Bp(ﬂ-) - TrBP(l)]/[BP(Tr) -

7wB,(1)]/[m(1 — )] and B,(+) is a p-vector (p = T(rgrl)) of independent Brownian motions on [0, 1]

restricted to [, m2] C (0,1).

Assumption 9(a) states that O (7w, FHy), Qo(m, FHy) and Q(F Hy) converge to the population mo-
ment ) uniformly in 7. This is similar to Assumption 3 of Andrews (1993). Assumption 9(b)
is just the main result of Theorem 3 in Andrews (1993): the sequences of Wald and LM statis-
tics weakly converge to the stochastic process Qp(m) restricted to [mi,7m2] C (0,1), and both

SUP e[, m) Wr(m, FHp) and sup | LMry(m, FHy) converge t0 SUPr¢(r, o) @p(7) by the con-

T1,72]
tinuous mapping theorem. See CDG for more primitive assumptions under which high-level as-
sumptions that are similar to Assumption 9(b) hold. Note that all the terms in Assumption 9 are
computed using the infeasible data F'Hy, which means that if F'Hy were observable, one would be
able to use the conventional supreme Wald test. The following theorem guarantees that one can use

the estimated regressors, F, to compute the supreme statistics, which have the same asymptotic

distribution as those computed using F Hy.

Theorem 3: Under Assumptions 1 — 9, if either Condition 1 or Condition 2 holds and % — 0 as

N, T — oo, then

Wr(r, F) — WT(TF,FH(])) = 0p(1) and sup,¢|

(i) SUDrery ] LMyp(w, F) = LMyp(r, FHO)‘ -

op(1).

T1,m2]
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.. d d
(ii) SUDre(my ] Wy (m, F) — SUPre[r; o) Qp(m) and SUPrre[r; o) LMp(m, F) — SUP e[y ] Qp(m).

Theorem 3 shows that one can use the conventional critical values for the sup-W and sup-LM
statistics computed using F. The uniformity provided by part (i) of Theorem 3 also shows that
Wr(m, F) = Qp(r) and LMy (m, F) = Q,(r) by assumption 9(b). Thus, the continuous mapping
theorem implies that the mean Wald statistic and the exponential Wald statistic proposed by

Andrews and Ploberger (1994) can also be used to test structural breaks in factor loadings.

Corollary 1: Under Assumptions 1 — 9, if either Condition 1 or Condition 2 holds and § — 0 as

N, T — oo, then
m2 Wr(r, m2 Wr(m, FH,
/ exp <T<;T’>) dm — / exp (T(ﬂéo)) dm = o0p(1)
Tl ™

o . o
/ Wrp(m, F)dr — / Wr(m, FHp)dr = op(1)
T ™

Define exp-W (F) = In < L [™exp <WT(;F)) dﬂ') and mean-W(F) = —L— [™ Wy(r, F)dn.

T2—T1 JT1 T2—T1 JT

Corollary 1 shows that critical values provided by Andrews and Ploberger (1994) can be applied
to exp-W (F) and mean-W (F') as if F is observed rather than estimated. This result also holds for

exp-LM (F') and mean-LM (F') which can be defined in a similar way.

2.5 Asymptotics under the Alternative Hypothesis

We consider the alternative hypothesis that |«/N| many cross sections have a single break at a

common break date in their loadings. The model (2.2) can be rewritten as:

Ay
Fon Fip O
X = N | e (2.15)
Foo 0 Fip /
Ay
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Next, we partition the matrix Xp = E(f.f]) as

R W
ZF = 0,1’ 1,1
Yp Xp

where Z%O = E(forfor) 5 E%l = E(fosf1,) , and Z}Zl = E(f1.ef14)-

Note that (2.15) is equivalent to a factor model that has time invariant factor loadings. Note
that [Ag:A1:Ag] in (2.15) may not be of full column rank, so the representation of the equivalent
model is not unique. However, it is only meaningful to deal with a representation with both factor

and loading matrices of full column rank, so we reformulate the equivalent model as
X =GO +e. (2.16)

Let g; denote the transpose of the t** row of G' and 6; denote the transpose of the i*" row of ©,
so G = (91,92, --,97) and © = (01,05, ...,0x)". If G has full column rank, the number of factors
in (2.16) is determined by the rank of limy_,o, ©'©/N. We use the rank of ©’O/N to define three
different types of breaks in the factor loading matrix. The detailed expressions of G and © depend

on the number of factors in (2.16) and are discussed below.

Type 1 Break: rank(©'©/N) =71 + qi.
Type 1 break requires the column rank of [A1:As] to be 2¢;. The break in \; should be so
idiosyncratic across 's that A; and Ag are linearly independent. Under type 1 break, (2.15) is

equivalent to a factor model that has r + ¢; factors with time-invariant factor loading matrix:
X = G(l) /(1) +e (2.17)

Fon Fip O

)

where G(1) = is the factor matrix and ©(;) = [AofAlng]NX(qu) is

F 0 F
0,2 1,2 Tx(rtan)
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the factor loading matrix.

Type 2 Break: rank(©'©/N) =r.

Under type 2 break, the column rank of [A1:As] is g1, so there exists a q; x ¢ matrix Z, either
singular or nonsingular, such that Ay = A1Z (or Ay = A9Z). Type 2 break means that all the
loadings change in a very homogeneous way. For example, As = 2A;, which might be unlikely to
happen in practice. A more empirically relevant example is that rank(A1) = ¢; and Ay = 0, so
the ¢;—dimensional factors f;; disappear after the break. Hence, type 2 break covers the case of
emerging or disappearing factors. Without loss of generality, we assume that Ao = A1 Z, so the
equivalent model has r transformed factors under type 2 break:

X =G0y +e (2.18)

Foqp  Fia

)

where G 9) = is the factor matrix and ©y) = [Ag:A1] N« is the factor loading

Foo Fi27
’ ’ Txr

matrix. Note that (2.18) has the same loading matrix as under the null, i.e. A = [Ag:A1]. The

change in A is transmitted to the factors, and F} o is rotated by Z’. °

Type 3 Break: rank(©'©/N) =r + ¢, where 0 < £ < ¢;.

Under type 3 break, the column rank of [Alng] is greater than ¢; but less than 2¢;, so some
(but not all) columns of A; and A are linearly dependent. Compare the equivalent models in (2.17)
and (2.18): for type 1 break, the dimension of the factor space is augmented; for type 2 break, the
factors are rotated with unchanged loadings. It is not difficult to see that type 3 break will lead
to an equivalent model with characteristics of both types 1 and 2 breaks. The linearly dependent
columns of Ay and As will transform the factors by rotation as under type 2 break, while the linearly
independent columns of A; and Ao will augment the factor space as under type 1 break. Without

loss of the main insight, our analysis will focus on breaks of types 1 and 2 to avoid introducing more

®Note that we assume E(f;f;) to be constant over time. If E(f:f;) has a break, then the model is equivalent to a
factor model with time-invariant F(f:f/) but a type 2 break in the loading matrix. To see it, let X and X} be the
variances of f; before and after the break, respectively. If both X r and X} are positive definite, then there exist a
nonsingular matrix ¥ such that ¥ r ¥’ = ¥%.. It can be viewed as a factor model where factors have constant second
moment X, the pre-break loading is A, and post-break loading is AW.
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tedious notations associated with type 3 break. The power properties of our statistics under type 3

break will be the combination of those under types 1 and 2.

Assumption 10: Conditions on the Break

Let 3¢, = plimy_, . G ;G ;) /T and Yo, = lmyoo G)/(j)@(j)/N for j =1,2.

a) Type 1 break: X, is positive definite. [|Az;[| < A < o0, H@’(l)@(l)/N — Yo, || = 0 for some
7+ q1) x (r 4+ q1) positive definite matrix Xg ,, and ”@/(1)@(1)/N — Yo, <0 (\/—lﬁ)

(
(
(b) Type 2 break: ||Z| < oo and ZEp'Z’ # $p!.
(

c¢) For both types 1 and 2 breaks, The eigenvalues of G N0, are distinct.
Part (a) of Assumption 10 ensures that the number of factors in the equivalent model (2.17) is equal
to r+g1. The positive definiteness of 2q ,, requires the columns of Gy to be linearly independent,
which is not restrictive given the structure of G(;y. The requirement on O y) is simply the analog of
Assumption 2 on A. The restriction that Z Z}’lZ’ #* E};’l in part (b) of Assumption 10 is to ensure
the consistency of our statistics. It rules out a very unlikely case where Z = —1, i.e., all the loadings
switch their signs after the break. Part (c) plays the same role as Assumption 7 and ensures the
convergence and nonsingularity of the rotation matrix J defined below.

Next, we define the analogs of Vi, V, H, and Hy under the alternative hypothesis. Recall that
F denotes the PCA estimate of factors and ft denotes the transpose of the ¢ row of F'. Under the
alternative hypothesis, however, F will be an estimate of factors (up to a rotation) in the equivalent
models (2.17) and (2.18). Since the equivalent models under types 1 and 2 are different, we will
discuss the corresponding cases separately.
Type 1 break:

Let Uyt be the (r + q1) x (r + ¢1) diagonal matrix of the first r + ¢ largest eigenvalues of
(1/TN)X X' in descending order. Let U be the probability limit of Uxp, where U is the diagonal

1 1
matrix consisting of the eigenvalues of Eé(l) G, Eé“) in descending order (Lemma A3, Bai and Ng,

2003). Let J = (@’(1)@(1)/N)(G’(1)F/T)U]\_,; be an (r 4 q1) X (r + ¢1) matrix. Denote plimy y_,.J
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as Jo, which is a non-singular matrix (by Proposition 1 of Bai, 2003) 6. Let

290 w% o »%0 0 u%!

D, = 2%1' w0 |, D2 = 0 0 0 |,andC=Jy(D;— Ds)Jp. (2.19)
0,1/ 1,1
0 0 0 Yp 0 ¥

Type 2 break:

Let Unt be the r x r diagonal matrix of the first r largest eigenvalues of (1/TN)XX' in
descending order. Let U be the probability limit of Uy, where U is the diagonal matrix consisting
of the eigenvalues of Eé@)ZG@) Eé@) in descending order (Lemma A3, Bai and Ng, 2003). Let
J = (@’(2)@(2)/N)(G’(2)F/T)UA_,; be an r x r matrix. Denote plimy y_,,.J as Jy, which is a non-
singular matrix (by Proposition 1 of Bai, 2003). Let

D, = E%O Z%l , Dy = E%O E%’lZ’ , and C = J{(Dy — D2)Jo. (2.20)
ol zs%Y zxlly

To establish the consistency of the test under the alternative hypothesis, we need Assumption 11

that regulates the asymptotic property of the variance matrices in our statistics. Define o (7m*, G Jo),

Qo (7*, G Jy), QUGJy) by replacing «, F, and Hy in equations (2.9), (2.10), (2.11), and (2.12) with

7, G, and Jy, respectively. Let S(7*, GJy) = L0 (7%, GJy) + —=Qs(n*, GJy) and S(x*, GJy) =

s 1—m*

LOGT) + QG ).

s 1—7m*

Assumption 11: (a)
plimg_, . inf {Vech(C)’ {max(SL,,*TJ,ST_L,r*TJ)S(W*, GJO)_l} Vech(C')} >0

plimp_, . inf {vech(C)’ [STg(T('*, GJO)*I} Vech(C)} >0

where S|zer|, Sp_|z+7|, and St are the bandwidth parameters for Ql(ﬂ*, GJy), Qg(ﬂ’*, GJp), and

5The subscripts (1) and (2) to distinguish two types of breaks in Uy, U, J, Jo and C are omitted to simplify the
notations.
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A

Q(GJy), respectively.
(b) Condition 1 or 2 holds for S(7*, GJy), S(z*, F), S(7*, G.Jy), and S(r*, F).

Remark 1: Assumption 11(a) ensures that Wy (7*, GJy) and LMp(7*, GJy) diverge under the alter-
native as N and T go to infinity. Contrast to Equation (2.8), it is worth noting that E(Jjg:g;Jo) #
I44, under the alternative hypothesis, so the HAC estimators are not properly demeaned. Hall
(2000) investigates the properties of HAC estimators that are not properly demeaned in the context
of overidentifying restriction tests. He shows that if the HAC estimate is not correctly demeaned,
then it will diverge at the rate of the bandwidth parameter br. He uses p. to denote the ex-
pectation of the invalid moment conditions and & to denote the HAC estimator, and shows that
brp. &, 2y a positive constant. (see Hall (2000), Proof of Theorem 2, p. 1525-1526). Although
Hall’s (2000) result is developed for the HAC estimator in the context of overidentifying restriction
tests, it can be readily extended to our HAC estimators. In this paper, it turns out that vech(C')
is an analog of p,. and our bandwidth parameters are analogs of by. Hence, Assumption 9’(a) is
analogous to Hall’s result that byu/ &'y, is asymptotically bounded away from zero, and it can

be proved under more primitive conditions in Hall (2000).

Theorem 4: Under Assumptions 1 — 8, and 11, if the break of factor loading matrix satisfies As-
sumption 10, then

(i) There exists some non-random matrix C' # 0, such that Ln*ilTJ ZthITJ ﬁft’—ﬁ P [T |41 fif]
5 C.

(ii) For any constants 7; and 7o that satisfy 0 < m < 7% < my < 1, SUDrg| WT(T(,F) and

m1,mo]
SUPrefr ma] LM (T, ﬁ’) are consistent under the alternative hypothesis that a fraction of N cross

sections have structural breaks in their factor loadings at a common date |7*T|.

Theorem 4(i) shows that pre- and post-break subsample means of ft fl{ converge to different limits
under the alternative hypothesis. This explains why just using a Wald statistic computed using
estimated factors can in fact detect the structural breaks in factor loadings. Note that the factors

(in static form) are estimated by PCA which implicitly assumes that the factor loadings are time-
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invariant. Hence, Theorem 4(a) shows that the PCA will transmit the structural breaks in the
loading matrix to the subsample means of f; f{ before and after |7*T|.

Recall that the number of factors is increased under type 1 break. This indicates that the number
of factors plays an important role in determining the asymptotics of the test statistics in this paper.
In practice, the number of factors is commonly estimated using IC proposed by Bai and Ng (2002),
so the asymptotics of IC under the null and alternative hypotheses will affect the performance of
the structural break tests for factor loadings. It turns out that Bai and Ng’s IC can consistently
estimate the number of factors in the equivalent model and help our statistics distinguish the null

and alternative hypotheses in large samples.

