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Abstract
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1 Introduction

Dynamic factor models have become popular in the recent macroeconometrics literature because a

few factors can often explain a substantial amount of variations of many macroeconomic time series

(Sargent and Sims, 1977). For example, they have been successfully used in forecasting (Stock and

Watson, 2002a), factor augmented vector autoregressive (FAVAR) models (Bernanke, Boivin and

Eliasz, 2005; Stock and Watson, 2005) and DSGE models (Boivin and Giannoni, 2006). While

most of these applications implicitly assume that the factor loadings in dynamic factor models are

time-invariant, there is strong evidence of structural instability in macroeconomic time series (Stock

and Watson, 1996). If the common factors are driven by some structural shocks, it is possible that

macroeconomic variables react to these structural shocks differently during different sample periods,

resulting in time-varying factor loadings. For example, Eickmeier, Lemke and Marcellino (2011)

consider time-varying FAVAR models to take into account changes in the monetary transmission

mechanism. If parameter instability is ignored, the dynamic factor models may perform poorly or

give misleading results. For example, Banerjee and Marcellino (2008) provide simulation evidence

that the performance of forecasts based on dynamic factor models will be significantly worse off if

the structural breaks in factor loadings are not taken into account.

While the estimated factors still consistently span the original factor space if the size of break

is small enough (Stock and Watson, 2002b; Bates et al., 2012), such results do not hold when the

size of breaks is large. Large break can augment the factor space, but simply introducing more

factors cannot solve all the problems for two reasons. First, when structural break leads to an

augmented factor space, the factor dynamics is changed as well. Stock and Watson (2009) argue

that one should take into account such change in the forecasting regression if estimated factors are

used as predictors. Second, the augmented factor space does not contain more information than the

original factor space, so introducing more factors can reduce the efficiency and worsen the forecast

performance. Hence, it is essential to know the existence of structural breaks in factor loadings and

break dates for forecasting based on dynamic factor models.

In this paper, we consider testing the joint null hypothesis that factor loadings are constant
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over time against the alternative that a non-negligible fraction of or all factor loadings are not. We

are interested in the joint null hypothesis rather than the null hypothesis that a specific individual

factor loading is constant over time because it is the joint null hypothesis under which one can

estimate the factors consistently. Conventional tests of structural change, such as Andrews (1993),

are designed to deal with finitely many parameters and cannot be used to test our null hypothesis

that involves parameters whose number goes to infinity as the sample size grows. Directly extending

the conventional test to our setup is challenging for two reasons. First, one needs to estimate an

infinite dimensional covariance matrix and its inverse. This brings several technical difficulties: (1)

the norm of the difference between the estimated and true covariance matrices can be very large

even if each entry of the estimated matrix converges in probability; (2) taking the inverse of a high

dimensional matrix will amplify the estimation error dramatically and lead to very poor results

(Ledoit and Wolf, 2004); and (3) the number of time periods, T , can be even smaller than the

dimension of the estimated covariance matrix, so the sample covariance matrix can be singular.

Second, because the degree of freedom also goes to infinity, the limit distribution of such test

statistics, even if it is well-defined, is likely to be nonstandard.

To the best of our knowledge there are three existing tests for structural instability of factor

loadings.1 One is proposed by Stock and Watson (2009) (henceforth SW), who regressed each

variable on the estimated factors and implemented a Chow test for each of these regressions. Using

a post-war quarterly data set for the United States, they found a substantial amount of instability in

factor loadings: 41% (23%) of these Chow tests reject at the 5% (1%) significance level. This method

cannot control the overall type I error for testing our joint null hypothesis and it may overstate the

parameter instability in factor loadings. Another test is proposed by Breitung and Eickmeier (2011)

(henceforth BE). They constructed a joint test that controls the overall type I error as well as tests

for individual factor loadings allowing for an unknown break date. To test the joint null hypothesis

they use the sample average of the Chow test statistics for each of the factor loadings. They require

the idiosyncratic shocks to be cross-sectionally independent, however. This is more restrictive than

Bai and Ng’s (2002) setup for approximate factor models where idiosyncratic shocks are allowed to
1Recently, Cheng et al. (2013) consider detecting structural changes of factor loadings using LASSO estimator.
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have weak cross-sectional correlation. Also, their joint test is severely oversized in the presence of

serial correlations in the idiosyncratic shocks when the HAC covariance matrix estimator is used.2

More recently, Chen, Dolado and Gonzalo (2012) (CDG hereafter) develop Wald and LM tests of

structural change in factor loadings using a regression of the first estimated factor on the remaining

factors. Their tests are simple to implement in practice.

This paper proposes new joint tests and contributes in the following ways: First, we reduce

the infinite-dimensional problem to a finite-dimensional one. Because the principal component

analysis (PCA) implicitly imposes the restriction that the factor loadings are time-invariant, the

estimated factors can demonstrate a higher dimension under the alternative hypothesis than under

the null as pointed out by SW and BE. Based on this fact, our statistic compares the pre- and

post-break subsample second moments of estimated factors. We allow for unknown break dates and

our statistic has the same asymptotic distribution as the conventional supreme Wald test proposed

by Andrews (1993). Second, we follow Bai and Ng’s (2002) approximate factor setup in which serial,

cross-sectional correlation and heteroskedasticity are allowed in the idiosyncratic shocks, and the

knowledge about the form of such correlations and heteroskedasticity is not required to implement

our test. This is more general than BE’s framework which requires cross-sectional independence

and AR(p) assumption on the idiosyncratic shocks. Third, we consider different types of structural

breaks which have different impacts on the dimension of factor space. Besides the case pointed out

by SW and BE where the number of factors is enlarged due to structural breaks in factor loadings,

we also consider the case where structural change in the loading matrix does not change the number

of factors. We establish conditions under which our tests are consistent against different types of

breaks. Fourth, the number of factors are unknown and to be determined by the information criteria

(IC) proposed by Bai and Ng (2002). We show that Bai and Ng’s IC remain consistent for estimating
2In the working paper version of their paper, BE provide simulation evidence that the effective size of their test

can be greater than 90% in some setups if HAC estimators are used. This may be explained by possible invalidity of
the sequential asymptotics their test is based on. When the HAC estimator is used, each individual statistic converges
to a chi-square distribution at a slower rate as the time series dimension diverges. When the cross-sectional average
of these statistics are taken, the cross-sectional average of these errors may not vanish even asymptotically. BE also
suggest fitting an AR(p) model for the residuals of factor models in the first stage and then compute the covariance
using the filtered residuals, but this operation requires correct knowledge about the serial correlation structure of the
residuals.
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the dimension of an equivalent factor model with time-invariant loadings under the one-time break

alternative. This helps our test statistic distinguish the null and alternative hypotheses. Finally, we

establish the regularity conditions on N , T and bandwidth parameters for different kernel functions

so that HAC estimators are applicable to our test statistics.

The test of CDG is also based on the fact that the dimension of factor space estimated by

the information criterion is larger under the alternative hypothesis than under the null hypothesis.

Testing structural change in their regression model is equivalent to testing structural change in

a subset of the elements of the covariance matrix of the estimated factors. In contrast, our test

statistics make use of all the elements of the covariance matrix. Also, our tests allow for the case

where the break in factor loadings does not enlarge the number of factors, which is ruled out in

CDG’s framework. We compare the finite sample performance of their tests and ours in a Monte

Carlo experiment in section 3.

In this paper, all limits are taken as both N , T → ∞ simultaneously. ‖ · ‖ denotes the Eu-

clidean norm of a vector or matrix, p→ denotes convergence in probability, d→ denotes convergence

in distribution,⇒ denotes weak convergence of stochastic processes, and b·c is the integer part oper-

ator. vech(·) is equal to the column-wise vectorization of a square matrix with the upper triangular

excluded.

The remainder of this paper is organized as follows: Section 2 proposes a structural break test

for factor loadings, and the asymptotic properties are established under the null and alternative

hypotheses. Section 3 shows Monte Carlo results under various data generating processes (DGPs).

Section 4 concludes. Proofs are relegated to appendices A and B.

2 A Structural Break Test in Factor Loadings

2.1 Factor Models and the Null Hypothesis of Interest

Let xit denote the observation for the ith cross section at period t for i = 1, 2, ..., N and t = 1, 2, ..., T .

Let bπ∗T c + 1 denote the break date of factor loadings and π∗ ∈ (0, 1). Suppose that xit has r
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common factors and follows the static factor representation:

xit =


f ′0,tλ0,i + f ′1,tλ1,i + eit if 1 ≤ t ≤ bπ∗T c

f ′0,tλ0,i + f ′1,tλ2,i + eit if bπ∗T c+ 1 ≤ t ≤ T
(2.1)

where f0,t is a q0×1 vector that denotes the factors with time-invariant factor loadings, f1,t is a q1×1

dimensional factor whose loadings have structural change at bπ∗T c + 1, λ0,i is the factor loading

on f0,t, λ1,i and λ2,i are the pre- and post-break factor loadings on f1,t, respectively, and eit is the

idiosyncratic shock for cross section i at period t. Let ft ≡ (f ′0,t, f ′1,t)′ denote the r × 1 vector of

common factors at period t, so we have r = q0 + q1. Define the vectors: Xi ≡ (xi1, xi2, ..., xiT )′ and

ei ≡ (ei1, ei2, ..., eiT )′. The matrix notation of the factor model is:

X =

 F0,1Λ′0 + F1,1Λ′1

F0,2Λ′0 + F1,2Λ′2

+ e (2.2)

where X ≡ (X1, X2, ..., XN ), F0,1 ≡ (f0,1, f0,2, ..., f0,bπ∗T c)′, F0,2 ≡ (f0,bπ∗T c+1, f0,bπ∗T c+2, ..., f0,T )′,

F1,1 ≡ (f1,1, f1,2, ..., f1,bπ∗T c)′, F1,2 ≡ (f1,bπ∗T c+1, f1,bπT c+2, ..., f1,T )′, Λ0 ≡ (λ0,1, λ0,2, ..., λ0,N )′,

Λ1 ≡ (λ1,1, λ1,2, ..., λ1,N )′, Λ2 ≡ (λ2,1, λ2,2, ..., λ2,N )′, and e ≡ (e1, e2, ..., eN ).