Proposition 1: Under Assumptions 1-4 and 10, Bai and Ng’s information criteria consistently esti-

mate the number of factors of the equivalent models (2.17) and (2.18).

IC is equivalent to determining the number of asymptotically non-zero eigenvalues of X X'/NT.
Assumptions 1 — 4 play the role of Assumptions A — D of Bai and Ng (2002) to ensure IC’s
consistency under the null hypothesis. Under the alternative hypothesis, Proposition 1 shows that
IC consistently estimates the number of factors in the equivalent models. Thus, the asymptotics of
test statistics proposed in this paper will not be affected by implementing IC in the first stage as
N and T tend to infinity, and the finite-sample effect of the first-stage IC will be investigated in
Monte Carlo experiments in the next section.

When IC is used in the first stage to determine the number of factors estimated by PCA, tests
for structural breaks should not be based on factor loadings. For example, the traditional Chow
test for testing A1; = Ao ; will not have power under the alternative hypothesis, because the factor
loadings of the equivalent models are actually time-invariant.” Therefore, in order to test structural
breaks in factor loadings, one should focus on the estimated factors rather than the estimated factor

loadings.

"Breitung and Eickmeier (2011) also point out that the Chow test statistic will also lack power if the number of
factors is determined using IC based on full sample, so they suggest implementing IC to both pre- and post-break
subsamples. This solution is subject to the knowledge of the break date, and the IC may become less accurate since
the time dimension will be shortened once the sample is split.
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3 Monte Carlo Simulations

In the Monte Carlo experiments we investigate the finite sample properties of our statistics for
known and unknown break points. Section 3.1 compares the performance of our Wald test W
and LM-like test LM with BE’s pooled test Spr and the Bonferroni test spo,, where W and LM
abbreviate Wr(m, F') and LMry(n, F), respectively. Recall that Spp = (vazl Si — TN) /\V2rN,
where s; is BE’s individual statistic® for the i*" variable and 7 is estimated by Bai and Ng’s IC. We
use three different superscripts to denote the way to compute s;: s? denotes BE’s individual statistic
assuming that the idiosyncratic shocks are conditionally homoskedastic and serially uncorrelated;
SZGLS denotes the individual statistic computed using quasi-demeaned residuals which are based on

AR models with lags selected by BIC; sfl AC denotes the individual statistic computed using HAC

HAC

7 I

0 SiGLS

estimate. Let S%,, SGE% and SHAC denote the pool statistics computed using s?, and s
respectively. Besides the pooled statistics, we also include the results based on Bonferroni critical
values: F~!'(1 — 5%/N), where F is the chi-square CDF with degree of freedom #. The reason
for considering the Bonferroni test is that there are N BE individual statistics s;, using the 5%
significance level for each s; will always result in a fraction of s;’s rejecting the null hypothesis even
if the factor loading matrix is constant over time. The Bonferroni method is a simple way to control

the overall type I error of all s; statistics. Let s%,, s355 and s8¢ denote the Bonferroni statistics

0 (GLS 4nd sHAC

based on s;, s; i Y, respectively. In addition, our W and LM statistics are computed
using three different estimates for the sample variances: Wy and LM, are computed using White’s
(1980) conditional heteroskedasticity robust estimate; Wp and LMp are computed using Newey
and West’s (1994) data dependent HAC estimate based on the Bartlett kernel; Wgg and LMgg are
computed using the same data dependent HAC estimate but based on the QS kernel.

Section 3.2 compares the performance of the sup-W, exp-W, mean-W, sup-LM, exp-LM, and
mean-L M tests when the break date is unknown. Similar to Section 3.1, the subscripts “0”, “B” and

“QS” denote the statistics using the conditional heteroskedasticity robust estimate, HAC estimate

based on the Bartlett kernel, and HAC estimate based on the QS kernel, respectively. Section 3.3

8We use BE’s LM statistics to compute the pooled test statistic following Breitung and Eickmeier’s (2011) sugges-
tion based on their simulation results.
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provides Monte Carlo experiments on the power comparison between our and CDG’s tests.
In all Monte Carlo experiments, factor loadings are initially set randomly, and then fixed

throughout 5000 replications for each DGP.

3.1 Testing Breaks with Known Break Date

Our first experiment focuses on the size of W, LM, sp,, and Sgg when the break date is known.
The model is xjz = > 51 Airfrer + Keit, where A\ ud N(%, 1), and fr; and e;; are generated by the
following DGPs:

NI fur, ei 4 N(0,1), k = /(1 + 62/4)r.

N2 fe % N(0,1), exr = oi(vie + Sicpji<p Brioje)s 01 © U(0.5,1.5), vy * N(0,1), and & =

V121 + 02/4)r/13(1 + 2P3).

» »

N3: fre = pyfet—1+ thits prie ~ N(0,1—p3}), eir = oivie, 07 ~ U(0.5,1.5), vig = pyvis—1 + €it +weeir1,
jid

e % N (0, ot )» and £ = /12(1 + 52/4)r/13.

In N1-N3, weset b= 1and r = 3, and the value of x is chosen so that R? = trace(E(ee’))/trace(

E(XX'")) is 50%.° N1 is the simplest DGP: both factors and idiosyncratic shocks are i.i.d, i.e. no
correlation or heteroskedasticity is involved. Both N2 and N3 allow heteroskedasticity across 1,
and we follow Breitung and Eickmeier’s (2011) setup: o; d U(0.5,1.5). N2 also allows limited
cross-sectional correlation in idiosyncratic shocks if § # 0 and P > 1. We let 8 € {0,0.1} and
P € {6,8}, and these values are similar to those of Onatski (2010). DGP N3 considers the case
where both factors and idiosyncratic shocks are serially correlated. The factors are assumed to be
AR(1) processes, and py = 0.7 which leads to mild persistency. vy follows an AR(1) process if we
is zero, or an ARMA(1, 1) process otherwise. We set w. € {0,0.5} and p, = 0.5.

Table 1 reports the size of the Bonferroni test, BE’s pooled tests and our tests.'? The last column

of Table 1 is averaged number of factors selected by IC),, of Bai and Ng (2002). It is remarkable that

both BE’s pooled statistic and Bonferroni statistic are valid under sequential asymptotics where T

For the choice of &, note that E(\;; Fy;)? = 1+b*/4 and E(o}) = 13/12.

OFor the spon and Spr tests, we implement IC to the full sample. While BE suggest implementing IC to pre- and
post-break subsamples to determine r, it is not very clear about which to use when the numbers of factors estimated
from the pre- and post-break subsamples are different.
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first goes to infinity while NV is fixed and then N goes to infinity. In the context of factor models,
however, it is assumed that N and T go to infinity simultaneously, so Spg and sp,, are theoretically
invalid. Our experiments investigate the consequence of applying these invalid statistics in practice.
It can be seen under DGP N3 that SH AC always rejects more than 75% of the times, which is
similar to the results in the working paper version of Breitung and Eickmeier (2011). Sggs has
a substantial size distortion when w, = 0 and (N,T") = (500,100). Under DGP N3, the effective

size of sgﬁlc can be as high as 16.7%. While sgLS does not exceed the 5% nominal size, it is

theoretically invalid for the same reason as sgﬁlc and could have incorrect size under other DGPs
not considered by our paper.

Also, under DGP N2 with cross-sectional correlations (8 # 0 and P > 0), the pooled tests
tend to over-reject the null hypothesis. For example, the effective size of Sgés is 16.2% when
P =38, 6=0.1, N =200, and T = 100. In contrast, our tests do not require the independence of
idiosyncratic shocks, so the size of our tests is robust to cross-sectional correlation in e;;. Moreover,
IC tends to over-estimate the number of factors when the correlation is relatively strong. For
instance, when P =8, 8 =0.1, N = 100, and T = 200, the average of estimated number of factors
is 6.37, but our tests demonstrate robustness to the overestimation of r in simulations. (See also
the cases where the averaged  equal to 3.46 and 3.66). Finally, under DGP N3, the size of W and
LM based on HAC estimates are close to 5%, and LM tends to have better size than W for small
T.

The second experiment compares the powers of W, LM, sp,, and Sgpg when the break date is
known. The break date is set to be %, and the data are generated by the following DGPs:

Al: 2y =>4 NikSfre + ke for i =1,2,..., N and t < T/2, and z;¢ = > 51 (Aix — b) fre + ke for
i=1,2,..,N and t > T/2+ 1, where f;, i < N(0,1), x = /(1 + 02/D)r, and A & N(2,1).

A2: zy = 31 Nikfre + ke for i = 1,2, ..,aN and t < T/2, zy = > 11 (Nik — b) fxe + ke for
i=1,2,..,aNandt >T/24+1, and zy = > j_; Aikfre +req fori =aN+1,...,Nandt=1,2,...,T,
where fi, i & N(0,1), & = /(L +02/2)r, A, © N(8,1), and b = 1.

A3: xi = Y pq Nikfre + ke for i@ = 1,2,..., N, where fi, e id N(0,1), k = (1 +b%/4)r,
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Ak =AY, for t < T/2, Ag = ¢- A0 for ¢ > T/2+1, A% ' N (8, 1), and b = 1.

We set r = 3 for DGPs A1-A3. It is not difficult to verify that the equivalent factor model with
time-invariant loadings has four factors under both DGPs Al and A2. DGP A3 considers type 2
break discussed in section 2.5, so the number of factors under DGP A3 is unchanged.

DGP A1 focuses on how the power changes as the magnitude of break in factor loadings increases.
We set b € {1/3, 2/3, 1, 2} in DGP Al and the results are summarized in Table 2A. The pooled
tests and our tests have very different patterns of power. When b = 1/3 and N and T are relatively
small, the pooled tests are very powerful, while ours do not have good power. However, as N and
T increase, our tests become powerful. When N and T = 500, our tests always reject the null,
whereas the pooled tests reject less than 10%. Additionally, when b becomes larger, LM and W
are powerful even for small N and 7', while the power of the pooled tests is in fact close to the
nominal size. Note that the equivalent model with time-invariant loadings has four factors under
DGP Al, so XX'/NT has four nonzero eigenvalues asymptotically. When b = 1/3, and N and
T < 200, IC only captures the first three nonzero eigenvalues, yielding three estimated factors. By
Stock and Watson’s (2002b) result, these three factors consistently estimate the original factor space
because the break is “small”. Under such a circumstance, PCA estimates the original factor models
with time-varying loadings, so BE’s pooled statistics are powerful. However, as the break becomes
larger, Stock and Watson’s (2002b) result based on “small” break does not hold any more. The
factor space is augmented, and PCA in fact estimates the equivalent model with four factors (see
the last column of Table 2A). It is clear that our tests are much more powerful for b > 2/3, whereas
the rejection rates of the pooled statistics are close to 5% because the equivalent model does not
have time-varying loadings.'! Finally, since the Bonferroni tests are always more conservative than
the pooled tests, it is not surprising that Bonferroni tests lack power when the sample size or b is
large.

DGP A2 investigates the power when only a fraction of factor loadings have structural breaks.

We set a € {0.2,0.4,0.6,0.8}. The results are shown in Table 2B. When a = 0.2 and N and

"The individual test s; will also be lack of power due to the same reason. To conserve space, we do not report
these results.
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T = 100, the pooled and Bonferroni tests have high power, while our tests are less powerful. This
is consistent with the recent result by Bates et al. (2012) that PCA estimator can consistently
estimate the factor space when only a “small” (asymptotically negligible) fraction of factor loadings
have breaks. As N and T increase to 200, however, our tests become more powerful than the pooled
and Bonferroni tests. Also, when a larger fraction of factor loadings have structural breaks, LM
and W have better power than the other two classes of tests.

DGP A3 considers the power against type 2 break. The post-break loadings are equal to pre-
break loadings scaled by a parameter c. We set ¢ € {0,0.25,0.5,0.75}, so the factor structure
becomes weaker after the break. When ¢ = 0, there is no factor structure in the post-break
subsample. The results are reported in Table 2C. It is remarkable that both Bonferroni and pooled
statistics have almost no power under this type of break. The reason is that the factor space is
not augmented under this type of break, and PCA always estimates a model with time-invariant
loadings whether the break is small or big (see (2.18)). In contrast, the results in Table 2C show
that the power of W and LM increases as N and T increase, confirming the consistency of our tests

against type 2 break.

3.2 Testing Breaks with Unknown Break Date

In this subsection, we investigate the size and power of six statistics, sup-W, exp-W, mean-W,
sup-LM, exp-LM, and mean-LM, without imposing the knowledge about the location of break
date. Table 3 presents the simulation results under the null hypothesis. Under DGP N2, the size of
our tests is not affected by the cross sectional correlation of the idiosyncratic shocks. Note that N2
does not allow serial correlation of factors or idiosyncratic shocks. It turns out that the statistics
using HAC estimates become relatively conservative, but as the time dimension increases, their
effective size becomes closer to 5%. Under DGP N3, we consider the case where both factors and
idiosyncratic shocks are AR(1) processes. As expected, statistics without using HAC over-reject the
null hypothesis more frequently than the nominal size, and those using HAC estimates have much
better effective size. Since the LM-like test uses the full sample to estimate the sample variance, it

is not surprising that the tests based on LMp and LMgs almost always have better size than those
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based on Wg and Wg. In fact, sup-LM has the best size: the size of both sup-LMp and sup-LMgg
is clustered at around 5%; exp-LM also has decent size: the size of exp-LMp and exp-LMgg is
clustered at 6%; mean-W test over-rejects the most frequently, but their size never exceeds 12%.
Tables 4A, 4B and 4C report the power of sup-W, exp-W, mean-W, sup-LM, exp-LM, and
mean-LM under DGPs Al, A2 and A3, respectively. Under DGP A1, all of these tests do not
have good power when the magnitude of the break is small, i.e., b = 1/3, for small N and T .
This is similar to the results shown in Table 2A. As b increases, all of these tests become powerful,
though the power is not monotonically increasing in b. Under DGP A2, all tests are not very
powerful in small samples (N = 100 and 7" = 200) when a small fraction of (o« = 0.2) factor
loadings have structural breaks. However, the power increases substantially and approaches one as
the sample size increases, with a = 0.2 unchanged. Additionally, as structural breaks become more
prevalent, all tests become powerful. Under DGP A3, all tests have limited power when ¢? = 0.75
and T' < 200. It is remarkable that mean tests are more powerful than supreme and exponential
tests when ¢ = 0.75. This is consistent with the result by Andrews and Ploberger (1994) that the
mean test is designed to be powerful against small breaks. As ¢? decreases, all tests become more
powerful. When T = 500 and ¢? < 0.5, all tests have power equal to one.'? Finally, note that our
tests almost always detect reasonably big breaks when N = T = 500 under DGPs A1-A3. This

confirms the consistency of our tests.