We are interested in testing the null hypothesis of no break in factor loadings:

H0 : λ1,i = λ2,i ∀i (2.3)

The test of Breitung and Eickmeier (2011) is designed to test the null hypothesis

HBE,0 : λ1,i = λ2,i for given i (2.4)

While their test is useful when one is interested in a specific factor loading, it is (2.3) under which

factors are consistently estimated. If their test for (2.4) is applied to test (2.3), the null hypothesis

(2.3) will be rejected with probability approaching one because the test is applied to factor loadings

whose number goes to infinity. Breitung and Eickmeier (2011) also suggest a pooled LM test for
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testing (2.3) but their pooled test requires that the idiosyncratic shocks eit and ejt are independent

for all i 6= j, which is too restrictive compared with the approximate factor structure. Below we

propose a test for the null hypothesis (2.3) that is valid under assumptions allowing cross-sectional

correlated idiosyncratic errors.

2.2 The Test Statistic

We consider testing the null hypothesis H0: all factor loadings are constant over time against the

alternative hypothesis H1: bαNc many variables have structural changes in factor loadings at a

common break date, where α ∈ (0, 1]. To motivate our test statistic, let us first consider the

behavior of the model under the null hypothesis. Since Λ1 = Λ2, (2.2) can be rewritten in the

following form:

X =

 F1

F2

Λ′ + e

= FΛ′ + e (2.5)

where F1 ≡ [F0,1
...F1,1], F2 ≡ [F0,2

...F1,2], F ≡ [F ′1
...F ′2]′, and Λ ≡ [Λ0

...Λ1]. If the fourth moment of

ft is time-invariant and some regularity conditions hold, a Wald statistic comparing the subsample

means of ftf ′t should converge to a chi-square distributed random variable under the null hypothesis.

Under the alternative hypothesis, (2.2) has time-varying factor loadings, but PCA implicitly imposes

the restriction that factor loadings are constant over time. To see why the above Wald statistic

has power, consider a simple example where all factors have time-varying loadings, i.e., Λ1 and Λ2

are both N × r and q0 = 0. The PCA will estimate an equivalent factor model with time-invariant

factor loadings:

X =

 F1,1 0bπ∗T c×r

0(T−bπ∗T c)×r F1,2


 Λ′1

Λ′2

+ e
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Let G1 ≡ [F1,1
...0bπ∗T c×r] and G2 ≡ [0(T−bπ∗T c)×r

...F1,2], so it follows that

1
π∗T

G′1G1 =

 1
π∗T F

′
1,1F1,1 0r×r

0r×r 0r×r


and

1
(1− π∗)T G

′
2G2 =

 0r×r 0r×r

0r×r 1
(1−π∗)T F

′
1,2F1,2


have different limits, so the Wald statistic that compares the second moments ofG1 andG2 will reject

the null hypothesis under the alternative. This example shows that the presence of a structural

break in factor loadings implies structural change in the subsample second moments of factors.

Using this fact, we can reduce the infinite-dimensional problem to a finite-dimensional one.

Therefore, we base the proposed test statistic on the pre- and post-break subsample means of

f̂tf̂
′
t , where f̂t is the PCA estimate of the factors. Let

A(π, F̂ ) ≡ vech

√T
 1
bπT c

bπT c∑
t=1

f̂tf̂
′
t −

1
T − bπT c

T∑
t=bπT c+1

f̂tf̂
′
t

 .
Ŝ(π, F̂ ) and S̃(π, F̂ ) denote unrestricted and restricted estimates of the long-run covariance matrix

of A(π, F̂ ), respectively, and will be defined more precisely in the next subsection. We define two

test statistics by

sup
π∈[π1,π2]

WT (π, F̂ ) ≡ sup
π∈[π1,π2]

A(π, F̂ )′Ŝ(π, F̂ )−1A(π, F̂ ), (2.6)

sup
π∈[π1,π2]

LMT (π, F̂ ) ≡ sup
π∈[π1,π2]

A(π, F̂ )′S̃(π, F̂ )−1A(π, F̂ ), (2.7)

where WT (π, F̂ ) and LMT (π, F̂ ) are Wald and LM-like statistics for testing whether the subsample

means of f̂tf̂ ′t are equal or not at a predetermined break date πT . The following subsections will

discuss the assumptions and detailed properties of the proposed test statistics.
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2.3 Assumptions

Recall that Λ ≡ [Λ0
...Λ1] in (2.5). Let λi denote the transpose of the ith row of Λ. Let ι1t and ι2t

denote two indicator functions: ι1t ≡ 1{t ≤ bπ∗T c} and ι2t ≡ 1{t ≥ bπ∗T c+ 1}.

Assumption 1: E ‖ft‖4 < ∞, E(ftf ′t) = ΣF and T−1∑T
t=1 ftf

′
t
p→ ΣF as T → ∞ for some positive

definite matrix ΣF .

Assumption 2: ‖λi‖ ≤ λ̄ < ∞, ‖Λ′Λ/N − ΣΛ‖ → 0 for some r × r positive definite matrix ΣΛ, and

‖Λ′Λ/N − ΣΛ‖ = O
(

1√
N

)
.

Assumption 3: There exists a positive constant M <∞ such that for all N and T ,

(a) E(eit) = 0, E |eit|8 ≤M for all i and t.

(b) E(e′set/N) = E(N−1∑N
i=1 eiseit) = γN (s, t), |γN (s, s)| ≤M for all s, and T−1∑T

s=1
∑T
t=1 |γN (s, t)| ≤

M .

(c) E(eitejt) = τij,t with |τij,t| ≤ |τij | for some τij and for all t. In addition, N−1∑N
i=1

∑N
j=1 |τij | ≤

M .

(d) E(eitejs) = τij,ts, and (NT )−1∑N
i=1

∑N
j=1

∑T
s=1

∑T
t=1 |τij,ts| ≤M .

(e) for every (t, s), E
∣∣∣N−1/2∑N

i=1[eiseit − E(eiseit)]
∣∣∣4 ≤M .

Assumption 4: E
(

1
N

∑N
i=1

∥∥∥ 1√
T

∑T
t=1 fteit · ιmt

∥∥∥2
)
≤M for m = 1, 2.

Assumption 5: There exists M < ∞ such that for all T and N, and for every t ≤ T and for every

i ≤ N :

(a)
∑T
s=1 |γN (s, t)| ≤M .

(b)
∑N
k=1 |τki| ≤M .

Assumption 6: There exists an M <∞ such that for all N and T :

(a) for each t and m = 1, 2, E
∥∥∥ 1√

NT

∑T
s=1

∑N
k=1 fs[eksekt − E(eksekt)] · ιms

∥∥∥2
≤M .

(b) E
∥∥∥ 1√

NT

∑T
t=1

∑N
k=1 ftλ

′
`,kekt · ιmt

∥∥∥2
≤M for m = 1, 2 and ` = 0, 1, 2.
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(c) for each t and ` = 0, 1, 2, E
∥∥∥ 1√

N

∑N
i=1 λ`,ieit

∥∥∥4
≤M .

Assumption 7: The eigenvalues of r × r matrix (ΣΛΣF ) are distinct.

Assumption 8: For any constants π1 and π2 that satisfy 0 < π1 ≤ π∗ ≤ π2 < 1,

(a)

sup
π∈[π1,π2]

∥∥∥∥∥∥ 1√
NT

bπT c∑
t=1

N∑
k=1

ftλ
′
`,kekt · ιmt

∥∥∥∥∥∥
2

= Op(1)

sup
π∈[π1,π2]

∥∥∥∥∥∥ 1√
NT

T∑
t=bπT c+1

N∑
k=1

ftλ
′
`,kekt · ιmt

∥∥∥∥∥∥
2

= Op(1)

for m = 1, 2 and ` = 0, 1, 2.

(b) supπ∈[π1,π2]

∥∥∥ √TbπT c∑bπT ct=1 (ftf ′t − ΣF )
∥∥∥ = Op(1) and supπ∈[π1,π2]

∥∥∥ √
T

T−bπT c
∑T
t=bπT c+1(ftf ′t − ΣF )

∥∥∥ =

Op(1).

These assumptions are either from or slight modifications of those in Bai (2003) and enable us to

conduct inference about subsample means of f̂tf̂ ′t . Assumption 1 is the same as Assumption A in Bai

(2003) except that it requires time-invariant second moment of ft. This assumption is made under

both the null and alternative hypotheses. Note that factors and factor loadings are multiplicative

and identified under some normalization, a factor model with a break in E(ftf ′t) and no break in

factor loadings is observationally equivalent to a factor model with time-invariant E(ftf ′t) but a

rotation in the post-break factor loading matrix. More details about the rotation in the loading

matrix are discussed are discussed in Section 2.5 (See footnote 5). Given this identification issue,

it is not restrictive to assume that factors have constant second moment.

The Assumption 2 is slightly different from Assumption B of Bai (2003) in that it specifies

the convergence speed of Λ′Λ/N .3 Assumptions 3, 5 and 7 exactly follow from Bai’s (2003) setup.

Assumption 3 allows weak serial and cross-sectional dependence in the idiosyncratic shocks, and As-
3Since the factor loadings are assumed to be non-random, Λ′Λ/N can converge to ΣΛ at any rate. We assume

that the rate is no slower than 1/
√
N , which is not stringent compared to usual convergence rate in the Central Limit

Theorem.
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sumption 5 is a strengthened version of Assumption 3. Assumptions 3 and 5 also allow heterogeneity

in time and cross section dimensions. Thus, this paper allows weaker assumptions on idiosyncratic

shocks than BE who assume that the idiosyncratic shocks are independent in cross section dimension

and follow AR(p) processes. Assumption 4 implies that E(N−1∑N
i=1 ‖T−1/2∑T

t=1 fteit‖2) ≤ 4M .

Parts (a) and (b) of Assumption 6 imply that (a) for each t, E‖(NT )−1/2∑T
s=1

∑N
k=1 fs[eksekt −

E(eksekt)]‖2 ≤ 4M ; and (b) E‖(NT )−1/2∑T
t=1

∑N
k=1 ftλ

′
kekt‖2 ≤ 8M , which are Assumptions F1

and F2 of Bai (2003). The role of the indicators functions ι1t and ι2t will become clear under

the alternative hypothesis.4 Assumption 6(c) is slightly stronger than Assumption F3 of Bai

(2003) which only requires the existence of the second moment, but the asymptotic normal dis-

tribution of 1√
N

∑N
i=1 λieit in Bai (2003) is not necessary in this paper. Assumption 8 requires

that the sample sizes before and after the hypothesized break date go to infinity. Assumption

8 also states that the terms in ‖.‖ are Op(1) uniformly in π. Hence, model (2.5) satisfies that

supπ∈[π1,π2]

∥∥∥ 1√
NT

∑bπT c
t=1

∑N
k=1 ftλ

′
kekt

∥∥∥2
= Op(1) and supπ∈[π1,π2]

∥∥∥ 1√
NT

∑T
t=bπT c+1

∑N
k=1 ftλ

′
kekt

∥∥∥2
=

Op(1) under the null hypothesis. Note that all summands have zero means, so Assumption 8 is an

implication of the conventional functional central limit theorem.

2.4 Asymptotics under the Null Hypothesis

Before discussing the properties of our test statistic, it is useful to describe some useful notations

and existing results. Let VNT be the r × r diagonal matrix of the first r largest eigenvalues of

(1/TN)XX ′ in decreasing order. Lemma A3 of Bai (2003) shows that VNT converges to V in

probability, where V is the diagonal matrix consisting of the eigenvalues of Σ
1
2
ΛΣFΣ

1
2
Λ in descending

order. Let Υ denote Σ
1
2
ΛΣFΣ

1
2
Λ’s eigenvectors that corresponds to V such that Υ′Υ = Ir. Recall that

the estimated factor matrix F̂ is
√
T times eigenvectors corresponding to the r largest eigenvalues

of XX ′. Let H ≡ (Λ′Λ/N)(F ′F̂ /T )V −1
NT be an r× r matrix. Proposition 1 of Bai (2003) show that

F ′F̂ /T converges to Σ−
1
2

Λ ΥV
1
2 . Thus, it follows that H p→ Σ

1
2
ΛΥV −

1
2 . Let H0 ≡ plimT,N→∞H , so

it is obvious that

E(H ′0ftf ′tH0) = H ′0ΣFH0 = Ir (2.8)
4See the proof of Lemma 10 in the appendix.

10



which is implied by the definition of H0 and the fact that V −
1
2 Υ′Σ

1
2
ΛΣFΣ

1
2
ΛΥV −

1
2 = V −

1
2V V −

1
2 = Ir.

Equation (2.8) provides a bridge connecting the statistics using estimated factors and true fac-

tors. Let A(π, FH0) ≡ vech
(√

T
(

1
bπT c

∑bπT c
t=1 H ′0ftf

′
tH0 − 1

T−bπT c
∑T
t=bπT c+1H

′
0ftf

′
tH0

))
. Under

Assumption 1 that E(ftf ′t) = ΣF , the central limit theorem implies that A(π, FH0) converges in

distribution to some normally distributed random variable, and Wald statistics can be constructed

based on A(π, FH0) and its sample variance. Although both F and H0 are not observable, F̂ is

a consistent estimate of FH (see Bai, 2003) and H
p→ H0, so replacing H ′0ft by f̂t is a potential

solution.

Theorem 1: Under Assumptions 1 - 8, if
√
T
N → 0 as N, T →∞, then

sup
π∈[π1,π2]

∥∥∥A(π, F̂ )−A(π, FH0)
∥∥∥ p→ 0

Theorem 1 shows that the difference between A(π, F̂ ) and A(π, FH0) is op(1) uniformly in π, so

A(π, F̂ ) and A(π, FH0) will have the same asymptotic distribution. To construct a Wald statistic,

we also need the sample variance of A(π, FH0). Let

Ω ≡ lim
T→∞

Var
(

vech
(

1√
T

(
T∑
t=1

H ′0ftf
′
tH0 − Ir

)))
.

Let Ω̂1(π, FH0) and Ω̂2(π, FH0) be consistent estimates of Ω, where the subscripts “1” and “2”

denote the pre- and post-break subsamples, respectively, π denotes the break date that splits the

sample, and FH0 means that the sample variance is computed using unobserved f ′tH0. Since the

common factors ft are likely to be serially correlated, we consider the following estimates for the

sample variances:

Ω̂1(π, FH0) = Γ̂1,0(π, FH0) +
bπTc−1∑
j=1

k

(
j

SbπTc

)
(Γ̂1,j(π, FH0) + Γ̂1,j(π, FH0)′)

Ω̂2(π, FH0) = Γ̂2,0(π, FH0) +
T−bπTc−1∑

j=1
k

(
j

ST−bπTc

)
(Γ̂2,j(π, FH0) + Γ̂2,j(π, FH0)′) (2.9)

11



where k(·) is a real-valued kernel

Γ̂1,j(π, FH0) = 1
bπT c

bπT c∑
t=j+1

vech(H ′0ftf ′tH0 − Ir)vech(H ′0ft−jf ′t−jH0 − Ir)′

Γ̂2,j(π, FH0) = 1
T − bπT c

T∑
t=j+bπT c+1

vech(H ′0ftf ′tH0 − Ir)vech(H ′0ft−jf ′t−jH0 − Ir)′ (2.10)

Alternatively, we can use all data to estimate Ω̂1(π, FH0) and Ω̂2(π, FH0),

Ω̂(FH0) = Γ̂0(FH0) +
T−1∑
j=1

k

(
j

ST

)
(Γ̂j(FH0) + Γ̂j(FH0)′) (2.11)

where

Γ̂j(FH0) = 1
T

T∑
t=j+1

vech(H ′0ftf ′tH0 − Ir)vech(H ′0ft−jf ′t−jH0 − Ir)′ (2.12)

In this paper, we focus our analysis on three commonly used kernels that always give positive

definite estimates: Bartlett, Parzen and Quadratic Spectral (henceforth QS). S is a band-width

parameter, and its subscript denotes the size of the sample (or subsample) that is used to estimate

the long-run variance. Let

Ŝ(π, FH0) ≡ 1
π

Ω̂1(π, FH0) + 1
1− π Ω̂2(π, FH0),

so Ŝ(π, FH0) is an estimate of the asymptotic variance of A(π, FH0). One can also construct the

restricted estimator S̃(π, FH0) using Ω̂(FH0), i.e.

S̃(π, FH0) ≡
( 1
π

+ 1
1− π

)
Ω̂(FH0).

Note that all of Ω̂m(π, FH0), Γ̂m,j(π, FH0), for m = 1, 2, Ω̂(FH0), Γ̂j(FH0), Ŝ(π, FH0) and

S̃(π, FH0) are computed using infeasible data f ′tH0. We define Ω̂m(π, F̂ ), Γ̂m,j(π, F̂ ), for m = 1, 2,

Ω̂(F̂ ), Γ̂j(F̂ ), Ŝ(π, F̂ ) and S̃(π, F̂ ) as the feasible analogs computed using the estimated regressors

12



F̂ .

Condition 1: (a) The Bartlett kernel is used to estimate Ŝ(π, FH0), Ŝ(π, F̂ ), S̃(π, FH0) and S̃(π, F̂ ),

and there exists a constant K > 0 such that ST , SbπT c, and ST−bπT c are less than KT
1
3 for all

π ∈ [π1, π2] ⊂ (0, 1); and (b) T
2
3
N → 0 as N, T →∞.

Condition 2: (a) The Parzen kernel is used to estimate Ŝ(π, FH0), Ŝ(π, F̂ ), S̃(π, FH0) and S̃(π, F̂ ),

and there exists a constant K > 0 such that ST , SbπT c, and ST−bπT c are less than KT
1
5 for all

π ∈ [π1, π2] ⊂ (0, 1); or, the QS kernel is used to estimate Ŝ(π, FH0), Ŝ(π, F̂ ), S̃(π, FH0) and

S̃(π, F̂ ), and there exist constants K1, K2 > 0 such that K1T
1
5 ≤ ST , SbπT c, ST−bπT c ≤ K2T

1
5 for

all π ∈ [π1, π2] ⊂ (0, 1); and (b) T
2
5
N → 0 as N, T →∞.

Theorem 2: Under Assumptions 1 - 7, if Condition 1 or Condition 2 holds, then

sup
π∈[π1,π2]

∥∥∥Ŝ(π, F̂ )− Ŝ(π, FH0)
∥∥∥ p→0

sup
π∈[π1,π2]

∥∥∥S̃(π, F̂ )− S̃(π, FH0)
∥∥∥ p→0.