3.3 Power Comparison with the Chen, Dolado, and Gonzalo’s (2012) Test

Chen, Dolado, and Gonzalo (2012) propose a test for structural break in factor loadings by testing

whether or not there is a break in the coefficients of the following regression:

flt = ¢2f2t + ...+ ¢f~fm + up = ¢/f—1t + Uy,

where 7 is the number of factors determined by Bai and Ng’s (2002) IC, flt,---, frf‘t are the factors

associated with the 15,..., 7" eigenvalues of X X', respectively, and f_1; = [ for... f;ﬁt]l and ¢ =

2Note that DGPs A1-A3 do not allow serial correlation in the data, so the tests using HAC estimates are less
powerful than those using heteroskedasticity robust estimates.
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[ca...ci]’. They develop both Wald and LM versions for their test.

We perform power comparison between our tests and the CDG tests under DGPs Al and A3 for
unknown break date. Table 5A reports the results under DGP A1 (the superscript “CDG” denotes
the CDG tests). Under DGP A1, neither our test nor CDG test uniformly dominates the other.
When White’s (1980) conditional heteroskedasticity robust estimate is used, our sup —LM; test
tends to be more powerful than sup —LMOC DG " while our sup — W, has similar power to sup —WOC ba,
When the HAC estimator is used with the Bartlett kernel, the results are mixed. sup —LMp is more
powerful than sup —LMgDG when T' = 500. The power of Wg is very similar to that of WBCDG,
while sup —Wg DG tends to be more powerful when 7' < 200.

Table 5B reports the results under DGP A3. It is remarkable that both sup —LM§P¢ and
sup —LMgD & have very limited power even when the factor structure disappears after the break,
ie,, c=0, for N =T = 500. sup —WOCDG and sup —WgDG also have little power except for ¢ = 0.
Note that this type of alternative is ruled out by CDG’s assumptions. In contrast, both our Wald

and LM tests are powerful under DGP A3. Hence, our tests can detect more types of breaks in

factor loadings.

Remark 2: Note that the power of our tests depends on the consistency of the Bai and Ng’s (2002)
IC. It is well known that Bai and Ng’s (2002) IC tend to overestimate the number of factors if
the idiosyncratic shocks are correlated (see simulation results of Onatski (2010)). It is remarkable
that the power of our tests will not suffer too much because an F with additional columns still
has a break in its second moment. Hence, our test is still consistent when the number of factors is
overestimated (namely, # > r + ¢; under type 1 break or # > r under type 2 break). If the number
of factors is underestimated, our test may lose some power in finite samples because there may be
breaks in the ignored factors. This is also observed by Chen et al. (2012) in their simulations for

the CDG tests.
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4 Conclusions

This paper proposes new test statistics for structural breaks in factor loadings of dynamic factor
models. We consider testing the null hypothesis that the factor loading matrix is constant over time
against the alternative hypothesis that a fraction of or all factor loadings have a single break at a
common date. Our contributions include the following: First, by reducing the infinite dimensional
parameter problem into a finite dimensional problem, we are able to allow for the use of conventional
critical values, unknown break dates, and serial and cross-sectional correlations in the idiosyncratic
shocks. Second, we treat the number of factors to be determined rather than to be known, and our
tests are more powerful than the existing tests based on factors selected by information criteria.
Although we only considered the single-break alternative hypothesis, we expect that our tests have

power against the alternative in which there are finitely many breaks in factor loadings.

29



Appendix

A Proofs of the Results in Section 2.4

First, recall that V7 is the r x r diagonal matrix of the first r largest eigenvalues of (1/TN)X X' in
decreasing order, and the estimated factor matrix F is /T times eigenvectors corresponding to the r
largest eigenvalues of X X’. Therefore, we have (1/NT)X X'F = FVyr and (1/NT)XX'FVyt = F.
Let Sy7 = min{v/N, VT}. Using X = FA’ + e gives:

1

NT(FA’AF’ + FNe +eAF +ed ) FVyl = F (A1)

Using the fact that H = (AA/N)(F'F/T)Vy2 yields:

r _ 1 1T I I i —1
F—FH_W(FAeF—l—eAFF—i—eeF)VNT (A.2)

R (1 & 1. 1 & 1,
ft_H/ft:Vle“ (TZfs'YN@a t)"‘fosCst"‘TZfsnst‘i‘TZfsgst (A3)
s=1 s=1 s=1 s=1

where (5 = e/j\?t —n (s, t), nst = fiNey/N,and & = f{A'es/N. Before we prove Theorem 1 we

present three lemmas, first two of which are due to Bai (2003) and are stated only for convenience:

Lemma 1 (Lemma A.1 of Bai, 2003): Under Assumptions 1 - 4,

LSS B =0 ( ! )
N o (L
Tt:l 8 512VT

Lemma 2 (Lemma B.2 of Bai, 2003): Under Assumptions 1 - 6,

1

~

A 1
(F—FHYF =0, | o
5NT

Lemma 3: Under Assumptions 1 - 6 and 8(a), for mo satisfies 0 < m < my < 1,

[T

1 A 1
sup |\ ) (fe = H'fe)fi|| = O ()
wE[m,m2] LWTJ ; ' e P 5]2VT
1 . 1
SUp |\ =7 (fe—H'f)f| =0 ()
TE[m1,m2] T— I_ﬂ'TJ t:L%Jrl t p 5]2VT
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Proof of Lemma 3: It follows from (A.3) that

|7T |
sup Z —H' f)f]
wE[m1,m2] =1
1 \mT| T | 7T | 7T \nT| T
= sup VNT =) Z Zfsft’YN s,t) + Z Zfsft<5t+ =3 Z ZfsftnstJr 2 Z Zfsftfst
T T T
mE[m1,mo] t=1 s=1 t=1 s=1 t=1 s=1 t=1 s=1
[=T] T [7T] T
< Sup T2 Z Zfsft’YN S, t sup T2 Z ZfotCst +
mE([m1,m2] t=1 s=1 TFG[WMFz} t=1 s=1
\nT| T \nT| T
sup |2 S0 Fuftal + s | S0 e | IVt
mE[m1,mo] t=1 s=1 mE[m1,ma t=1 s=1
= I+IT+1II+1V
Term I can be expressed as
|=T| T 1 =T T
sup T2 Z Z — H'fs) fin (s, t) T2 Z ZHfsft'YN(S t) (A.4)
mE[m,mo] t=1 s=1 t=1 s=1
The first term in (A.4) is bounded by
1 \7T| T
sup Tz Z Z H/fs ft’YN(S t)
mE[m,m2] t=1 s=1
T 3 1 L | =) 2\ 2
< | F 2l —H’fs||2> sup | = ) | D fiww(s,t)
(TZ mE[m,m2] Ts:l T ; '

~

mEmy,mo] =1 t=1

3 | T L) | T 3
. - H’fs||2> ww |25 3 A X (s0F

IA
—
N =
IIMH

A / 2% ) | LT ) 3 T (7T 3
Hfs—Hsz) w7 2 I 2503 h(s 0P

TE[m,m2] t=1 s 1 t=1

Il
—
N =
M=

Il
—

< <1XT:’J?—H/fHQ)é(lzT:HftHQ)%(12T:Z\7Nst )é
C VT s=1 ) ) = T

s=1t=1
= 20, (5-) o

where the O, (1) follows from Assumption 1 that E|| f;||> < M and the fact that = 37 S0, |y (s, )|? <

'ﬂH
N~

—_

31



M by Lemma 1(i) of Bai and Ng (2002). For the second term in (A.4), we consider its expectation
(excluding H),

|=T| T 1 |=T| T
E sup T2 Z Zfsft'yN S, t < FE sup ﬁ Z Z |f5ftH’/YN S t)’
me[m,ma] t=1 s=1 ne[m,ma) =1 a1
= < 5 ZZHfsftHWN (s t)!)
t=1s=1
< TQtzlzl(Ersz?Erftu) [y (s, )]
M
< T2 Z;X:IWN s, )] T
t=1s

where the last two inequalities use Assumptions 1 and 3(b). Note that H is O,(1) because it
converges to a constant matrix Hy. Therefore, term I is O, (ﬁ)
NT

Term II can be written as

|[*T|] T |=T| T

1
sup T2 D e = H )it + 5 D0 3 H'fuf Gt (A.5)
mE[m,me] t=1 s=1 t=1 s=1
The first term in (A.5) is bounded by
1 2 %
|[=T] T 1 T ) 2 [ﬂ'Tj
sup T2 Z Z H fs ftCst S (TZ ||fs _H/f8|2> sup Z ftCst
mE[my,m2] =1 s—1 —1 mE[my,m2] ——1
1 T 3 1 T 1 7T 1 |=T| 3
< *Z”fs H/fSH2 sup *Z* Z [ f2l |2 Z Cst‘2
T s=1 mwE[m,ma] T s=1 T =
L I 3 [ L ) 3 T |nT) 3
< (TZIIfs—H’fs|2> S Z 1) {75303 lel
s=1 Telm, T2 s=1 t=1
1T 2 A 3
< *lefsfH’szz antn? =2 ¢l
Ts:l T T s=1t=1
1 1
= o(5;) om0 (5)
1
where (% Dy lon )2 = (LN) follows from the fact that
T T N 2
LSl = 13 22 g Llewsen — Blensell ) =0y (3
|Cst| = ksCkt — ksCkt =Up | *7
T2 s=1t=1 NT2 s=1t=1 \/> k=1 N



by Assumption 3(e). For the second term in (A.5),

\=T] T [=T] T 1 N
sup T2 SN H'fof{Cu su Z Z ftN Z ersert — E(ersert)]
7l'€[7r1,7r2} t=1 s=1 7r€[7r1,7r2] t=1 s=1
Let TlvT ST SN folersers — E(ersert)] = 2, so the above equation reduces to
|~ L /1T 2 2 )
L WZ afl| < a2l ;H 7 ) IH] = —==05(1)

where & 37, [|z]|> = Op(1) follows from Assumption 6(a) E||z = E||ﬁ ST SN folerser
—E(exsert)]||> < M for all t. Thus term II is O, (5 f)
NT

Term III can be written as

1 [=T] T |=T] T
sup 2 Z Z H,fs ftnst + 2 Z ZH fsftnst (A6)
mE[m1,m2] t=1 s=1 t=1 s=1

The first term in (A.6) is bounded by

|=T| T
sup T2 Z Z — H'f5) finst
mE[m,m2] t=1 s=1
1 X 7 1 2 T 2\ 2
< ( Z”fs H/sz2> sup Tz *thnst
s=1 mE([my,mo] s=1
1 1
1 I 3 1 I 1 =T 2\ ®
< ZHfs H/f8H2 sup *Z Z fi Zf/\kekt
s:l TE[m,m2] T s=1 N
1 - 9 2
1 Z , [, 2/ T | 2
< ( > Ifs- H’fs||> TZ<TZ ft’NZf;Akekt>
s=1 | s=1 t=1 k=1
1 T i1 (1T 1 T 2
< ZHfs HIfSHZ *Z *Z”ft ’2 Z Zf)\kekt
s:l _T s=1 Tt:l Tt 1
1
< - <1i|f f||2> 1ZT:||f||21ZHfIIQIZ Ly T
e = s t s k€Lt
N Ts:l T t=1 \/Nkzl
1 1
= —0,—10,(1
N p(5NT> »(1)
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where the last equation uses Assumptions 1 and 6(c). The second term in (A.6) is bounded by

[#T] 1 77 1N
Sup T2 Z ZH fsftnst = sSup 2 ZH/fSN Z fé)\kektft/
we[m,ma) =1 s—1 mE[m,ma] t=1 s=1 k=1
1 1 Y
= sup |5 H'fufie= > Akerefi
mE([m1,mo] T s=1 NT t=1 k=1
'y LSS
< fsfe sup || Ak fiext
refmm) | NT 15 k=1
1
-0 (r)
PA\VNT
where the last equation follows from Assumption 8(a). Thus, term IIT is O, (ﬁ)
T
For term IV, we rewrite it as
|nT| T . \mT| T 1 \nT| T
sup =) Z Zfsft(ést >~ Sup =) Z Z(f H/fs)ftgst + = T2 Z ZH/fsftfst
€T ,m2] =1 s—1 wE[my,ma] t=1 s=1 t=1 s=1
The first term in (A.7) is bounded by
xT] T
sup e a) Z(fs - Hlfs)ft/gst
TE[m1,m2] t=1 s=1
1 & 1 L1 \
< *Z”fs H/sz2 sSup *Z T Z ftfst
T4 melmm) \ 1 s
1 1
1 & : 1 &1 & \’
< Z||fs_H/f5H2> sup *Z ™ Z fi <Z)‘;cft6ks>
(T s=1 relmm) \ T 5| T i N
1
1 & : 1 (1 & 1 \
= (T Z Hfs H’sz2> Sup T Z Z fite (N Z)‘;cek3>
s=1 wE[m,m2] s—1 el
1 T |=T) T XN 2\ 2
< . — H'f,||? su — = — Y Aeks
< (5 ;Hf fu) o S e (53 | e
1< AR 2 1 (1 &)1 & 2 - 1
< = s —H' s = M€ s =0 ( )
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For the second term in (A.7), we have

|=T| T 1 [=T] T 1 N
Sup T2 Z ZHIfoiéSt = sup T2 Z ZH fot <N Z A?cft@gs)
mE[m1,m2] t=1 s=1 TE[m1,m2] t=1 s=1 _
1 T N | 7T |
= sup ENZ 2l ]gek:s ftft
wE([m,m2] NT 5:221 kg Z
1 T N 1 1
< | X e £ Y1 =0, ()
H NT s=1k=1 t 1 \/ﬁ

where the last equation uses Assumption 6(b). Therefore, term IV is O, ( 5 \ﬁ)
NT

Combining the above results the sum I + 11 4 IIT + 1V is O, <52> |
NT

Proof of Theorem 1: It is sufficient to prove that

™ £ p T £ F ™ T
vech (EtgJ fufl  Zieiarin ftﬂ) _ vech (ZL TJ H'fiflH  Xi—|x7|+1 H’ftft/H> H

V= sup VT

nelmm) [«T] T —|nT] 7T - T — |=T]

and
™ T
VI = sup VT |vech (ZL TJ H' fifiH i LTFTJJrlH/ftf{H)
7r€[7r1,7r2} LT(TJ T —
oo (S HyfifiHo Yy HofifiHo
[T T — |nT]

are both op,(1). Term V is bounded by

—i—supﬁ

TE[m,m2]