Theorem 2 shows that the infeasible sample variances can be replaced by the estimates computed

using F̂ . Given this result, we can compute the Wald statistic and the LM-like statistics

WT (π, F̂ ) ≡A(π, F̂ )′Ŝ(π, F̂ )−1A(π, F̂ )

LMT (π, F̂ ) ≡A(π, F̂ )′S̃(π, F̂ )−1A(π, F̂ ) (2.13)

and sup-Wald and sup-LM defined in (2.6) and (2.7). To establish the asymptotic distributions of

feasible statistics, we define their infeasible analogs as

WT (π, FH0) ≡A(π, FH0)′Ŝ(π, FH0)−1A(π, FH0)

LMT (π, FH0) ≡A(π, FH0)′S̃(π, FH0)−1A(π, FH0) (2.14)

13



and we make the following assumption:

Assumption 9: (a) Ω ≡ limT→∞Var
(
vech

(
1√
T

(∑T
t=1H

′
0ftf

′
tH0 − Ir

)))
is positive definite, and

‖Ω‖ <∞. Ω̂1(π, FH0), Ω̂2(π, FH0) and Ω̂(FH0) defined in (2.9) and (2.11) are consistent estimators

of Ω satisfying that

sup
π∈[π1,π2]

∥∥∥Ω̂m(π, FH0)− Ω
∥∥∥ = op(1) for m = 1, 2

∥∥∥Ω̂(FH0)− Ω
∥∥∥ = op(1)

(b) WT (π, FH0)⇒ Qp(π), LMT (π, FH0)⇒ Qp(π), supπ∈[π1,π2]WT (π, FH0) d→ supπ∈[π1,π2]Qp(π),

and supπ∈[π1,π2] LMT (π, FH0) d→ supπ∈[π1,π2]Qp(π), where Qp(π) = [Bp(π) − πBp(1)]′[Bp(π) −

πBp(1)]/[π(1− π)] and Bp(·) is a p-vector (p = r(r+1)
2 ) of independent Brownian motions on [0, 1]

restricted to [π1, π2] ⊂ (0, 1).

Assumption 9(a) states that Ω̂1(π, FH0), Ω̂2(π, FH0) and Ω̂(FH0) converge to the population mo-

ment Ω uniformly in π. This is similar to Assumption 3 of Andrews (1993). Assumption 9(b)

is just the main result of Theorem 3 in Andrews (1993): the sequences of Wald and LM statis-

tics weakly converge to the stochastic process Qp(π) restricted to [π1, π2] ⊂ (0, 1), and both

supπ∈[π1,π2]WT (π, FH0) and supπ∈[π1,π2] LMT (π, FH0) converge to supπ∈[π1,π2]Qp(π) by the con-

tinuous mapping theorem. See CDG for more primitive assumptions under which high-level as-

sumptions that are similar to Assumption 9(b) hold. Note that all the terms in Assumption 9 are

computed using the infeasible data FH0, which means that if FH0 were observable, one would be

able to use the conventional supreme Wald test. The following theorem guarantees that one can use

the estimated regressors, F̂ , to compute the supreme statistics, which have the same asymptotic

distribution as those computed using FH0.

Theorem 3: Under Assumptions 1 – 9, if either Condition 1 or Condition 2 holds and
√
T
N → 0 as

N, T →∞, then

(i) supπ∈[π1,π2]

∣∣∣WT (π, F̂ )−WT (π, FH0)
∣∣∣ = op(1) and supπ∈[π1,π2]

∣∣∣LMT (π, F̂ )− LMT (π, FH0)
∣∣∣ =

op(1).
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(ii) supπ∈[π1,π2]WT (π, F̂ ) d→ supπ∈[π1,π2]Qp(π) and supπ∈[π1,π2] LMT (π, F̂ ) d→ supπ∈[π1,π2]Qp(π).

Theorem 3 shows that one can use the conventional critical values for the sup-W and sup-LM

statistics computed using F̂ . The uniformity provided by part (i) of Theorem 3 also shows that

WT (π, F̂ ) ⇒ Qp(π) and LMT (π, F̂ ) ⇒ Qp(π) by assumption 9(b). Thus, the continuous mapping

theorem implies that the mean Wald statistic and the exponential Wald statistic proposed by

Andrews and Ploberger (1994) can also be used to test structural breaks in factor loadings.

Corollary 1: Under Assumptions 1 – 9, if either Condition 1 or Condition 2 holds and
√
T
N → 0 as

N, T →∞, then ˆ π2

π1

exp
(
WT (π, F̂ )

2

)
dπ −

ˆ π2

π1

exp
(
WT (π, FH0)

2

)
dπ = op(1)

ˆ π2

π1

WT (π, F̂ )dπ −
ˆ π2

π1

WT (π, FH0)dπ = op(1)

Define exp-W (F̂ ) ≡ ln
(

1
π2−π1

´ π2
π1

exp
(
WT (π,F̂ )

2

)
dπ

)
and mean-W (F̂ ) ≡ 1

π2−π1

´ π2
π1
WT (π, F̂ )dπ.

Corollary 1 shows that critical values provided by Andrews and Ploberger (1994) can be applied

to exp-W (F̂ ) and mean-W (F̂ ) as if F̂ is observed rather than estimated. This result also holds for

exp-LM(F̂ ) and mean-LM(F̂ ) which can be defined in a similar way.

2.5 Asymptotics under the Alternative Hypothesis

We consider the alternative hypothesis that bαNc many cross sections have a single break at a

common break date in their loadings. The model (2.2) can be rewritten as:

X =

 F0,1 F1,1 0

F0,2 0 F1,2




Λ′0

Λ′1

Λ′2

+ e (2.15)
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Next, we partition the matrix ΣF ≡ E(ftf ′t) as

ΣF ≡

 Σ0,0
F Σ0,1

F

Σ0,1′
F Σ1,1

F



where Σ0,0
F ≡ E(f0,tf

′
0,t) , Σ0,1

F ≡ E(f0,tf
′
1,t) , and Σ1,1

F ≡ E(f1,tf
′
1,t).

Note that (2.15) is equivalent to a factor model that has time invariant factor loadings. Note

that [Λ0
...Λ1

...Λ2] in (2.15) may not be of full column rank, so the representation of the equivalent

model is not unique. However, it is only meaningful to deal with a representation with both factor

and loading matrices of full column rank, so we reformulate the equivalent model as

X = GΘ′ + e. (2.16)

Let gt denote the transpose of the tth row of G and θi denote the transpose of the ith row of Θ,

so G = (g1, g2, ..., gT )′ and Θ = (θ1, θ2, ..., θN )′. If G has full column rank, the number of factors

in (2.16) is determined by the rank of limN→∞Θ′Θ/N . We use the rank of Θ′Θ/N to define three

different types of breaks in the factor loading matrix. The detailed expressions of G and Θ depend

on the number of factors in (2.16) and are discussed below.

Type 1 Break: rank(Θ′Θ/N) = r + q1.

Type 1 break requires the column rank of [Λ1
...Λ2] to be 2q1. The break in λi should be so

idiosyncratic across i′s that Λ1 and Λ2 are linearly independent. Under type 1 break, (2.15) is

equivalent to a factor model that has r + q1 factors with time-invariant factor loading matrix:

X = G(1)Θ′(1) + e (2.17)

where G(1) =

 F0,1 F1,1 0

F0,2 0 F1,2


T×(r+q1)

is the factor matrix and Θ(1) = [Λ0
...Λ1

...Λ2]N×(r+q1) is
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the factor loading matrix.

Type 2 Break: rank(Θ′Θ/N) = r.

Under type 2 break, the column rank of [Λ1
...Λ2] is q1, so there exists a q1 × q1 matrix Z, either

singular or nonsingular, such that Λ2 = Λ1Z (or Λ1 = Λ2Z). Type 2 break means that all the

loadings change in a very homogeneous way. For example, Λ2 = 2Λ1, which might be unlikely to

happen in practice. A more empirically relevant example is that rank(Λ1) = q1 and Λ2 = 0, so

the q1−dimensional factors f1,t disappear after the break. Hence, type 2 break covers the case of

emerging or disappearing factors. Without loss of generality, we assume that Λ2 = Λ1Z, so the

equivalent model has r transformed factors under type 2 break:

X = G(2)Θ′(2) + e (2.18)

where G(2) =

 F0,1 F1,1

F0,2 F1,2Z
′


T×r

is the factor matrix and Θ(2) = [Λ0
...Λ1]N×r is the factor loading

matrix. Note that (2.18) has the same loading matrix as under the null, i.e. Λ ≡ [Λ0
...Λ1]. The

change in Λ is transmitted to the factors, and F1,2 is rotated by Z ′. 5

Type 3 Break: rank(Θ′Θ/N) = r + `, where 0 < ` < q1.

Under type 3 break, the column rank of [Λ1
...Λ2] is greater than q1 but less than 2q1, so some

(but not all) columns of Λ1 and Λ2 are linearly dependent. Compare the equivalent models in (2.17)

and (2.18): for type 1 break, the dimension of the factor space is augmented; for type 2 break, the

factors are rotated with unchanged loadings. It is not difficult to see that type 3 break will lead

to an equivalent model with characteristics of both types 1 and 2 breaks. The linearly dependent

columns of Λ1 and Λ2 will transform the factors by rotation as under type 2 break, while the linearly

independent columns of Λ1 and Λ2 will augment the factor space as under type 1 break. Without

loss of the main insight, our analysis will focus on breaks of types 1 and 2 to avoid introducing more
5Note that we assume E(ftf ′t) to be constant over time. If E(ftf ′t) has a break, then the model is equivalent to a

factor model with time-invariant E(ftf ′t) but a type 2 break in the loading matrix. To see it, let ΣF and Σ∗F be the
variances of ft before and after the break, respectively. If both ΣF and Σ∗F are positive definite, then there exist a
nonsingular matrix Ψ such that ΨΣFΨ′ = Σ∗F . It can be viewed as a factor model where factors have constant second
moment ΣF , the pre-break loading is Λ, and post-break loading is ΛΨ.
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tedious notations associated with type 3 break. The power properties of our statistics under type 3

break will be the combination of those under types 1 and 2.

Assumption 10: Conditions on the Break

Let ΣG(j) ≡ plimT→∞G(j)G(j)/T and ΣΘ(j) = limN→∞Θ′(j)Θ(j)/N for j = 1, 2.

(a) Type 1 break: ΣG(1) is positive definite. ‖λ2,i‖ ≤ λ̄ < ∞, ‖Θ′(1)Θ(1)/N − ΣΘ(1)‖ → 0 for some

(r + q1)× (r + q1) positive definite matrix ΣΘ(1) , and ‖Θ′(1)Θ(1)/N − ΣΘ(1)‖ ≤ O
(

1√
N

)
.

(b) Type 2 break: ‖Z‖ <∞ and ZΣ1,1
F Z ′ 6= Σ1,1

F .

(c) For both types 1 and 2 breaks, The eigenvalues of ΣG(j)ΣΘ(j) are distinct.

Part (a) of Assumption 10 ensures that the number of factors in the equivalent model (2.17) is equal

to r+ q1. The positive definiteness of ΣG(1) requires the columns of G(1) to be linearly independent,

which is not restrictive given the structure of G(1). The requirement on Θ(1) is simply the analog of

Assumption 2 on Λ. The restriction that ZΣ1,1
F Z ′ 6= Σ1,1

F in part (b) of Assumption 10 is to ensure

the consistency of our statistics. It rules out a very unlikely case where Z = −1, i.e., all the loadings

switch their signs after the break. Part (c) plays the same role as Assumption 7 and ensures the

convergence and nonsingularity of the rotation matrix J defined below.

Next, we define the analogs of VNT , V , H, and H0 under the alternative hypothesis. Recall that

F̂ denotes the PCA estimate of factors and f̂t denotes the transpose of the tth row of F̂ . Under the

alternative hypothesis, however, F̂ will be an estimate of factors (up to a rotation) in the equivalent

models (2.17) and (2.18). Since the equivalent models under types 1 and 2 are different, we will

discuss the corresponding cases separately.

Type 1 break:

Let UNT be the (r + q1) × (r + q1) diagonal matrix of the first r + q1 largest eigenvalues of

(1/TN)XX ′ in descending order. Let U be the probability limit of UNT , where U is the diagonal

matrix consisting of the eigenvalues of Σ
1
2
Θ(1)

ΣG(1)Σ
1
2
Θ(1)

in descending order (Lemma A3, Bai and Ng,

2003). Let J = (Θ′(1)Θ(1)/N)(G′(1)F̂ /T )U−1
NT be an (r+ q1)× (r+ q1) matrix. Denote plimT,N→∞J
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as J0, which is a non-singular matrix (by Proposition 1 of Bai, 2003) 6. Let

D1 ≡


Σ0,0
F Σ0,1

F 0

Σ0,1′
F Σ1,1

F 0

0 0 0

 , D2 ≡


Σ0,0
F 0 Σ0,1

F

0 0 0

Σ0,1′
F 0 Σ1,1

F

 , and C ≡ J ′0(D1 −D2)J0. (2.19)

Type 2 break:

Let UNT be the r × r diagonal matrix of the first r largest eigenvalues of (1/TN)XX ′ in

descending order. Let U be the probability limit of UNT , where U is the diagonal matrix consisting

of the eigenvalues of Σ
1
2
Θ(2)

ΣG(2)Σ
1
2
Θ(2)

in descending order (Lemma A3, Bai and Ng, 2003). Let

J = (Θ′(2)Θ(2)/N)(G′(2)F̂ /T )U−1
NT be an r × r matrix. Denote plimT,N→∞J as J0, which is a non-

singular matrix (by Proposition 1 of Bai, 2003). Let

D1 ≡

 Σ0,0
F Σ0,1

F

Σ0,1′
F Σ1,1

F

 , D2 ≡

 Σ0,0
F Σ0,1

F Z ′

ZΣ0,1′
F ZΣ1,1

F Z ′

 , and C ≡ J ′0(D1 −D2)J0. (2.20)

To establish the consistency of the test under the alternative hypothesis, we need Assumption 11

that regulates the asymptotic property of the variance matrices in our statistics. Define Ω̂1(π∗, GJ0),

Ω̂2(π∗, GJ0), Ω̂(GJ0) by replacing π, F , and H0 in equations (2.9), (2.10), (2.11), and (2.12) with

π∗, G, and J0, respectively. Let Ŝ(π∗, GJ0) = 1
π∗ Ω̂1(π∗, GJ0) + 1

1−π∗ Ω̂2(π∗, GJ0) and S̃(π∗, GJ0) =
1
π∗ Ω̂(GJ0) + 1

1−π∗ Ω̂(GJ0).

Assumption 11: (a)

plimT→∞ inf
{

vech(C)′
[
max(Sbπ∗T c, ST−bπ∗T c)Ŝ(π∗, GJ0)−1

]
vech(C)

}
> 0

plimT→∞ inf
{

vech(C)′
[
ST S̃(π∗, GJ0)−1

]
vech(C)

}
> 0

where Sbπ∗T c, ST−bπ∗T c, and ST are the bandwidth parameters for Ω̂1(π∗, GJ0), Ω̂2(π∗, GJ0), and
6The subscripts (1) and (2) to distinguish two types of breaks in UNT , U , J , J0 and C are omitted to simplify the

notations.
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Ω̂(GJ0), respectively.

(b) Condition 1 or 2 holds for Ŝ(π∗, GJ0), Ŝ(π∗, F̂ ), S̃(π∗, GJ0), and S̃(π∗, F̂ ).

Remark 1: Assumption 11(a) ensures that WT (π∗, GJ0) and LMT (π∗, GJ0) diverge under the alter-

native as N and T go to infinity. Contrast to Equation (2.8), it is worth noting that E(J ′0gtg′tJ0) 6=

Ir+q1 under the alternative hypothesis, so the HAC estimators are not properly demeaned. Hall

(2000) investigates the properties of HAC estimators that are not properly demeaned in the context

of overidentifying restriction tests. He shows that if the HAC estimate is not correctly demeaned,

then it will diverge at the rate of the bandwidth parameter bT . He uses µ∗ to denote the ex-

pectation of the invalid moment conditions and S to denote the HAC estimator, and shows that

bTµ
′
∗S
−1µ∗

p→ a positive constant. (see Hall (2000), Proof of Theorem 2, p. 1525-1526). Although

Hall’s (2000) result is developed for the HAC estimator in the context of overidentifying restriction

tests, it can be readily extended to our HAC estimators. In this paper, it turns out that vech(C)

is an analog of µ∗ and our bandwidth parameters are analogs of bT . Hence, Assumption 9’(a) is

analogous to Hall’s result that bTµ′∗S−1µ∗ is asymptotically bounded away from zero, and it can

be proved under more primitive conditions in Hall (2000).

Theorem 4: Under Assumptions 1 – 8, and 11, if the break of factor loading matrix satisfies As-

sumption 10, then

(i) There exists some non-randommatrix C 6= 0, such that 1
bπ∗T c

∑bπ∗T c
t=1 f̂tf̂

′
t− 1

T−bπ∗T c
∑T
t=bπ∗T c+1 f̂tf̂

′
t

p→ C.

(ii) For any constants π1 and π2 that satisfy 0 < π1 ≤ π∗ ≤ π2 < 1, supπ∈[π1,π2]WT (π, F̂ ) and

supπ∈[π1,π2] LMT (π, F̂ ) are consistent under the alternative hypothesis that a fraction of N cross

sections have structural breaks in their factor loadings at a common date bπ∗T c.

Theorem 4(i) shows that pre- and post-break subsample means of f̂tf̂ ′t converge to different limits

under the alternative hypothesis. This explains why just using a Wald statistic computed using

estimated factors can in fact detect the structural breaks in factor loadings. Note that the factors

(in static form) are estimated by PCA which implicitly assumes that the factor loadings are time-
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invariant. Hence, Theorem 4(a) shows that the PCA will transmit the structural breaks in the

loading matrix to the subsample means of f̂tf̂ ′t before and after bπ∗T c.

Recall that the number of factors is increased under type 1 break. This indicates that the number

of factors plays an important role in determining the asymptotics of the test statistics in this paper.

In practice, the number of factors is commonly estimated using IC proposed by Bai and Ng (2002),

so the asymptotics of IC under the null and alternative hypotheses will affect the performance of

the structural break tests for factor loadings. It turns out that Bai and Ng’s IC can consistently

estimate the number of factors in the equivalent model and help our statistics distinguish the null

and alternative hypotheses in large samples.

Proposition 1: Under Assumptions 1–4 and 10, Bai and Ng’s information criteria consistently esti-

mate the number of factors of the equivalent models (2.17) and (2.18).

IC is equivalent to determining the number of asymptotically non-zero eigenvalues of XX ′/NT .

Assumptions 1 – 4 play the role of Assumptions A – D of Bai and Ng (2002) to ensure IC’s

consistency under the null hypothesis. Under the alternative hypothesis, Proposition 1 shows that

IC consistently estimates the number of factors in the equivalent models. Thus, the asymptotics of

test statistics proposed in this paper will not be affected by implementing IC in the first stage as

N and T tend to infinity, and the finite-sample effect of the first-stage IC will be investigated in

Monte Carlo experiments in the next section.