V < sup VT

TE([m1,m2]

S R f - v ffH
Vech< = L;TJ t >

T — |nT]

vech (ZtT:Lﬂ-TJJrl fift - H/ftft/H) H

To save space, we will only prove that the first term in the above inequality is o,(1), because the
negligibility of the second term can be proved in a similar way. The first term is bounded by

sup VT ||vech ZLWTJ ft(ft fiH) + (fr — H'f2) VfiH
TE[m,m2] \_WTJ
L wup T |vean (S e B = SH) B — ) + (- B SH
TE[m,m2] |_7TTJ
SE (G — H ) (f - fH) SEN H L (f - fH
= 7\'6?711:11pﬂ'2 vT <| 7T 2 | 7T —
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Note that

T 7 _ g1 £
sup \/f t=1 (ft Hft)(ft ftH)

<

|_7TTJ - We[ﬂll,)ﬂg] Lﬂ-TJ - \_7T1TJ

mE[my,m2]

where the last equation follows from Lemma 1. Also, Lemma 3 implies that

sup VT

TE[m1,m2]

[T)

1 A VT
—=7 D H fil(fy — fiH)|| = O <>
|7 T'| t:ZI Lot P 63r
Since % — 0as N, T — oo, term V is 0,(1). For term VI, we can bound it by

U H fof{H — Hyfof{Ho > w42 H' feJ{H — Ho fo f{ Ho

VIS o= HAP VTS = P _ (

sup VT t=1
m€[m,m2] (7T T — |=T]
K ! ! T
L V|| ZLL U HOSSUH 4 S = Ho) | Yem ey (B = HOSSIH + Hofefi(H = Ho)
we[ry,m2] I.ﬂ—TJ T- Lﬂ-TJ

77| T— |nT] |7T'| T — |=T]

TE[my,ma]

Zth?J ftftl o Z?:LwTJ+1 ftft/
[nT] T — |nT]

IN

VT|H — Ho||  sup

we[my,m2]

(N + [1Holl)

1
= ﬁop(l)Op (\/T) Op(1)

™ ! T s T
=  sup VT|(H —H) (Ztt—? fefl  Dizirrin ftft/) H + H, ( D St Dy S

) (H — Hop)

where the last equation uses Assumption 8(b) and the fact that |[H — Hyl|| 2 0 implied by Assump-

tions 1 - 4 and 7 (See Bai, 2003) . Thus, term VI is o,(1). B

Before proving Theorem 2 we present and prove Lemmas 4-8.

Lemma 4: Under Assumption 3(b), for all N and T, there exists a constant M; < oo such that
%Zthl Zstl fyjlv(s,t) < M;j. Under Assumption 5(b), for all N and T, there exists a constant

My < oo such that "7, V3 (s,t) < My for t =1,2,...,T.

Proof of Lemma 4: Let p(s,t) = vn(s,t)/\/ AN (s, 8)n(E, 1), so |p(s,t)] < 1. Since yn(s,s) < M for

every s,

IN

VT

2
6NT
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where the last inequality follows from Assumption 3(b). Also, we note that for each t,

T T
Z7ZQ\I(87t) = Z’YN(SvS)’YN(tﬂt)p2(Sat)
s=1 s=1
T
< MZ ‘7N(37 S)FYN(Lt)P ‘p(svt)’
s=1

T
= MY (st < M
s=1

where the last inequality follows from Assumption 5(a). B

Lemma 5:
(i) Under Assumptions 1 - 4,

1 . 1 1
72V H =0, (7) 00 (5
(ii) Under Assumptions 1 - 5,
1 s s 1
TZHft—HftH =0p 51T
t=1 NT
(iii) Under Assumptions 1 - 4.

1 & s
T;Hftll =0p(1)

Proof of Lemma 5: Equation A.3 implies that

1 ol &
=D M= H A < 64\ Vel = D (ar+ b+ o+ dy)
T= T=
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A 4 T 4 T 4
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1 & 2T/ ?
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Under Assumption 3(b), the above inequality is bounded by
1 /1 &, 1
: ansr?) Iy S st =0, (5)
T (T s=1 t 1s=1 T

because + 31, I fs]? = O,(1) and i S A (s,t) < My by Lemma 4. However, under

Assumption 5(a), which is stronger than Assumption 3(b), we can derive a sharper bound

;§g< ZHsz2> % —-o,(p)

The difference between (i) and (ii) of Lemma 5 is due to the different bounds of 4 ST a;. The
rest of the proofs of parts (i) and (ii) are the same.

Second,

IA
3
(]

1T
~S"
T;t

IA
3|
M=

4
Since E(%¢2, < max, ¢ E|¢q|* and B|Cy|* = N72FE ’N‘l/z Zfil[eweit — E(eiseit)]’ < N72M, by

Assumption 3(e), %Zthl b = Op (ﬁ)
Third,

1 T
— E C
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by Assumptions 1 and 6(c).
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Finally,

4

1z T T
Tzdt < Z Z st
t=1 =1 |ls=1
T T 4
= Z Zfse Afi/N
t=1 |ls=1
T
< Z 5€ A/N s

el

(;Szlnfsu?) (TlNZ ) IZIIftII“ o (3)

by Assumptions 1 and 6(c). Thus, under Assumptions 1 - 4, % STy + b+ ¢ +dp = O, (%) 4
Op (%), while under Assumptions 1 - 5, % Zthl ar+b+c+dp =0, (%) + O, (ﬁ) For part

(iii), rewrite %Zthl ”ft”4 as

N o

T T T
=~ B o U < (Z 1o A+ HH’ft\I4> = 0(1) + O (1)
t=1 t=1

t=1

by the result in part (i) and Assumption 1. B
Lemma 6: Under Assumptions 1-7, H — Hy = O, (#)

ONT

Proof of Lemma 6: By the identity (1/NT)XX’F = F'Vnr , we have
1 1 A
AANZ 1 XX\ -~ ANAN? (F'F
—F F=
(N)T (NT) (N)(T)VNT

Note that Vyr — V 20 by Lemma A.3 of Bai 2003. We will prove that Vy7 —V = O, (6NT)
Substituting X = FA’ + e into the above equation, we get

(A’A)5<F’F> (A’A) FEY _(A’A)é FEY
N T)\N)\T NN T )N

where
d = (AIA>2 F’(FA’6’+F'6AF'+F'66)F
NT N ) NT2
1
AMNANZ 1 . 1
- ~F'(F — FH)Vyp = O, [ ——
(N) 7 WV Op(f%)
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by equation (A.2) and Lemma 2. Let

1 1 1 A
ANANZ (F'F\ (NA\2 1 NAN?2 (F'F
Byt = B =Y3¥p¥% =
NT < N > ( T ) ( N ) ) Faip, RNT < N ) < T >7

where By — B = O, ( ) by Assumptions 1 and 2, and Ry is Op(1) and invertible, because
F'E
T

N

==

(1) and converges to some non-singular matrix by Proposition 1 of Bai (2003). Now we

have
(BNT + dNTRR[IT) Ryt = RnTVNT
Let V3, be a diagonal matrix consisting of the diagonal elements of Ry, Ryr. Define YTyr =
w1
Rn1Viyp?, 80 Yyt is Op(1) and contains eigenvectors of BNT—I—dNTRX,lT, ie. (BNT + dNTR;,lT) YNt =

Y n7VNnT. Note that dNTR&lT =0, (621) by the facts that Ryt = Op(1) and invertible and that
NT

dnt = O, (61%T>, so B NT+dNTR]_V1T—B =0, (%) Assumption 7 implies that the eigenvalues of
B are distinct, so Vyr =V = O, (ﬁ) and Tnr =T =0, ( ) This is because both eigenvalues

and eigenvectors are continuously differentiable functions for matrices with distinct eigenvalues.
By Equations (A.1) and (A.2),

N7 P(F— FH)Vyr = Var
F'FANAFF 1
T N T P\ 6%,

where the last equation follows from Lemma 2. Based on the result that Vyr —V = O, ( 5NT) ,

F'FNAFFE 1
/ — =

Recall that diag(RypRn1) = V3p. Therefore,

1
%%v—V:dMgG%WRNT—V):OPQMT) (A.8)

1 ol
Using Ty = RNTVNT2 and the definition of Ry7, we have ==~ N ) Y n7Vy7. Comparing

FF

F'E_ (A’A T2
and its probability limit gives

1

AAN T2 _1
< N ) —E
1
SRAES

P\ SNt

F'E

1 1
—-X,2TVz2 =

£l _1 w1 _1 «1
nwwﬁ+sznw—Tﬂ@;+;fTO@;_vg
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by Assumption 2 and Equation (A.8). Therefore, H—Hy = (NA/N)(F'F/T)Vya—Saplim(F'F/T)V ! =
Op (ﬁ) by Assumption 2 and the result that Var —V = O, (ﬁ) Note that V7 and V are
diagonal matrices consisting of positive eigenvalues, so they are invertible. B

Lemma 7: (i) Under Assumptions 1 - 4,

1

Dy j(m, F) = fl,j(W»FH)” =0p (T_i) +0p (N_§>

sup sup
me[m,me] 0<j<|nT] -1

sup sup

melmim] 0<j<T—|nT)-1 Da(m, F) = Ta(m, FH)| = 0, (T74) + 0, (N %)

Ogjs.ggil Hf‘J(F) - f‘](FH)H =0, (Tﬁi) + Op (Nfé)

(ii) Under Assumptions 1 - 5,

. . A 1
sup sup I'yj(m, F) — I‘Lj(Tr,FH)H =0, <5>
T€[m,m) 0<j<|nT|—1 NT
A . . 1
sup sup HFQJ(’]T,F) —F27j(7r,FH)H =0, (5>
m€lm,m2] 0<j<T—|xT|-1 NT

sup 5(8) 571 | = 0, (5
0<<T—1 NT

Proof: To save space, we will only prove the first equations of part (i) and (ii), because the rest can
be proved using a similar argument.

sup sup Hf‘l,j(w,ﬁ)—fl,j(ﬂ,FH)H

w€[my,ma] 0<j<|nT|—1

1 =T
= sup sup Z vech(fif{ — I)vech(fi—; fi_; — I)’
w€[my,ma] 0<j<|nT|—1 LWTJ =41
| LT
el tz;l vech(H' fs f{H — I.)vech(H' fo—; fi_;H — I,.)’
=j

IA

LT
sup sup {prlTJ Z ||vech(fif — I )vech(fi; fi_; — H'fui fi_;H)'||

<5< —
m€[m1,m2] 0<j< |7 T]—1 =it

|=T)
i ﬁ > |[vech(Ffi = H'fofiH)veeh(H foos fl_ H — 1. }

t=j+1

IA

7T [=T]
sup  sup {L;TJ STAF ft_jf;,j—Hfft_jfg,jH||+ﬁ ST\ fes By~ H fflH ||

<3< —
m€[my,m2] 0<j< |7 T|~1 t—j+1 t=j+1

7T |=T)
41 £ / 1 A A ,
Bt Z Jefi = H'fofiH|| || H fees fi-iH || + mz Irsi- H’ftftHH}

= VII+VIII+IX+X
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Term VII is bounded by,

sup sup

|~ 2
1 4
| CAlRIALL
m€lm,me] 0<y<| 7T ]~1 ko t 41 LW

T A
< sup sup Ifel
m€[mi,me] 0<j<[nT] -1 ﬂ-T t%—l LW
9 L]
Lﬂ_T Z H ft —J Hft —J ft ]HH
(=T
< sup sup
7r€[7r1,7r2} OSjSLﬂ'TJ—l t 41

=T
( S fiej - H fio 9H4

t 7+1

(VAN
/N
—
2a
S
ingE
=
=
~
[V
/\

where %Ethl HftH4 =

that terms VIII, IX and X are O, (T

under Assumptions 1-5. B

Lemma 8: Under Assumptions 1 - 7,

sup sup
w€[m,m] 0<j<|nT|-1

sup sup
w€[my,me] 0<j<T—|nT|—-1
sup HF
0<j<T-1

Z HftH4

=

=

1
2
il (

2 |nT|

t=75+1

1

T 2
Z Hszu‘*)

FH) —T;(FHy) H - (5NT

42

[T)

S sy = oy ) + (g = B o) £ |

t=75+1

N |=

[T)

S (sl - sm)|

t=7+1

[T}

> e JH4

t J+1

Z 17— ]HH“)

1
2

1
2

Z Ifi — f£HH4>

N

[Pasr 28~ Fusto, 10| = 0

[=T)

Z Hft -7

t 7+1

by Lemma 5(i) under Assumptions 1 — 4
by Lemma 5(ii) under Assumptions 1 —5

1>
ONT

wa, FH) Pyt )| = 0, (5 )

)

ONT

ft’_jHH‘*)

O,(1) follows from Lemma 5(iii). Using a similar argument, one can prove

*i) + Oy (N*%) under Assumptions 1 - 4, and O, (L)

ONT

1
2

)

1
2



Proof: To save space, we will only prove the first equation of Lemma 8, because the proofs of the

rests are analogous.

sup sup Hf‘ld‘(ﬂ, FH) -1y (m, FHO)H
m€[m,me] 0<j<|nT]—-1
[=T]
= sup sup ! Z vech(H' fe f{H — I)vech(H'f;—; f{_;H — I,.)'
relmm] 0<j<lrr)-1 | [7T] 2 i
1 [7T]
- > vech(Hyf, f{Ho — I,)vech(Hy fi—; fi_jHo — L)’
|7 T| 5
=j+1
|=T ]
1
< sup sup vech(H' fy f{H — I,.)vech(H' H — H, H
”EWLM]OSﬁﬂWﬂ—l{LWTJ §: H fifi Jvech(H' fij fi; oft—jfi—jHo)'
T
1 Tl o o o
gy o [[vech (S iH — g o veeh(Hi s fi -y o — 1)
t=j+1
| 7T |
1
< sup sup H £ HIH H_H .
mE[m1,m2] 0<j<L7rTJ—1{L7TT Z ” ftft H H ft jft j oft ]ft 7 OH
r |_TI'TJ |_7TTJ
ﬂwT > HH feoifijH — Hofiojfi jHOH—F Z |H' fofi H — H) fof{ Ho|
t=75+1
1 T
gy o HH = Hfof ol |[H S o
\mT'| 5
=j+1
= XI+XIT+XIIT+XIV