When IC is used in the first stage to determine the number of factors estimated by PCA, tests

for structural breaks should not be based on factor loadings. For example, the traditional Chow

test for testing λ1,i = λ2,i will not have power under the alternative hypothesis, because the factor

loadings of the equivalent models are actually time-invariant.7 Therefore, in order to test structural

breaks in factor loadings, one should focus on the estimated factors rather than the estimated factor

loadings.
7Breitung and Eickmeier (2011) also point out that the Chow test statistic will also lack power if the number of

factors is determined using IC based on full sample, so they suggest implementing IC to both pre- and post-break
subsamples. This solution is subject to the knowledge of the break date, and the IC may become less accurate since
the time dimension will be shortened once the sample is split.
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3 Monte Carlo Simulations

In the Monte Carlo experiments we investigate the finite sample properties of our statistics for

known and unknown break points. Section 3.1 compares the performance of our Wald test W

and LM-like test LM with BE’s pooled test SBE and the Bonferroni test sBon, where W and LM

abbreviate WT (π, F̂ ) and LMT (π, F̂ ), respectively. Recall that SBE =
(∑N

i=1 si − rN
)
/
√

2rN ,

where si is BE’s individual statistic8 for the ith variable and r is estimated by Bai and Ng’s IC. We

use three different superscripts to denote the way to compute si: s0
i denotes BE’s individual statistic

assuming that the idiosyncratic shocks are conditionally homoskedastic and serially uncorrelated;

sGLSi denotes the individual statistic computed using quasi-demeaned residuals which are based on

AR models with lags selected by BIC; sHACi denotes the individual statistic computed using HAC

estimate. Let S0
BE , SGLSBE and SHACBE denote the pool statistics computed using s0

i , sGLSi and sHACi ,

respectively. Besides the pooled statistics, we also include the results based on Bonferroni critical

values: F−1(1 − 5%/N), where F is the chi-square CDF with degree of freedom r̂. The reason

for considering the Bonferroni test is that there are N BE individual statistics si, using the 5%

significance level for each si will always result in a fraction of si’s rejecting the null hypothesis even

if the factor loading matrix is constant over time. The Bonferroni method is a simple way to control

the overall type I error of all si statistics. Let s0
Bon, sGLSBon and sHACBon denote the Bonferroni statistics

based on s0
i , sGLSi and sHACi , respectively. In addition, our W and LM statistics are computed

using three different estimates for the sample variances: W0 and LM0 are computed using White’s

(1980) conditional heteroskedasticity robust estimate; WB and LMB are computed using Newey

and West’s (1994) data dependent HAC estimate based on the Bartlett kernel; WQS and LMQS are

computed using the same data dependent HAC estimate but based on the QS kernel.

Section 3.2 compares the performance of the sup-W , exp-W , mean-W , sup-LM , exp-LM , and

mean-LM tests when the break date is unknown. Similar to Section 3.1, the subscripts “0”, “B” and

“QS” denote the statistics using the conditional heteroskedasticity robust estimate, HAC estimate

based on the Bartlett kernel, and HAC estimate based on the QS kernel, respectively. Section 3.3
8We use BE’s LM statistics to compute the pooled test statistic following Breitung and Eickmeier’s (2011) sugges-

tion based on their simulation results.
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provides Monte Carlo experiments on the power comparison between our and CDG’s tests.

In all Monte Carlo experiments, factor loadings are initially set randomly, and then fixed

throughout 5000 replications for each DGP.

3.1 Testing Breaks with Known Break Date

Our first experiment focuses on the size of W , LM , sBon and SBE when the break date is known.

The model is xit =
∑r
k=1 λikfkt + κeit, where λik

iid∼ N( b2 , 1), and fkt and eit are generated by the

following DGPs:

N1: fkt, eit
iid∼ N(0, 1), κ =

√
(1 + b2/4)r.

N2: fkt
iid∼ N(0, 1), eit = σi(νit +

∑
1≤|j|≤P βνi−j,t), σi

iid∼ U(0.5, 1.5), νit
iid∼ N(0, 1), and κ =√

12(1 + b2/4)r/13(1 + 2Pβ2).

N3: fkt = ρffkt−1 +µit, µit
iid∼ N(0, 1−ρ2

f ), eit = σiνit, σi
iid∼ U(0.5, 1.5), νit = ρννit−1 +εit+ωεεit−1,

εit
iid∼ N

(
0, 1

1+(ρe+ωε)2/(1−ρ2
e)

)
, and κ =

√
12(1 + b2/4)r/13.

In N1 – N3, we set b = 1 and r = 3, and the value of κ is chosen so that R2 = trace(E(ee′))/trace(

E(XX ′)) is 50%.9 N1 is the simplest DGP: both factors and idiosyncratic shocks are i.i.d, i.e. no

correlation or heteroskedasticity is involved. Both N2 and N3 allow heteroskedasticity across i,

and we follow Breitung and Eickmeier’s (2011) setup: σi
iid∼ U(0.5, 1.5). N2 also allows limited

cross-sectional correlation in idiosyncratic shocks if β 6= 0 and P ≥ 1. We let β ∈ {0, 0.1} and

P ∈ {6, 8}, and these values are similar to those of Onatski (2010). DGP N3 considers the case

where both factors and idiosyncratic shocks are serially correlated. The factors are assumed to be

AR(1) processes, and ρf = 0.7 which leads to mild persistency. νit follows an AR(1) process if ωε

is zero, or an ARMA(1, 1) process otherwise. We set ωε ∈ {0, 0.5} and ρν = 0.5.

Table 1 reports the size of the Bonferroni test, BE’s pooled tests and our tests.10 The last column

of Table 1 is averaged number of factors selected by ICp1 of Bai and Ng (2002). It is remarkable that

both BE’s pooled statistic and Bonferroni statistic are valid under sequential asymptotics where T
9For the choice of κ, note that E(λijFtj)2 = 1 + b2/4 and E(σ2

i ) = 13/12.
10For the sbon and SBE tests, we implement IC to the full sample. While BE suggest implementing IC to pre- and

post-break subsamples to determine r, it is not very clear about which to use when the numbers of factors estimated
from the pre- and post-break subsamples are different.
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first goes to infinity while N is fixed and then N goes to infinity. In the context of factor models,

however, it is assumed that N and T go to infinity simultaneously, so SBE and sBon are theoretically

invalid. Our experiments investigate the consequence of applying these invalid statistics in practice.

It can be seen under DGP N3 that SHACBE always rejects more than 75% of the times, which is

similar to the results in the working paper version of Breitung and Eickmeier (2011). SGLSBE has

a substantial size distortion when ωε = 0 and (N,T ) = (500, 100). Under DGP N3, the effective

size of sHACBon can be as high as 16.7%. While sGLSBon does not exceed the 5% nominal size, it is

theoretically invalid for the same reason as sHACBon and could have incorrect size under other DGPs

not considered by our paper.

Also, under DGP N2 with cross-sectional correlations (β 6= 0 and P > 0), the pooled tests

tend to over-reject the null hypothesis. For example, the effective size of SGLSBE is 16.2% when

P = 8, β = 0.1, N = 200, and T = 100. In contrast, our tests do not require the independence of

idiosyncratic shocks, so the size of our tests is robust to cross-sectional correlation in eit. Moreover,

IC tends to over-estimate the number of factors when the correlation is relatively strong. For

instance, when P = 8, β = 0.1, N = 100, and T = 200, the average of estimated number of factors

is 6.37, but our tests demonstrate robustness to the overestimation of r in simulations. (See also

the cases where the averaged r̂ equal to 3.46 and 3.66). Finally, under DGP N3, the size of W and

LM based on HAC estimates are close to 5%, and LM tends to have better size than W for small

T .

The second experiment compares the powers of W , LM , sBon and SBE when the break date is

known. The break date is set to be T
2 , and the data are generated by the following DGPs:

A1: xit =
∑r
k=1 λikfkt + κeit for i = 1, 2, ..., N and t ≤ T/2, and xit =

∑r
k=1(λik − b)fkt + κeit for

i = 1, 2, ..., N and t ≥ T/2 + 1, where fkt, eit
iid∼ N(0, 1), κ =

√
(1 + b2/4)r, and λik

iid∼ N( b2 , 1).

A2: xit =
∑r
k=1 λikfkt + κeit for i = 1, 2, ..., αN and t ≤ T/2, xit =

∑r
k=1(λik − b)fkt + κeit for

i = 1, 2, ..., αN and t ≥ T/2+1, and xit =
∑r
k=1 λikfkt+κeit for i = αN+1, ..., N and t = 1, 2, ..., T ,

where fkt, eit
iid∼ N(0, 1), κ =

√
(1 + b2/4)r, λik

iid∼ N( b2 , 1), and b = 1.

A3: xit =
∑r
k=1 λikfkt + κeit for i = 1, 2, ..., N , where fkt, eit

iid∼ N(0, 1), κ =
√

(1 + b2/4)r,
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λik = λ0
ik for t ≤ T/2, λik = c · λ0

ik for t ≥ T/2 + 1, λ0
ik
iid∼ N( b2 , 1), and b = 1.

We set r = 3 for DGPs A1–A3. It is not difficult to verify that the equivalent factor model with

time-invariant loadings has four factors under both DGPs A1 and A2. DGP A3 considers type 2

break discussed in section 2.5, so the number of factors under DGP A3 is unchanged.

DGP A1 focuses on how the power changes as the magnitude of break in factor loadings increases.