Term XI is bounded by

XI

IN

w€(ry,me] 0<j<|nT|—-1

IN

we[my,me] 0<j<|[nT]—-1

=T )
sup Z IfiH

IN

TE[my,m2]

(Lﬂlﬂ 3 ||f;H||4>

[=T] 2 [=T]
sip sup STURHIY) | S I St P+ s s HolP)
K J | 7T |

T 3
LW%TJ (1P + [ Hol1?) Y ||ft||41 IH — Hol| = 0,(1)0, <1>

oy 3 =T
1 1
sup sup ( [T E ftH4) (Lﬂ'TJ E HH/ft_jft’_j(Hng)Jr(HfHo)’ft_jft'_jHOH

t=j+1 t=j+1

Nl

|H — Ho|

t=j7+1

3y

t=j+1

L=T] 2

2
) 2 (R + LS | 1~ Hol
t=1

ONT

by Assumption 1 and Lemma 6. The proofs of terms XII, XIII and XIV are similar to that of term
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XI. |

Proof of Theorem 2: It is enough to show that

sup
TE[m1,m2]

Qun(m, F) — Qm(W,FHO)H 20 form=1, 2

|Q(F) = Q(FH)|| % 0

We will only prove the first equation when m = 1, and the rests can be proved using a similar

argument. Note that

sup Ql(w, ]3’) -0 (m, FHO)H
TE[m1,m2]
< sup || Q(m, F)—Qi(x, FH) H + sup HQl(T(,FH) - QI(W,FHO)H
TE[m1,m2] wE[m1,m2]
= XV+XVI
For term XV,
sup Ql(ﬁ,ﬁ’)—fll(ﬂ,FH)H
TE[m,m2]
|7 T |—
< sup + Z k’( ) (F17j(7T,F)+F17j(7T,F)/)
mE[mi,ma] 7TTJ

|7 T|—1
—FlOﬂ’FH Z k( )(f17j(ﬂ,FH)+f17j(F,FH)/)

S\r)

Note that ‘/@ (SL]TJ)‘ <1andk (S j

LWTJ) = 0if j > S| for Bartlett and Parzen kernels. Thus,

S
Pro(m, ) = Dro(m, FH)|| + 2 sup Hrlj m, F) = Dy (m, FH)|(A.9)

wE[m, 7r2]

XV < sup

wE[m,m2]

1
For Bartlett kernel, the RHS of (A.9) is O, ( ) by Lemma 7(ii) and Condition 1(a) that S|, <

KTs3 for any 7 € [m1,m2) C (0,1), so term XV is 0p(1) if T—3 — 0as N, T'— oo. For Parzen kernel,
the RHS of (A.9) is O, ( ) + 0, ( ) by Lemma 7(i) and Condition 2(a) that S|,z < KT

.MH‘ U=

T

IN]

for any m € [my, 2] C (0,1), so term XV is 0,(1) if L& — 0 as N, T — oo. For the QS kernel, term
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XV is bounded by

wE[my,m2)

S|
sup {f o(m, B) = Tro(m, FH)|| +2 Y
j=1

(5 )| ot P~ Pt FH)H}

k( )‘HFLJ (r, F) — Ty j(r, FH) H}
Slar)

|[7T|-1
+ sup {2 Z

wE[m1,m2) J=Spr+1

o

= a+b

C\»—‘
Q\»—‘

i
to\»—a

Term a is O, (
T

) by Lemma 7(i) and Condition 2(a). For term b, note that

k(x) = 2 o (6?) — cos (m)
127292 bz 5

It is obvious that for any |z| > 1, there exists M > 0, such that

< M.

in( 67z
smgif ) P (675rx)

5

Therefore, term b is bounded by

7T |—1
25M
2
sup { S\_WTJ Z W

71'6[7T1,7r2] j:SLwTJ+1

o)t

25M (KQT%)2 T

< 5 Z = sup ||T 7j(7r,f7’) — fljj(w,FH)H
67T ) 1 ] 7T€[7T1,7r2]
J=lK1T5 |
1\ 2
e (r27%) /T 1 P4, By = s, FH)|
<S —_— vy sup 1,57, — 1147,
67T2 \_KlT%J—l J2 TE[T1,m2] ! !

1\ 2
e (o)
6 |\ KiT5] -1 T ONT
1
2 1 1 Ts
= O(T5)o(T5)O0,— ) =0, —
(oo (az) -0 55)
2
Thus, for QS kernels, term XV is op(1) if % — 0as N, T — oo. Using Lemma 8, one can show
that term XVI is 0,(1) in using a similar argument. W

To prove Theorem 3 we present Lemma 9.

Lemma 9: Under Assumptions 1 - 9,
(1) 1f \/T/N — 07 then Supﬂ'e 7r1 7r2 ||A( FH)” = Op(l) a‘nd SupTrG 71'1 7r2 ||A( )H = Op(l)a
(11) Supwe[wlﬂrg] HS(W7FHO) 1” - P( ) and Supﬂ'G[ﬂ'l,ﬂ'Q] ||S(7T7F) 1” - P( )7
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(i) $uPrefn, ) [0, F) ™" = 8 FHo) ™! | = 0p(1).

Proof of Lemma 9:
For part (i),

| 7T T
1 1
sup A(m,FH) = sup |vech|—= H'fif{H — m——— H'fif{H
mE[m1,m2) wE[m,m2] \-T‘-TJ 1; ' T- IjTTJ t:L%;j-i-l t
1 7T | 1 T )
< s | S Sl fui| 1
= Op(1)

by Assumption 8(b).

sup [ A(m, B)|| < sup || A(m, FH)|+ sup |[A(w, F) — A(x, FHo)|| = op(1)+op<ﬁ>

2
we[m,m2] wE[m,m2] wE[m,m2] 6NT

by Theorem 1. If v/T /N — 0, then the second term is o0,(1).

Now, we consider part (ii). Assumption 9(a) and the fact that 0 < m <7 < mp < 1 imply that
SUD e[y ] IS(r, FHo)—(2+72)Q = 0,(1). Since Q2 is positive definite, SUD e[y ] | prmin (S(r, FHp))—
pmin((% + 122)0)| < SUD iy o] IS(m, FHo) — (2 + )9 = 0,(1),"® where ppin(.) denote the
minimum eigenvalue of a symmetric matrix. This means that the eigenvalues of S(mw, F'Hy) are
- IS(, FHo) ™| = O,(1). For the second
o 1800 ) = (2 4 L) < supregry m I8(r, B) — S(m, FHO)|| +
SUD e [my o] |S(w, FHy) — (L + :2)Q|| = 0,(1) by Theorem 2 and Assumption 9(a), so

bounded away from zero uniformly in 7, so sup,¢|

part of (ii), we have sup,¢|

N . 1 1
sup |pmin(S(7Ta F)) - pmzn((; +

wE[m1,m2]

)< sup (80, F) — (= + ——)2| = 0,(1).

TE[m,m2] ™ 1—m

1—m

This means that the eigenvalues of S(W,F) are bounded away from zero uniformly in 7, which
implies SUp ¢z, 1 [IS(7, Y7 = 0,(1).
For part (iii),

S[.up | S(?T,F)_l—g(ﬂ‘,FHo)_lH

TE|T1,T2

=  sup |S(r, FHy)™? (S(W,FHO)—S(W,F))S(w,ﬁ)*lu
wE[m1,m2]

< sup S(W,FHO)_IH sup HS(W,FHO)—S(W,F)H sup S(w,ﬁ')_lH
wE([m,m2] TE[m,m2] wE[m,m2]

= op(1)

13This inequality follows from Golub and van Loan (1989, Corollary 8.1.3, p. 411).
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using the result in part (ii) and Theorem 2. W

Proof of Theorem 3: For part (i),

sup | Wr(m, F) — WT(W,FHO)‘

we[m, 2]

sup |A(m, FY [S(?T,F)_l — S(TI',FH())_1:| A(?T,F)‘ +

TE[my,m2]

sup [A(W,F)’—A(W,FHO)’]S(W,FHO)’IA(W,F)’—k sup

me[m,ma)

= 0p(1)

IA

using results of Lemma 9 and Theorem 1. The result that sup ez, ]

LMy (x, F) = LMy (r, F Ho)| =
0p(1) can be proved in a similar way.
For part (ii), since suprer, x,) Wr(m, F Ho) LN SUD e [m; o] @p(7) by Assumption 9(b), it is sufficient
to show that

sup Wp(m, F) — sup Wr(n, FHy)

we([my,ma] we[m,ma]

= op(1).

Note that Wy (r, F) = Wy (w, F) — Wr(m, FHg) +Wr(m, F Hy). Taking supreme on both sides gives

sup Wr(m, F) < sup Wr(n, F) — Wy(n, FHy) + sup Wr(w, FH)

wE[m,m2] wE[m1,m2] wE[m1,m2]

So sup¢ [m1,m2] Wr(m

, F) =SUP, ey mp) Wr(m, FHy) < SUD i)y |Wr (i, ) — Wr(r, FHO)‘ = op(1)
by the result in part (i). Similarly, one can also show that sup ¢z, x,) Wr (7, F'Ho)—sup,¢| Wr(m, F) <
SUD e[y ] Wr(n, F) — Wo(m, FHO)‘ = 0p(1). Combining these two inequalities give the desired

result. The result for the LM-like statistic can be proved in a similar way. B

exp (Wﬂ;,ﬁ)) ~exp (WT(TEFHO))’ _

0p(1). By mean value theorem, there exists a sequence of ¢, € [0,1] such that

m1,72]

Proof of Corollary 1: 1t is sufficient to prove that sup ¢z, )

<WT(7T, F)) (WT(TF, FH0)>‘
sup exp| —— | —exp| —————
wE[m,m2) 2 2
1 n 7TW 7F 1 - O W ,FH
= sup |- [WT(W, F) - WT(T(',FHO)} exp (C (7, F) n (1 —cx)Wr(r 0))‘
n€[mi,ms] | 2 2 2
1 . Wr(r, F)  Wi(r, FH,
< sup |5 [WT(?T,F) — WT(ﬂ',FHo)} sup |exp ( r(m, ) 4 (T, 0)>‘
wE[m,m2] 2 w€[my o) 2 2
= op(1)

where the last equality follows from the fact that both sup ¢z, ,) Wr (7, F) and SUPrg|
are Op(1) by Theorem 3 and Assumption 9(b). W

} WT(?T, FH(])

1,72
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B Proofs of the Results in Section 2.5

We present the proof of Proposition 1 and Lemma 10 and then prove Theorem 4.

Proof of Proposition 1: The proof is the same as that of Theorem 2 of Bai and Ng (2002). To show
that Bai and Ng’s information criteria are applicable to the equivalent models, it is sufficient to
verify that (2.17) and (2.18) satisfy Assumptions A-D of Bai and Ng (2002). Our Assumption 3 is
identical to Assumption C of Bai and Ng (2002). Thus, we only need to verify that (2.16) satisfies
the following assumptions under types 1 and 2 breaks:

Assumption A (Bai and Ng, 2002): E |g||* < co, and T SL, gi9) 2 S as T — oo for some
positive definite matriz Y.

Assumption B (Bai and Ng, 2002): ||6;]| < 0 < oo, |©'©/N — Xgl|| — 0 for some r x r positive
definite matriz Xg.

Assumption D (Bai and Ng, 2002): E (]{[ 21];\;1 Hﬁ Ethl greit 2) < M.

Under type 1 break, g: = (fb fl14,01xq) if 1 <t < [7°T], and gt = (fb 4, 01xq,5 f1) if
|7*T|+1 <t < T. It is straightforward that E ||g¢||* < co because of E || f;||* < oo by Assumption 1.
By Assumption 10(a), ¥¢,, is positive definite. To verify Assumption B, we have ||6;[| < V2 < oo
by Assumption 2 and 10(a), and the limit of @’(1)@(1) /N is positive definite by Assumption 10(a).
Also, the verification of Assumption D is straightforward based on Assumption 4 and structure of
gt-

Under type 2 break, gt = (fy, f1,) if 1 <t < [7°T'], and g; = (fo 4, f1,2) i [T T|+1 <t <T.
First note that F ||g¢]|* < co by ||Z|| < co and Assumption 1. Also, the limit of T=' S, gig) is

EO’O EO’IZ/
I :w*zp+(1—w*)[ F £

0,1/ 1,1

Zyn Zyp 7'

5700 50,1 77
by Assumption 1. 2@y, 1s positive definite because ¥ is positive definite and l ZEFO’ll P ;lel ]

F F

is positive semi-definite. Assumption B automatically holds by Assumption 2 since ©3) = A under
type 2 break. Finally, the verification of Assumption D is straightforward based on Assumption 4
and structure of g;. We have completed the verification of Assumptions A-D of Bai and Ng (2002).
|

Lemma 10: Under Assumptions 1-6, 8(a) and 10,
) T2 1 fr = T'gil* = Op(037);
(ii) For any m and g that satisfy 0 < m < mg < 1,

1
7T

sup
TE[m1,m2]

7|
> (fe— 909
t=1
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T

T—lprTJ oo (i = T ol

t=|7T]+1

sup
TE[m1,m2]

1
= O (5)

Proof of Lemma 10: Parts (i) and (ii) are just analogs of Lemmas 1 and 3. Part (i) is simply

Theorem 1 of Bai and Ng (2002) for the equivalent models. The proof only requires verification of
Assumptions A-D in Bai and Ng (2002), which has been done in the proof of Proposition 1.

For part (ii), the proof is almost the same as that of Lemma 3. To use the argument in the proof
of Lemma 3, we will need the following conditions:

Condition A. There exists an My < oo such that for all N and T':

(a) for each t, E HF ST SN L gslerser — E(eksekt)]H2 < My;

(0) B|| A= ST S abhen| < M

(c) for each t, E Hﬁ SN Bieis ! < M.

Condition B. For any constants my (md o that satisfy 0 < mp < " <My < 1,

F ZMTJ Zk 1 gtakektH = Op(1) and SUPr e[y 2]

2
T N
\/% Zt:LwTJH 2 k=1 gt%ektH =

SUPre(my ,mo]
Op(1).