We set b ∈ {1/3, 2/3, 1, 2} in DGP A1 and the results are summarized in Table 2A. The pooled

tests and our tests have very different patterns of power. When b = 1/3 and N and T are relatively

small, the pooled tests are very powerful, while ours do not have good power. However, as N and

T increase, our tests become powerful. When N and T = 500, our tests always reject the null,

whereas the pooled tests reject less than 10%. Additionally, when b becomes larger, LM and W

are powerful even for small N and T , while the power of the pooled tests is in fact close to the

nominal size. Note that the equivalent model with time-invariant loadings has four factors under

DGP A1, so XX ′/NT has four nonzero eigenvalues asymptotically. When b = 1/3, and N and

T ≤ 200, IC only captures the first three nonzero eigenvalues, yielding three estimated factors. By

Stock and Watson’s (2002b) result, these three factors consistently estimate the original factor space

because the break is “small”. Under such a circumstance, PCA estimates the original factor models

with time-varying loadings, so BE’s pooled statistics are powerful. However, as the break becomes

larger, Stock and Watson’s (2002b) result based on “small” break does not hold any more. The

factor space is augmented, and PCA in fact estimates the equivalent model with four factors (see

the last column of Table 2A). It is clear that our tests are much more powerful for b ≥ 2/3, whereas

the rejection rates of the pooled statistics are close to 5% because the equivalent model does not

have time-varying loadings.11 Finally, since the Bonferroni tests are always more conservative than

the pooled tests, it is not surprising that Bonferroni tests lack power when the sample size or b is

large.

DGP A2 investigates the power when only a fraction of factor loadings have structural breaks.

We set α ∈ {0.2, 0.4, 0.6, 0.8}. The results are shown in Table 2B. When α = 0.2 and N and
11The individual test si will also be lack of power due to the same reason. To conserve space, we do not report

these results.
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T = 100, the pooled and Bonferroni tests have high power, while our tests are less powerful. This

is consistent with the recent result by Bates et al. (2012) that PCA estimator can consistently

estimate the factor space when only a “small” (asymptotically negligible) fraction of factor loadings

have breaks. As N and T increase to 200, however, our tests become more powerful than the pooled

and Bonferroni tests. Also, when a larger fraction of factor loadings have structural breaks, LM

and W have better power than the other two classes of tests.

DGP A3 considers the power against type 2 break. The post-break loadings are equal to pre-

break loadings scaled by a parameter c. We set c2 ∈ {0, 0.25, 0.5, 0.75}, so the factor structure

becomes weaker after the break. When c = 0, there is no factor structure in the post-break

subsample. The results are reported in Table 2C. It is remarkable that both Bonferroni and pooled

statistics have almost no power under this type of break. The reason is that the factor space is

not augmented under this type of break, and PCA always estimates a model with time-invariant

loadings whether the break is small or big (see (2.18)). In contrast, the results in Table 2C show

that the power of W and LM increases as N and T increase, confirming the consistency of our tests

against type 2 break.

3.2 Testing Breaks with Unknown Break Date

In this subsection, we investigate the size and power of six statistics, sup-W , exp-W , mean-W ,

sup-LM , exp-LM , and mean-LM , without imposing the knowledge about the location of break

date. Table 3 presents the simulation results under the null hypothesis. Under DGP N2, the size of

our tests is not affected by the cross sectional correlation of the idiosyncratic shocks. Note that N2

does not allow serial correlation of factors or idiosyncratic shocks. It turns out that the statistics

using HAC estimates become relatively conservative, but as the time dimension increases, their

effective size becomes closer to 5%. Under DGP N3, we consider the case where both factors and

idiosyncratic shocks are AR(1) processes. As expected, statistics without using HAC over-reject the

null hypothesis more frequently than the nominal size, and those using HAC estimates have much

better effective size. Since the LM-like test uses the full sample to estimate the sample variance, it

is not surprising that the tests based on LMB and LMQS almost always have better size than those
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based onWB andWQS . In fact, sup-LM has the best size: the size of both sup-LMB and sup-LMQS

is clustered at around 5%; exp-LM also has decent size: the size of exp-LMB and exp-LMQS is

clustered at 6%; mean-W test over-rejects the most frequently, but their size never exceeds 12%.

Tables 4A, 4B and 4C report the power of sup-W , exp-W , mean-W , sup-LM , exp-LM , and

mean-LM under DGPs A1, A2 and A3, respectively. Under DGP A1, all of these tests do not

have good power when the magnitude of the break is small, i.e., b = 1/3, for small N and T .

This is similar to the results shown in Table 2A. As b increases, all of these tests become powerful,

though the power is not monotonically increasing in b. Under DGP A2, all tests are not very

powerful in small samples (N = 100 and T = 200) when a small fraction of (α = 0.2) factor

loadings have structural breaks. However, the power increases substantially and approaches one as

the sample size increases, with α = 0.2 unchanged. Additionally, as structural breaks become more

prevalent, all tests become powerful. Under DGP A3, all tests have limited power when c2 = 0.75

and T ≤ 200. It is remarkable that mean tests are more powerful than supreme and exponential

tests when c2 = 0.75. This is consistent with the result by Andrews and Ploberger (1994) that the

mean test is designed to be powerful against small breaks. As c2 decreases, all tests become more

powerful. When T = 500 and c2 ≤ 0.5, all tests have power equal to one.12 Finally, note that our

tests almost always detect reasonably big breaks when N = T = 500 under DGPs A1–A3. This

confirms the consistency of our tests.

3.3 Power Comparison with the Chen, Dolado, and Gonzalo’s (2012) Test

Chen, Dolado, and Gonzalo (2012) propose a test for structural break in factor loadings by testing

whether or not there is a break in the coefficients of the following regression:

f̂1t = φ2f̂2t + ...+ φr̂f̂r̂t + ut = φ′f̂−1t + ut,

where r̂ is the number of factors determined by Bai and Ng’s (2002) IC, f̂1t,..., f̂r̂t are the factors

associated with the 1st,..., r̂th eigenvalues of XX ′, respectively, and f̂−1t ≡ [f̂2t...f̂r̂t]′ and φ ≡
12Note that DGPs A1–A3 do not allow serial correlation in the data, so the tests using HAC estimates are less

powerful than those using heteroskedasticity robust estimates.
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[c2...cr̂]′. They develop both Wald and LM versions for their test.

We perform power comparison between our tests and the CDG tests under DGPs A1 and A3 for

unknown break date. Table 5A reports the results under DGP A1 (the superscript “CDG” denotes

the CDG tests). Under DGP A1, neither our test nor CDG test uniformly dominates the other.

When White’s (1980) conditional heteroskedasticity robust estimate is used, our sup−LM0 test

tends to be more powerful than sup−LMCDG
0 , while our sup−W0 has similar power to sup−WCDG

0 .

When the HAC estimator is used with the Bartlett kernel, the results are mixed. sup−LMB is more

powerful than sup−LMCDG
B when T = 500. The power of WB is very similar to that of WCDG

B ,

while sup−WCDG
B tends to be more powerful when T ≤ 200.

Table 5B reports the results under DGP A3. It is remarkable that both sup−LMCDG
0 and

sup−LMCDG
B have very limited power even when the factor structure disappears after the break,

i.e., c = 0, for N = T = 500. sup−WCDG
0 and sup−WCDG

B also have little power except for c = 0.

Note that this type of alternative is ruled out by CDG’s assumptions. In contrast, both our Wald

and LM tests are powerful under DGP A3. Hence, our tests can detect more types of breaks in

factor loadings.

Remark 2: Note that the power of our tests depends on the consistency of the Bai and Ng’s (2002)

IC. It is well known that Bai and Ng’s (2002) IC tend to overestimate the number of factors if

the idiosyncratic shocks are correlated (see simulation results of Onatski (2010)). It is remarkable

that the power of our tests will not suffer too much because an F̂ with additional columns still

has a break in its second moment. Hence, our test is still consistent when the number of factors is

overestimated (namely, r̂ > r + q1 under type 1 break or r̂ > r under type 2 break). If the number

of factors is underestimated, our test may lose some power in finite samples because there may be

breaks in the ignored factors. This is also observed by Chen et al. (2012) in their simulations for

the CDG tests.
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4 Conclusions

This paper proposes new test statistics for structural breaks in factor loadings of dynamic factor

models. We consider testing the null hypothesis that the factor loading matrix is constant over time

against the alternative hypothesis that a fraction of or all factor loadings have a single break at a

common date. Our contributions include the following: First, by reducing the infinite dimensional

parameter problem into a finite dimensional problem, we are able to allow for the use of conventional

critical values, unknown break dates, and serial and cross-sectional correlations in the idiosyncratic

shocks. Second, we treat the number of factors to be determined rather than to be known, and our

tests are more powerful than the existing tests based on factors selected by information criteria.

Although we only considered the single-break alternative hypothesis, we expect that our tests have

power against the alternative in which there are finitely many breaks in factor loadings.

29



Appendix

A Proofs of the Results in Section 2.4

First, recall that VNT is the r×r diagonal matrix of the first r largest eigenvalues of (1/TN)XX ′ in
decreasing order, and the estimated factor matrix F̂ is

√
T times eigenvectors corresponding to the r

largest eigenvalues ofXX ′. Therefore, we have (1/NT )XX ′F̂ = F̂ VNT and (1/NT )XX ′F̂ V −1
NT = F̂ .