These two conditions can be easily verified. Under type 1 break, gi = (fy, f14 01xq,)" if
L <t < [7T], gt = (fo4,01xq0s f1) 3 [7*T] +1 <t < T, and 0 = (A, A gy Agy)'- Hence,
parts (a)—(c) of Condition A are implied by Assumptions 6(a)—6(c), respectively. Condition B is
implied by Assumption 8(a). Under type 2 break, g: = fi if 1 <t < [7*T|, gt = (fy4, [1,2")" if
|7*T| +1 <t <T, and 0 = A\x. Since Z is bounded by Assumption 10(b), Conditions A and B
hold by Assumptions 6 and 8(a). W

Proof of Theorem 4: (i)

ftf . fif,
"T- T TJt |7+ T | +1 t
. ng I grg1J # ZT: J g91J PN ng (ftf’—J’gtg’J)
*TJ t — LW*TJ T t LW*TJ p t t
*¥ i (ftf,*J/QtQ,J>
T—|mT] t=|m*T|+1 t '
Note that
|7*T|
*TJ Z (ftft Jlgtgt )
_ 1 L”*Tj ~ J' 'y n J J! —0 1
= 7] ; [(ft_ gt)gt +(ft— gt) (ft )—i— gt (ft )} =05
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by Lemma 10. Similarly, ﬁ Z,tT:Lﬂ'*TJJrl (ftft’ — J’gtggJ) = Op(5]§2T).
Under type 1 break, recall Dy, Dy and C defined by (2.19) , so we have

Y . 7 . 2240/ 2% 0 290 0 2%
[=T] > Jlgtgij—m > Tagid BT I N 0o Jh=C
=t t=mT]+1 0 0 0 20 0wt

by Assumption 8(b) and the definitions of J and Jy. Matrix C' contains non-zero entries because
D1 — D5 is not zero due to the positive definiteness of Ellp’l and the fact that Jy is a non-singular

matrix.

Under type 2 break, recall Dy, Dy and C defined by (2.20) , so we have

[7*T] T 0,1 /
1 / P g [ OQOXCIO Zﬁ (Iq1 - Z)
(Lw 7] & T-[~T], EJH ) (I, - 253 syt - 2932

by Assumption 8(b) and the definitions of J and Jy. Matrix C' contains non-zero entries because

Z};’l -7 Z};’IZ’ is not zero by Assumption 10(b) and the fact that Jy is a non-singular matrix.

(ii) First, note that Assumption 10(c) is the analog of Assumption 7. Hence, Theorem 2 still holds
for the equivalent models under the alternative and we have ||S(7*, G.Jy) — S(7*, F)|| = 0p(1) and
IS(n*, GJo) — S(n*, F)|| = 0,(1). Second, we will show that [|[S(7*, G.Jo)~! — S(n*, F)~!|| = 0,(1)
and ||S(7*, GJo) ' =S(7*, F) || = 0p(1). Let pmaz(A) and prin(A) denote the largest and smallest
eigenvalue of a matrix A, respectively. Hall (2000) shows that if the HAC estimates are not correctly
demeaned, then the HAC estimator is asymptotically equivalent to the sum of two matrices: one of
these matrices is positive definite and O(1); the other is positive semi-definite and diverges at the rate

of the bandwidth parameter. Using these results, we can see that plimp_, (pmm[ (m* GJO)]> >0
and plimg_, (pmm[S(w ,GJO)]) > 0. This implies that both ||S(7*, GJy) || and ||S(7*, GJo) |

are 0p(1), because [§(r*, GJo) M| < MpuaclS(r*,Go) "] = M (pminlS(x*,G10)]) " = 0,(1)
for some positive constant M < oo (see Hall (2000), Eq. (16), p.1525). Since Theorem 2 im-
plies that ||S(7*,GJo) — S(7*, F)|| = 0,(1) and ||S(7*, GJo) — S(7*, F)|| = 0,(1), it follows that
plimg_, oo (pmm[g(w*,ﬁ')]) > 0 and plimp_, (pmm[g(w*,ﬁ')D > 0, which also implies that both
IS(z*, F)~1|| and ||S(x*, F)~1|| are Op(1). Now, we have

IS(r*, GJo) ' =S (z*, F) || < |IS(x*, GJo) M IS (7%, F)=S(m*, GIo)|[[IS(7*, F) M| = Op(1)0p(1)Op(1).
(B.1)

We can show||S(7*, GJo) ™ — S(7*, F)~!|| = 0,(1) using a similar argument.
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Finally,

Wr(x™, F)
= A(r*, FYS(x*, F) YA(x*, F)

T - A A 1 .

= —=A *7F/ S\x=1) s ST~ 7> S *aFil |:A *7F/:|
maX(SLﬂ'*TJaSTfLﬂ'*TJ) |:\/T (7T ):| [max( l7m*T | PT—| Tj) (7T ) :| \/T (7T )

_ T / S/ % —1

= (S S (O + op(U] {max(Speegy, Srremy) [S(5" G o)+ 0, (D] | [vech(C) + 0,(1)

— o0

A

by Assumption 11, part (i) of Theorem 4, and (B.1). Also, it can be proved that LMp(7*, F') — oo
using a similar argument. sup e, ) Wr(r, F) and SUDr¢|
due to the consistency of Wy (7*, F)) and LMy(7*, F) . B

1,m9) LM (T, 13') are also consistent tests
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%

Table 1: Size of Structural Break Tests with Known Break Date, r = 3

Bonferroni Statistics Pooled Statistics W and LM
DGPs B8 P w. N T | %, sGLS  SHAC | g0 SGLS  SHAC W, W Wos LMy, LMp LMgs | ¢
N1 100 100 0.024 0.023 0.001 0.046  0.047 0.019 0.040  0.011 0.011  0.040 0.010 0.014 3.00

100 200 0.038 0.039 0.006 0.049  0.049 0.032 0.039  0.020 0.021  0.039 0.023 0.023 3.00
200 100 0.020 0.020 0.006 0.052  0.050 0.024 0.042 0.011 0.011  0.042 0.014 0.016 3.00
200 200 0.034 0.034 0.003 0.050  0.052 0.041 0.048  0.024 0.026  0.048 0.027 0.028 3.00

N2 0 100 100 0.025 0.024 0.001 0.048  0.048 0.020 0.041  0.011 0.011  0.041 0.010 0.015 3.00
0 100 200 0.039 0.040 0.001 0.048 0.048 0.034 0.040  0.019 0.021  0.040 0.022 0.023 3.00
0 200 100 0.020 0.020 0.001 0.051  0.050 0.026 0.042  0.012 0.010  0.042 0.013 0.015 3.00
0 200 200 0.033 0.033 0.003 0.051  0.053 0.041 0.049 0.024 0.026  0.049 0.029 0.027 3.00
N2 0.1 6 100 100 0.027 0.027 0.001 0.116  0.112 0.055 0.035  0.008 0.007  0.035 0.010 0.019 3.22
0.1 6 100 200 0.039 0.038 0.004 0.105  0.102 0.075 0.042  0.015 0.014  0.042 0.016 0.016 3.66
0.1 6 200 100 0.022 0.021 0.000 0.133  0.127 0.069 0.040  0.012 0.011  0.040 0.014 0.014 3.00
0.1 6 200 200 0.034 0.035 0.005 0.126  0.121 0.094 0.044  0.021 0.024 0.044 0.022 0.024 3.00
0.1 6 200 500 0.045 0.045 0.013 0.134 0.134 0.115 0.044  0.033 0.035 0.044 0.031 0.034 3.02
0.1 8 100 200 0.030 0.030 0.001 0.104  0.103 0.057 0.031  0.002 0.001 0.031 0.003 0.037 6.37
0.1 8 200 100 0.021 0.020 0.001 0.167  0.162 0.089 0.037  0.012 0.013  0.037 0.011 0.013 3.03
0.1 8 200 200 0.037 0.036 0.004 0.157  0.156 0.111 0.043 0.015 0.015 0.043 0.018 0.017 3.46
N3 100 100 0.840 0.028 0.037 1.000  0.075 0.864 0.592  0.069 0.049  0.592 0.060 0.035 3.02

0
0 100 200 0.923 0.039 0.060 1.000  0.057 0.759 0.608  0.087 0.061  0.608 0.057 0.050 3.00
0 200 100 0.903 0.025 0.043 1.000 0.085 0.986 0.610  0.066 0.046  0.610 0.063 0.035 3.00
0 200 200 0.968 0.033 0.063 1.000 0.061 0.964 0.620  0.082 0.059  0.620 0.058 0.054 3.00
0 200 500 0.990 0.043 0.087 1.000 0.052 0.793 0.630  0.075 0.072  0.630 0.059 0.056 3.00
0 500 100 0.954 0.020 0.037 1.000  0.147 1.000 0.596  0.069 0.045 0.596 0.059 0.042 3.00
0 500 200 0.995 0.033 0.080 1.000  0.068 1.000 0.616  0.086 0.060 0.616 0.058 0.055 3.00
N3 0.5 100 150 0.995 0.031 0.109 1.000 0.054 0.926 0.658  0.076 0.063 0.658 0.053 0.041 3.15
0.5 100 200 0.996 0.028 0.099 1.000  0.055 0.860 0.639  0.083 0.059  0.639 0.056 0.054 3.01
0.5 200 150 1.000 0.026 0.141 1.000 0.063 0.997 0.658  0.078 0.067 0.658 0.062 0.053 3.11
0.5 200 200 1.000 0.027 0.125 1.000  0.060 0.988 0.638  0.085 0.060 0.638 0.060 0.056 3.01
0.5 200 500 1.000 0.032 0.115 1.000 0.054 0.839 0.630  0.079 0.075  0.630 0.059 0.061 3.00
0.5 500 150 1.000 0.022 0.167 1.000  0.083 1.000 0.654  0.088 0.071  0.654 0.064 0.052 3.03
0.5 500 200 1.000 0.023 0.161 1.000 0.083 1.000 0.642 0.083 0.064 0.642 0.057 0.052 3.00

Note: The nominal size is 5%. For Bonferroni statistics and pooled statistics, the superscript “0” denotes that the statistics assume conditional homoskedasticity
and no serial correlation in the residuals; the superscript “GLS” stands for Breitung and Eickmeier’s (2011) estimates based on a quasi-demean transformation; the
superscript “HAC” means that HAC estimates are used to compute the statistic. For LM and W, the subscript “0” means that the statistic uses White’s (1980)
conditional heteroskedasticity robust estimate; subscripts “B” and “QS” denote statistics based on HAC estimates with Bartlett and QS kernels, respectively. All
HAC estimates are based on Newey and West’s method (1994). 7 is the number of factors estimated by ICp, of Bai and Ng (2002).



Table 2A: Power against a Break at 7'/2

DGP Al: the equivalent factor model with time-invariant loadings has 4 factors.

Bonferroni Statistics Pooled Statistics W and LM
b N T | s, sGLS  GHAC | g0 SGLS  SHAC | W, W Wgs LMy LMp LMgs | 7

1/3 100 100 | 0.540 0.521  0.024 | 1.000  1.000 1.000 0.075 0.022 0.020 0.075 0.020 0.022 3.00
1/3 100 200 | 1.000 1.000 0.500 | 1.000  1.000 1.000 0.092 0.049 0.054 0.092 0.055 0.054 3.00
1/3 200 100 | 0.539 0.525 0.168 | 1.000  1.000 1.000 0.069 0.020 0.020 0.069 0.018 0.018 3.00
1/3 200 200 | 0.987 0.987 0.392 | 0.995 0.995 0.994 0.095 0.054 0.056 0.095 0.055 0.060 3.01
1/3 200 500 | 0.617 0.618 0.601 | 0.654 0.654 0.630 0.480 0.468 0.467 0.480 0.463 0.466 3.40
1/3 500 200 | 0.627 0.628 0.197 | 0.646 0.645 0.624 0.444 0.412 0415 0.444 0.408 0.412 3.39
1/3 500 500 | 0.053 0.054 0.006 | 0.094 0.092 0.051 1.000 1.000 1.000 1.000 1.000 1.000 4.00

2/3 100 100 | 0.028 0.026  0.001 | 0.066  0.065 0.022 0.999 0.603 0.458 0.999 0.416 0.278 4.00
2/3 100 200 | 0.041 0.042 0.002 | 0.069  0.068 0.030 1.000 0.976 0.988 1.000 0.973 0.982 4.00
2/3 200 100 | 0.019 0.018 0.000 | 0.057 0.055 0.068 1.000 0.617 0.468 1.000 0.413 0.270 4.00
2/3 200 200 | 0.037 0.037 0.002 | 0.059 0.061 0.027 1.000 0977 0.988 1.000 0.967 0.982 4.00

100 100 | 0.020 0.020 0.001 | 0.052  0.053 0.028 1.000 0.611 0.467 1.000 0.415 0.279 4.00
100 200 | 0.038 0.039 0.002 | 0.059 0.059 0.028 1.000 0.970 0.985 1.000 0.958 0.974 4.00
200 100 | 0.018 0.017 0.001 | 0.050 0.051 0.077 1.000 0.645 0.494 1.000 0.434 0.288 4.00
200 200 | 0.034 0.035 0.002 | 0.054 0.055 0.027 1.000 0975 0.985 1.000 0.965 0.979 4.00

100 100 | 0.018 0.018 0.001 | 0.053 0.052 0.026 1.000 0.606 0.464 1.000 0.377 0.254 4.00
100 200 | 0.036 0.037 0.003 | 0.062 0.061 0.028 1.000 0.984 0.992 1.000 0.969 0.985 4.00
200 100 | 0.019 0.018 0.000 | 0.051  0.049 0.061 1.000 0.601 0.470 1.000 0.377 0.259 4.00
200 200 | 0.032 0.032 0.001 | 0.052 0.054 0.026 1.000 0978 0.988 1.000 0.961 0.983 4.00

N NN N = ===

Note: The parameter b controls the size of the shift in factor loadings. For Bonferroni statistics and pooled statistics, the
superscript “0” denotes that the statistic assumes conditional homoskedasticity and no serial correlation in the residuals; the
superscript “GLS” stands for Breitung and Eickmeier’s (2011) estimates based on a quasi-demean transformation; the superscript
“HAC” means that HAC estimates are used to compute the statistic. For LM and W, the subscript “0” means that the statistic
uses White’s (1980) conditional heteroskedasticity robust estimate; subscripts “B” and “QS” denote statistics based on HAC
estimates with Bartlett and QS kernels, respectively. All HAC estimates are based on Newey and West’s method (1994). # is

the number of factors estimated by ICp; of Bai and Ng (2002).
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Table 2B: Power against a Break at 7'/2

DGP A2: the equivalent factor model with time-invariant loadings has 4 factors.

Bonferroni Statistics Pooled Statistics W and LM
o N T |s% - sGLS GHAC | g0 SGLS  SHAC | W, W Wgs LMy LMp LMgs | 7

0.2 100 100 | 0.986 0.986  0.347 | 0.986  0.986 0.985 0.106  0.038 0.034 0.106 0.031 0.027 3.01
0.2 100 200 | 0.912 0.912 0.907 | 0.914 0.914 0.910 0.197 0.151  0.155 0.197 0.151 0.153 3.09
0.2 200 100 | 0.890 0.889 0.295 | 0.894 0.893 0.888 0.199 0.099 0.078 0.199 0.074 0.063 3.11
0.2 200 200 | 0.235 0.234 0.203 | 0.271  0.270 0.224 0.836 0.814 0.817 0.836 0.812 0.816 3.80

0.4 100 100 | 0.076 0.074 0.010 | 0.114 0.111 0.065 0.972 0.600 0.442 0972 0.416 0.282 3.95
0.4 100 200 | 0.047 0.047 0.004 | 0.078 0.077 0.032 1.000 0.986 0.994 1.000 0.979 0.987 4.00
0.4 200 100 | 0.027 0.027 0.001 | 0.062  0.060 0.053 1.000 0.613 0.469 1.000 0.400 0.273 4.00
0.4 200 200 | 0.035 0.035 0.001 | 0.057 0.057 0.022 1.000 0.988 0.995 1.000 0.981 0.989 4.00

0.6 100 100 | 0.026 0.025 0.001 | 0.052  0.052 0.021 1.000 0.623 0.460 1.000 0.424 0.280 4.00
0.6 100 200 | 0.040 0.039 0.003 | 0.067 0.066 0.028 1.000 0.979 0.990 1.000 0.970 0.981 4.00
0.6 200 100 | 0.017 0.016 0.000 | 0.055 0.052 0.061 1.000 0.631 0.481 1.000 0.413 0.271 4.00
0.6 200 200 | 0.036 0.037 0.002 | 0.050 0.051 0.027 1.000 0.983 0.990 1.000 0.974 0.985 4.00

0.8 100 100 | 0.021 0.020 0.000 | 0.057 0.055 0.028 1.000 0.600 0.457 1.000 0.417 0.274 4.00
0.8 100 200 | 0.038 0.037 0.002 | 0.060 0.061 0.030 1.000 0.974 0.987 1.000 0.963 0.978 4.00
0.8 200 100 | 0.020 0.019 0.000 | 0.054 0.054 0.052 1.000 0.627 0.480 1.000 0.430 0.286 4.00
0.8 200 200 | 0.034 0.035 0.001 | 0.053 0.054 0.027 1.000 0976 0.986 1.000 0.967 0.981 4.00

Note: The parameter « controls the percentage of factor loadings that have structural breaks . For Bonferroni statistics
and pooled statistics, the superscript “0” denotes that the statistic assumes conditional homoskedasticity and no serial corre-
lation in the residuals; the superscript “GLS” stands for Breitung and Eickmeier’s (2011) estimates based on a quasi-demean
transformation; the superscript “HAC” means that HAC estimates are used to compute the statistic. For LM and W, the
subscript “0” means that the statistic uses White’s (1980) conditional heteroskedasticity robust estimate; subscripts “B” and
“QS” denote statistics based on HAC estimates with Bartlett and QS kernels, respectively. All HAC estimates are based on
Newey and West’s method (1994). 7 is the number of factors estimated by ICp, of Bai and Ng (2002).
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DGPA3: the equivalent factor model with time-invariant loadings has 3 factors.

Table 2C: Power against a Break at 7/2

Bonferroni Statistics Pooled Statistics W and LM
2 N T | sy o sGLS JHAC ) g0 SGLS  gHAC | W, W Wgs LMy LMp LMgs | 7
3/4 100 100 | 0.025 0.024 0.001 | 0.047 0.046 0.019 | 0.134 0.048 0.044 0.134 0.040 0.038 3.00
3/4 100 200 | 0.040 0.040 0.005 | 0.050 0.050 0.033 | 0.335 0.204 0.199 0.335 0.207 0.203 3.00
3/4 200 100 | 0.022 0.022 0.000 | 0.050 0.048 0.022 | 0.140 0.050 0.054 0.140 0.050 0.046 3.00
3/4 200 200 | 0.034 0.035 0.003 | 0.051 0.052 0.038 | 0.349 0.219 0.211 0.349 0.223 0.214 | 3.00
3/4 200 500 | 0.045 0.049 0.010 | 0.055 0.055 0.047 | 0.831 0.792 0.784 0.831 0.777 0.785 3.00
3/4 500 200 | 0.029 0.029 0.002 0.047  0.046 0.040 0.351 0.226 0.215 0.351 0.225 0.218 3.00
3/4 500 500 | 0.046 0.047 0.010 | 0.052 0.053 0.047 | 0.825 0.782 0.779 0.825 0.772 0.779 3.00
1/2 100 100 | 0.025 0.025 0.001 | 0.047  0.047 0.016 | 0.761 0.430 0.394 0.761 0.344 0.287 | 3.00
1/2 100 200 | 0.039 0.040 0.005 0.050  0.051 0.029 0.993 0.966 0.957 0.993 0.954 0.947 3.00
1/2 200 100 | 0.024 0.023 0.001 | 0.049 0.050 0.019 | 0.797 0.467 0.431 0.797 0.380 0.307 | 3.00
1/2 200 200 | 0.033 0.033 0.003 0.051 0.053 0.032 0.996 0.969 0.963 0.996 0.961 0.956 3.00
1/4 100 100 | 0.026 0.026 0.001 | 0.044 0.048 0.026 1.000 0.956 0.941 1.000 0.749 0.691 3.00
1/4 100 200 | 0.040 0.040 0.003 | 0.053 0.054 0.028 1.000 1.000 1.000 1.000 1.000 1.000 3.00
1/4 200 100 | 0.023 0.023 0.000 0.048  0.047 0.059 1.000 0.968 0.960 1.000 0.754 0.704 3.00
1/4 200 200 | 0.031 0.031 0.002 | 0.051 0.052 0.031 1.000 1.000 1.000 1.000 1.000 1.000 3.00
0 100 100 | 0.031 0.031  0.000 | 0.070 0.074 0.235 1.000 1.000 0.999 1.000 0.779 0.806 3.00
0 100 200 | 0.043 0.043 0.001 0.074  0.075 0.041 1.000 1.000 1.000 1.000 1.000 1.000 3.00
0 200 100 | 0.028 0.029 0.000 | 0.057 0.061 0.770 1.000 1.000 0.999 1.000 0.777 0.814 | 3.00
0 200 200 | 0.043 0.044 0.000 0.064  0.066 0.142 1.000 1.000 1.000 1.000  1.000 1.000 3.00

Note: The parameter ¢ controls the ratio of post- and pre-break factor loadings.

statistics, the superscript “0” denotes that the statistic assumes conditional homoskedasticity and no serial correlation in the
residuals; the superscript “GLS” stands for Breitung and Eickmeier’s (2011) estimates based on a quasi-demean transformation;
the superscript “HAC” means that HAC estimates are used to compute the statistic. For LM and W, the subscript “0” means
that the statistic uses White’s (1980) conditional heteroskedasticity robust estimate; subscripts “B” and “QS” denote statistics

based on HAC estimates with Bartlett and QS kernels, respectively. All HAC estimates are based on Newey and West’s method

(1994). 7 is the number of factors estimated by ICp, of Bai and Ng (2002).
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Table 3: Size of Structural Break Tests with Unknown Break Date, r = 3

sup-W exp-W mean-W
DGPs B8 P we N T sup-Wo sup-Wp sup-Wgs exp-Wo exp-Wp exp-Wgs mean-Wo mean-Wpg mean-Wgs 7

N2 0 100 200 0.049 0.011 0.007 0.067 0.011 0.006 0.064 0.015 0.013 3.00
0 100 500 0.088 0.028 0.021 0.083 0.030 0.024 0.063 0.034 0.033 3.00

0 200 200 0.055 0.014 0.009 0.073 0.015 0.011 0.073 0.018 0.017 3.00

0 200 500 0.087 0.029 0.020 0.088 0.030 0.023 0.066 0.035 0.034 3.00

0 500 200 0.060 0.013 0.008 0.079 0.013 0.009 0.073 0.019 0.016 3.00

0.1 6 200 200 0.062 0.014 0.009 0.075 0.013 0.010 0.071 0.016 0.015 3.00

0.1 6 200 500 0.090 0.029 0.021 0.085 0.031 0.022 0.063 0.034 0.033 3.02

N3 0 100 200 0.846 0.059 0.054 0.903 0.066 0.046 0.894 0.099 0.066 3.00
0 100 500 0.919 0.083 0.095 0.931 0.091 0.082 0.896 0.117 0.102 3.00

0 200 200 0.852 0.061 0.055 0.896 0.068 0.049 0.891 0.100 0.069 3.00

0 200 500 0.920 0.092 0.101 0.929 0.100 0.088 0.903 0.119 0.104 3.00

0 500 200 0.855 0.066 0.052 0.896 0.069 0.049 0.890 0.104 0.070 3.00

sup-LM exp-LM mean-L M
DGPs B8 P we N T sup- sup- sup- exp- exp-LMp  exp-LMgs mean- mean- mean- 7
LMy LMp LMgs LMy LMy LMp LMgs

N2 0 100 200 0.033 0.009 0.008 0.042 0.013 0.012 0.045 0.023 0.027 3.00
0 100 500 0.043 0.024 0.028 0.051 0.028 0.035 0.054 0.039 0.040 3.00

0 200 200 0.046 0.012 0.012 0.053 0.019 0.017 0.053 0.029 0.031 3.00

0 200 500 0.041 0.019 0.023 0.046 0.024 0.030 0.052 0.038 0.042 3.00

0 500 200 0.036 0.011 0.008 0.044 0.014 0.011 0.052 0.025 0.026 3.00

0.1 6 200 200 0.031 0.009 0.007 0.043 0.012 0.011 0.050 0.026 0.025 3.00

0.1 6 200 500 0.041 0.024 0.026 0.047 0.027 0.031 0.046 0.034 0.037 3.02

N3 0 100 200 0.826 0.048 0.046 0.867 0.059 0.059 0.856 0.089 0.078 3.00
0 100 500 0.896 0.047 0.053 0.909 0.060 0.066 0.875 0.079 0.079 3.00

0 200 200 0.840 0.050 0.045 0.875 0.065 0.060 0.856 0.091 0.083 3.00

0 200 500 0.895 0.048 0.052 0.908 0.062 0.066 0.880 0.080 0.079 3.00

0 500 200 0.847 0.052 0.046 0.879 0.068 0.060 0.861 0.101 0.087 3.00

Note: The nominal size is 5%. The subscript “0” means that the statistic uses White’s (1980) conditional heteroskedasticity robust estimate; subscripts “B” and
“QS” denote statistics based on HAC estimates with Bartlett and QS kernels, respectively. All HAC estimates are based on Newey and West’s method (1994). # is

the number of factors estimated by ICp, of Bai and Ng (2002).



Table 4A: Power against Unknown Break Date

DGP Al: the equivalent factor model with time-invariant loadings has 4 factors.

b N, T sup-Wo sup-Wp exp-Wo exp-Wp mean-Wjy mean-Wp T
1/3 100,200 0.072 0.019 0.108 0.023 0.121 0.032 3.00
1/3 200,200 0.078 0.022 0.105 0.026 0.117 0.040 3.00
1/3 500,200 0.435 0.359 0.454 0.389 0.462 0.392 3.39
1/3 200,500 0.482 0.435 0.491 0.441 0.484 0.453 3.40
1/3 500,500 1.000 1.000 1.000 1.000 1.000 1.000 4.00
2/3 100,200 1.000 0.895 1.000 0.960 1.000 0.953 4.00
2/3 200,200 1.000 0.891 1.000 0.961 1.000 0.951 4.00
2/3 500,200 1.000 0.904 1.000 0.966 1.000 0.958 4.00
2/3 200,500 1.000 1.000 1.000 1.000 1.000 1.000 4.00
2/3 500,500 1.000 1.000 1.000 1.000 1.000 1.000 4.00

1 100,200 1.000 0.887 1.000 0.950 1.000 0.940 4.00

1 200,200 1.000 0.919 1.000 0.963 1.000 0.952 4.00

1 500,200 1.000 0.901 1.000 0.960 1.000 0.951 4.00

1 200,500 1.000 1.000 1.000 1.000 1.000 1.000 4.00

1 500,500 1.000 1.000 1.000 1.000 1.000 1.000 4.00

2 100,200 1.000 0.828 1.000 0.937 1.000 0.940 4.00

2 200,200 1.000 0.842 1.000 0.940 1.000 0.937 4.00

2 500,200 1.000 0.830 1.000 0.927 1.000 0.930 4.00

2 200,500 1.000 1.000 1.000 1.000 1.000 1.000 4.00

2 500,500 1.000 1.000 1.000 1.000 1.000 1.000 4.00

b N sup-LMy sup-LMp | exp-LMo exp-LMp | mean-LMy mean-LMp 7
1/3 100,200 0.058 0.017 0.076 0.029 0.088 0.048 3.00
1/3 200,200 0.065 0.023 0.081 0.033 0.090 0.050 3.00
1/3 500,200 0.418 0.216 0.432 0.283 0.462 0.392 3.39
1/3 200,500 0.453 0.431 0.464 0.443 0.470 0.453 3.40
1/3 500,500 1.000 0.999 1.000 1.000 1.000 1.000 4.00
2/3 100,200 1.000 0.571 1.000 0.702 1.000 0.847 4.00
2/3 200,200 1.000 0.561 1.000 0.693 1.000 0.833 4.00
2/3 500,200 1.000 0.561 1.000 0.700 1.000 0.848 4.00
2/3 200,500 1.000 1.000 1.000 1.000 1.000 1.000 4.00
2/3 500,500 1.000 0.999 1.000 1.000 1.000 1.000 4.00

1 100,200 1.000 0.565 1.000 0.692 1.000 0.822 4.00

1 200,200 1.000 0.615 1.000 0.743 1.000 0.856 4.00

1 500,200 1.000 0.579 1.000 0.703 1.000 0.836 4.00

1 200,500 1.000 1.000 1.000 1.000 1.000 1.000 4.00

1 500,500 1.000 0.998 1.000 0.999 1.000 0.999 4.00

2 100,200 1.000 0.466 1.000 0.603 1.000 0782 4.00

2 200,200 1.000 0.493 1.000 0.626 1.000 0.784 4.00

2 500,200 1.000 0.473 1.000 0.598 1.000 0.765 4.00

2 200,500 1.000 1.000 1.000 1.000 1.000 1.000 4.00

2 500,500 1.000 0.997 1.000 0.999 1.000 1.000 4.00

Note: The parameter b controls the size of the shift in factor loadings. The subscript “0” means that the statistic uses White’s
(1980) conditional heteroskedasticity robust estimate; subscript “B” denotes statistics based on HAC estimates with Bartlett
kernel. All HAC estimates are based on Newey and West’s method (1994). 7 is the number of factors estimated by ICj, of Bai
and Ng (2002). 59



Table 4B: Power against Unknown Break Date

DGP A2: the equivalent factor model with time-invariant loadings has 4 factors.

a N, T sup-Wo sup-Wp exp-Wo exp-Wp mean-Wjy mean-Wp T

0.2 100,200 0.166 0.106 0.199 0.114 0.216 0.128 3.09
0.2 200,200 0.822 0.745 0.830 0.794 0.833 0.793 3.80
0.2 500,200 1.000 0.911 1.000 0.976 1.000 0.981 4.00
0.2 200,500 1.000 1.000 1.000 1.000 1.000 1.000 4.00
0.2 500,500 1.000 1.000 1.000 1.000 1.000 1.000 4.00
0.4 100,200 1.000 0.924 1.000 0.975 1.000 0.969 4.00
0.4 200,200 1.000 0.909 1.000 0.969 1.000 0.966 4.00
0.4 500,200 1.000 0.903 1.000 0.973 1.000 0.974 4.00
0.4 200,500 1.000 1.000 1.000 1.000 1.000 1.000 4.00
0.4 500,500 1.000 1.000 1.000 1.000 1.000 1.000 4.00
0.6 100,200 1.000 0.916 1.000 0.968 1.000 0.961 4.00
0.6 200,200 1.000 0.896 1.000 0.963 1.000 0.961 4.00
0.6 500,200 1.000 0.908 1.000 0.966 1.000 0.967 4.00
0.6 200,500 1.000 1.000 1.000 1.000 1.000 1.000 4.00
0.6 500,500 1.000 1.000 1.000 1.000 1.000 1.000 4.00
0.8 100,200 1.000 0.895 1.000 0.952 1.000 0.944 4.00
0.8 200,200 1.000 0.907 1.000 0.965 1.000 0.957 4.00
0.8 500,200 1.000 0.889 1.000 0.955 1.000 0.954 4.00
0.8 200,500 1.000 1.000 1.000 1.000 1.000 1.000 4.00
0.8 500,500 1.000 1.000 1.000 1.000 1.000 1.000 4.00

« N, T sup-LMy sup-LMp | exp-LMoy exp-LMp | mean-LMy mean-LMp 7

0.2 100,200 0.150 0.070 0.172 0.093 0.184 0.128 3.09
0.2 200,200 0.820 0.455 0.826 0.580 0.828 0.708 3.80
0.2 500,200 1.000 0.519 1.000 0.678 1.000 0.852 4.00
0.2 200,500 1.000 1.000 1.000 1.000 1.000 1.000 4.00
0.2 500,500 1.000 1.000 1.000 1.000 1.000 1.000 4.00
0.4 100,200 1.000 0.600 1.000 0.731 1.000 0.869 4.00
0.4 200,200 1.000 0.551 1.000 0.698 1.000 0.855 4.00
0.4 500,200 1.000 0.520 1.000 0.674 1.000 0.842 4.00
0.4 200,500 1.000 1.000 1.000 1.000 1.000 1.000 4.00
0.4 500,500 1.000 1.000 1.000 1.000 1.000 1.000 4.00
0.6 100,200 1.000 0.591 1.000 0.721 1.000 0.850 4.00
0.6 200,200 1.000 0.551 1.000 0.695 1.000 0.843 4.00
0.6 500,200 1.000 0.547 1.000 0.689 1.000 0.846 4.00
0.6 200,500 1.000 0.999 1.000 0.999 1.000 1.000 4.00
0.6 500,500 1.000 0.999 1.000 1.000 1.000 1.000 4.00
0.8 100,200 1.000 0.578 1.000 0.699 1.000 0.944 4.00
0.8 200,200 1.000 0.570 1.000 0.706 1.000 0.843 4.00
0.8 500,200 1.000 0.551 1.000 0.685 1.000 0.829 4.00
0.8 200,500 1.000 0.998 1.000 1.000 1.000 1.000 4.00
0.8 500,500 1.000 0.999 1.000 0.999 1.000 0.999 4.00

Note: The parameter a controls the percentage of factor loadings that have structural breaks. The subscript “0” means that
the statistic uses White’s (1980) conditional heteroskedasticity robust estimate; subscript “B” denotes statistics based on HAC
estimates with Bartlett kernel. All HAC estimates are based on Newey and West’s method (1994). # is the number of factors
estimated by ICp, of Bai and Ng (2002). 60



Table 4C: Power against Unknown Break Date

DGP A3: the equivalent factor model with time-invariant loadings has 3 factors.

2 N, T sup-Wo sup-Wp exp-Wo exp-Wp mean-Wjy mean-Wp T
3/4 100,200 0.204 0.056 0.278 0.084 0.328 0.130 3.00
3/4 200,200 0.202 0.056 0.282 0.087 0.327 0.133 3.00
3/4 500,200 0.204 0.063 .0288 0.096 0.328 0.143 3.00
3/4 200,500 0.678 0.503 0.729 0.600 0.751 0.654 3.00
3/4 500,500 0.673 0.500 0.729 0.597 0.751 0.648 3.00
1/2 100,200 0.941 0.632 0.970 0.798 0.979 0.852 3.00
1/2 200,200 0.952 0.646 0.977 0.816 0.983 0.864 3.00
1/2 500,200 0.957 0.663 0.980 0.827 0.985 0.873 3.00
1/2 200,500 1.000 1.000 1.000 1.000 1.000 1.000 3.00
1/2 500,500 1.000 1.000 1.000 1.000 1.000 1.000 3.00
1/4 100,200 1.000 0.983 1.000 0.999 1.000 0.999 3.00
1/4 200,200 1.000 0.983 1.000 0.998 1.000 0.999 3.00
1/4 500,200 1.000 0.987 1.000 0.999 1.000 0.999 3.00
1/4 200,500 1.000 1.000 1.000 1.000 1.000 1.000 3.00
1/4 500,500 1.000 1.000 1.000 1.000 1.000 1.000 3.00
0 100,200 1.000 0.999 1.000 1.000 1.000 1.000 3.00
0 200,200 1.000 0.999 1.000 1.000 1.000 1.000 3.00
0 500,200 1.000 1.000 1.000 1.000 1.000 1.000 3.00
0 200,500 1.000 1.000 1.000 1.000 1.000 1.000 3.00
0 500,500 1.000 1.000 1.000 1.000 1.000 1.000 3.00
c? N, T sup-LMy sup-LMp | exp-LMy exp-LMp | mean-LMy mean-LMp 7
3/4 100,200 0.195 0.071 0.249 0.102 0.282 0.161 3.00
3/4 200,200 0.194 0.061 0.251 0.100 0.285 0.163 3.00
3/4 500,200 0.188 0.063 0.248 0.104 0.285 0.169 3.00
3/4 200,500 0.646 0.482 0.706 0.579 0.723 0.637 3.00
3/4 500,500 0.646 0.478 0.700 0.570 0.724 0.630 3.00
1/2 100,200 0.948 0.533 0.968 0.715 0.969 0.811 3.00
1/2 200,200 0.955 0.534 0.974 0.728 0.974 0.821 3.00
1/2 500,200 0.961 0.538 0.978 0.732 0.976 0.827 3.00
1/2 200,500 1.000 1.000 1.000 1.000 1.000 1.000 3.00
1/2 500,500 1.000 1.000 1.000 1.000 1.000 1.000 3.00
1/4 100,200 1.000 0.773 1.000 0.965 1.000 0.983 3.00
1/4 200,200 1.000 0.759 1.000 0.966 1.000 0.982 3.00
1/4 500,200 1.000 0.746 1.000 0.963 1.000 0.979 3.00
1/4 200,500 1.000 1.000 1.000 1.000 1.000 1.000 3.00
1/4 500,500 1.000 1.000 1.000 1.000 1.000 1.000 3.00
0 100,200 1.000 0.671 1.000 0.991 1.000 0.996 3.00
0 200,200 1.000 0.644 1.000 0.987 1.000 0.994 3.00
0 500,200 1.000 0.633 1.000 0.987 1.000 0.991 3.00
0 200,500 1.000 1.000 1.000 1.000 1.000 1.000 3.00
0 500,500 1.000 1.000 1.000 1.000 1.000 1.000 3.00

Note: The parameter ¢ controls the ratio of post- and pre-break factor loadings. The subscript “0” means that the statistic uses
White’s (1980) conditional heteroskedasticity robust estimate; subscript “B” denotes statistics based on HAC estimates with
Bartlett kernel. All HAC estimates are based on Newey and West’s method (1994). 7 is the number of factors estimated by
ICp, of Bai and Ng (2002). 61



Table 5A: Power Comparison with CDG tests for Unknown Break Date

DGP Al: the equivalent factor model with time-invariant loadings has 4 factors.

b N T sup-L My sup—LMOCDG sup-LMp sup—LMgDG sup-Wo sup—WDCDG sup-Wp sup—WgDG 7
0.33 100 200 0.058 0.052 0.017 0.033 0.072 0.071 0.019 0.061 3.00
0.33 200 200 0.065 0.048 0.023 0.029 0.078 0.070 0.022 0.059 3.01
0.33 500 200 0.418 0.389 0.216 0.371 0.435 0.428 0.359 0.419 3.39
0.33 200 500 0.453 0.353 0.431 0.338 0.482 0.445 0.435 0.440 3.40
0.33 500 500 1.000 0.937 0.999 0.931 1.000 1.000 1.000 1.000 4.00
0.66 100 200 1.000 0.902 0.571 0.866 1.000 1.000 0.895 1.000 4.00
0.66 200 200 1.000 0.668 0.561 0.574 1.000 1.000 0.891 1.000 4.00
0.66 500 200 1.000 0.864 0.561 0.817 1.000 1.000 0.904 1.000 4.00
0.66 200 500 1.000 0.746 0.999 0.716 1.000 1.000 1.000 1.000 4.00
0.66 500 500 1.000 0.946 0.999 0.938 1.000 1.000 1.000 1.000 4.00

1 100 200 1.000 0.940 0.565 0.892 1.000 1.000 0.887 1.000 4.00

1 200 200 1.000 0.778 0.614 0.663 1.000 1.000 0.919 1.000 4.00

1 500 200 1.000 0.914 0.579 0.854 1.000 1.000 0.901 1.000 4.00

1 200 500 1.000 0.861 0.997 0.839 1.000 1.000 1.000 1.000 4.00

1 500 500 1.000 0.970 0.998 0.964 1.000 1.000 1.000 1.000 4.00

2 100 200 1.000 1.000 0.465 0.992 1.000 1.000 0.827 0.997 4.00

2 200 200 1.000 1.000 0.494 0.995 1.000 1.000 0.842 0.997 4.00

2 500 200 1.000 1.000 0.473 0.995 1.000 1.000 0.830 0.996 4.00

2 200 500 1.000 1.000 0.999 1.000 1.000 1.000 1.000 1.000 4.00

2 500 500 1.000 1.000 0.997 1.000 1.000 1.000 1.000 1.000 4.00

Note: The parameter b controls the size of the shift in factor loadings. The superscript “CDG” denotes the CDG tests. The
subscript “0” means that the statistic uses White’s (1980) conditional heteroskedasticity robust estimate; subscript “B” denotes
statistics based on HAC estimates with Bartlett kernel. All HAC estimates are based on Newey and West’s method (1994). 7
is the number of factors estimated by ICp, of Bai and Ng (2002).
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Table 5B: Power Comparison with CDG tests for Unknown Break Date

DGP A3: the equivalent factor model with time-invariant loadings has 3 factors.

c2 N T sup-L My sup—LMOC DG | sup-LMp  sup-LM gD G | sup-Wy sup—I/VOC DG | sup-Wpg sup—WgD G 7
3/4 100 200 0.195 0.039 0.071 0.024 0.204 0.049 0.056 0.042 3.00
3/4 200 200 0.194 0.039 0.061 0.028 0.202 0.048 0.056 0.044 3.00
3/4 500 200 0.188 0.038 0.063 0.024 0.204 0.054 0.063 0.043 3.00
3/4 200 500 0.646 0.046 0.482 0.038 0.678 0.045 0.503 0.036 3.00
3/4 500 500 0.646 0.050 0.478 0.043 0.673 0.046 0.500 0.042 3.00
1/2 100 200 0.948 0.055 0.533 0.035 0.941 0.036 0.632 0.035 3.00
1/2 200 200 0.955 0.049 0.534 0.035 0.952 0.040 0.646 0.041 3.00
1/2 500 200 0.961 0.054 0.538 0.034 0.957 0.042 0.663 0.041 3.00
1/2 200 500 1.000 0.068 1.000 0.056 1.000 0.031 1.000 0.030 3.00
1/2 500 500 1.000 0.069 1.000 0.058 1.000 0.032 1.000 0.034 3.00
1/4 100 200 1.000 0.068 0.773 0.049 1.000 0.017 0.983 0.028 3.00
1/4 200 200 1.000 0.056 0.759 0.043 1.000 0.023 0.983 0.035 3.00
1/4 500 200 1.000 0.066 0.746 0.048 1.000 0.024 0.987 0.036 3.00
1/4 200 500 1.000 0.081 1.000 0.070 1.000 0.017 1.000 0.018 3.00
1/4 500 500 1.000 0.084 1.000 0.069 1.000 0.021 1.000 0.023 3.00
0 100 200 1.000 0.072 0.671 0.052 1.000 0.138 0.999 0.210 3.00
0 200 200 1.000 0.062 0.644 0.051 1.000 0.400 0.999 0.487 3.00
0 500 200 1.000 0.067 0.633 0.052 1.000 0.665 1.000 0.728 3.00
0 200 500 1.000 0.082 1.000 0.068 1.000 0.519 1.000 0.563 3.00
0 500 500 1.000 0.082 1.000 0.067 1.000 0.804 1.000 0.828 3.00

Note: The parameter ¢ controls the ratio of post- and pre-break factor loadings. The superscript “CDG” denotes the CDG
tests. The subscript “0” means that the statistic uses White’s (1980) conditional heteroskedasticity robust estimate; subscript
“B” denotes statistics based on HAC estimates with Bartlett kernel. All HAC estimates are based on Newey and West’s method
(1994). 7 is the number of factors estimated by ICj, of Bai and Ng (2002).
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