Let δNT = min{
√
N,
√
T}. Using X = FΛ′ + e gives:

1
NT

(FΛ′ΛF ′ + FΛ′e′ + eΛF ′ + ee′)F̂ V −1
NT = F̂ (A.1)

Using the fact that H = (Λ′Λ/N)(F ′F̂ /T )V −1
NT yields:

F̂ − FH = 1
NT

(
FΛ′e′F̂ + eΛF ′F̂ + ee′F̂

)
V −1
NT (A.2)

f̂t −H ′ft = V −1
NT

(
1
T

T∑
s=1

f̂sγN (s, t) + 1
T

T∑
s=1

f̂sζst + 1
T

T∑
s=1

f̂sηst + 1
T

T∑
s=1

f̂sξst

)
(A.3)

where ζst = e′set
N −γN (s, t), ηst = f ′sΛ′et/N , and ξst = f ′tΛ′es/N . Before we prove Theorem 1 we

present three lemmas, first two of which are due to Bai (2003) and are stated only for convenience:

Lemma 1 (Lemma A.1 of Bai, 2003): Under Assumptions 1 - 4,

1
T

T∑
t=1
‖f̂t −H ′ft‖2 = Op

(
1
δ2
NT

)

Lemma 2 (Lemma B.2 of Bai, 2003): Under Assumptions 1 - 6,

1
T

(F̂ − FH)′F = Op

(
1
δ2
NT

)

Lemma 3: Under Assumptions 1 - 6 and 8(a), for π2 satisfies 0 < π1 ≤ π2 < 1,

sup
π∈[π1,π2]

∥∥∥∥∥∥ 1
bπT c

bπT c∑
t=1

(f̂t −H ′ft)f ′t

∥∥∥∥∥∥ = Op

(
1
δ2
NT

)

sup
π∈[π1,π2]

∥∥∥∥∥∥ 1
T − bπT c

T∑
t=bπT c+1

(f̂t −H ′ft)f ′t

∥∥∥∥∥∥ = Op

(
1
δ2
NT

)

30



Proof of Lemma 3: It follows from (A.3) that

sup
π∈[π1,π2]

∥∥∥∥∥∥ 1
T

bπT c∑
t=1

(f̂t −H ′ft)f ′t

∥∥∥∥∥∥
= sup

π∈[π1,π2]

∥∥∥∥∥∥V −1
NT

 1
T 2

bπT c∑
t=1

T∑
s=1

f̂sf
′
tγN (s, t) + 1

T 2

bπT c∑
t=1

T∑
s=1

f̂sf
′
tζst + 1

T 2

bπT c∑
t=1

T∑
s=1

f̂sf
′
tηst + 1

T 2

bπT c∑
t=1

T∑
s=1

f̂sf
′
tξst

∥∥∥∥∥∥
≤

 sup
π∈[π1,π2]

∥∥∥∥∥∥ 1
T 2

bπT c∑
t=1

T∑
s=1

f̂sf
′
tγN (s, t)

∥∥∥∥∥∥+ sup
π∈[π1,π2]

∥∥∥∥∥∥ 1
T 2

bπT c∑
t=1

T∑
s=1

f̂sf
′
tζst

∥∥∥∥∥∥+

sup
π∈[π1,π2]

∥∥∥∥∥∥ 1
T 2

bπT c∑
t=1

T∑
s=1

f̂sf
′
tηst

∥∥∥∥∥∥+ sup
π∈[π1,π2]

∥∥∥∥∥∥ 1
T 2

bπT c∑
t=1

T∑
s=1

f̂sf
′
tξst

∥∥∥∥∥∥
 ‖V −1

NT ‖

= I + II + III + IV

Term I can be expressed as

sup
π∈[π1,π2]

∥∥∥∥∥∥ 1
T 2

bπT c∑
t=1

T∑
s=1

(f̂s −H ′fs)f ′tγN (s, t) + 1
T 2

bπT c∑
t=1

T∑
s=1

H ′fsf
′
tγN (s, t)

∥∥∥∥∥∥ (A.4)

The first term in (A.4) is bounded by

sup
π∈[π1,π2]

∥∥∥∥∥∥ 1
T 2

bπT c∑
t=1

T∑
s=1

(f̂s −H ′fs)f ′tγN (s, t)

∥∥∥∥∥∥
≤

(
1
T

T∑
s=1
‖f̂s −H ′fs‖2

) 1
2

sup
π∈[π1,π2]

 1
T

T∑
s=1

∥∥∥∥∥∥ 1
T

bπT c∑
t=1

f ′tγN (s, t)

∥∥∥∥∥∥
2


1
2

≤
(

1
T

T∑
s=1
‖f̂s −H ′fs‖2

) 1
2

sup
π∈[π1,π2]

 1
T

T∑
s=1

1
T

bπT c∑
t=1
‖ft‖2

1
T

bπT c∑
t=1
|γN (s, t)|2

 1
2

=
(

1
T

T∑
s=1
‖f̂s −H ′fs‖2

) 1
2

sup
π∈[π1,π2]

1√
T


 1
T

bπT c∑
t=1
‖ft‖2

 1
2
 1
T

T∑
s=1

bπT c∑
t=1
|γN (s, t)|2

 1
2


≤ 1√
T

(
1
T

T∑
s=1
‖f̂s −H ′fs‖2

) 1
2
(

1
T

T∑
t=1
‖ft‖2

) 1
2
(

1
T

T∑
s=1

T∑
t=1
|γN (s, t)|2

) 1
2

= 1√
T
Op

( 1
δNT

)
Op(1)

where theOp(1) follows from Assumption 1 that E‖ft‖2 ≤M and the fact that 1
T

∑T
s=1

∑T
t=1 |γN (s, t)|2 ≤
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M by Lemma 1(i) of Bai and Ng (2002). For the second term in (A.4), we consider its expectation
(excluding H),

E

 sup
π∈[π1,π2]

∥∥∥∥∥∥ 1
T 2

bπT c∑
t=1

T∑
s=1

fsf
′
tγN (s, t)

∥∥∥∥∥∥
 ≤ E

 sup
π∈[π1,π2]

1
T 2

bπT c∑
t=1

T∑
s=1
‖fsf ′t‖|γN (s, t)|


≤ E

(
1
T 2

T∑
t=1

T∑
s=1
‖fsf ′t‖|γN (s, t)|

)

≤ 1
T 2

T∑
t=1

T∑
s=1

(
E‖fs‖2E‖ft‖2

) 1
2 |γN (s, t)|

≤ M

T 2

T∑
t=1

T∑
s=1
|γN (s, t)| ≤ M2

T

where the last two inequalities use Assumptions 1 and 3(b). Note that H is Op(1) because it
converges to a constant matrix H0. Therefore, term I is Op

(
1√
TδNT

)
.

Term II can be written as

sup
π∈[π1,π2]

∥∥∥∥∥∥ 1
T 2

bπT c∑
t=1

T∑
s=1

(f̂s −H ′fs)f ′tζst + 1
T 2

bπT c∑
t=1

T∑
s=1

H ′fsf
′
tζst

∥∥∥∥∥∥ (A.5)

The first term in (A.5) is bounded by

sup
π∈[π1,π2]

∥∥∥∥∥∥ 1
T 2

bπTc∑
t=1

T∑
s=1

(f̂s −H ′fs)f ′tζst

∥∥∥∥∥∥ ≤

(
1
T

T∑
s=1
‖f̂s −H ′fs‖2

) 1
2

sup
π∈[π1,π2]

 1
T

T∑
s=1

∥∥∥∥∥∥ 1
T

bπTc∑
t=1

f ′tζst

∥∥∥∥∥∥
2


1
2

≤

(
1
T

T∑
s=1
‖f̂s −H ′fs‖2

) 1
2

sup
π∈[π1,π2]

 1
T

T∑
s=1

1
T

bπTc∑
t=1
‖ft‖2 1

T

bπTc∑
t=1
|ζst|2

 1
2

≤

(
1
T

T∑
s=1
‖f̂s −H ′fs‖2

) 1
2

sup
π∈[π1,π2]


 1
T

bπTc∑
t=1
‖ft‖2

 1
2
 1
T 2

T∑
s=1

bπTc∑
t=1
|ζst|2

 1
2


≤

(
1
T

T∑
s=1
‖f̂s −H ′fs‖2

) 1
2
(

1
T

T∑
t=1
‖ft‖2

) 1
2
(

1
T 2

T∑
s=1

T∑
t=1
|ζst|2

) 1
2

= Op

(
1
δNT

)
Op(1)Op

(
1√
N

)

where
(

1
T 2
∑T
s=1

∑T
t=1 |ζst|2

) 1
2 = Op

(
1√
N

)
follows from the fact that

1
T 2

T∑
s=1

T∑
t=1
|ζst|2 = 1

NT 2

T∑
s=1

T∑
t=1

(
1√
N

N∑
k=1

[eksekt − E(eksekt)]
)2

= Op

( 1
N

)
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by Assumption 3(e). For the second term in (A.5),

sup
π∈[π1,π2]

∥∥∥∥∥∥ 1
T 2

bπT c∑
t=1

T∑
s=1

H ′fsf
′
tζst

∥∥∥∥∥∥ = sup
π∈[π1,π2]

∥∥∥∥∥∥ 1
T 2

bπT c∑
t=1

T∑
s=1

H ′fsf
′
t

1
N

N∑
k=1

[eksekt − E(eksekt)]

∥∥∥∥∥∥
Let 1√

NT

∑T
s=1

∑N
k=1 fs[eksekt − E(eksekt)] ≡ zt, so the above equation reduces to

sup
π∈[π1,π2]

∥∥∥∥∥∥ 1√
NT 3

bπT c∑
t=1

H ′ztf
′
t

∥∥∥∥∥∥ ≤ 1√
NT

(
1
T

T∑
t=1
‖zt‖2

) 1
2
(

1
T

T∑
t=1
‖f ′t‖2

) 1
2

‖H‖ = 1√
NT

Op(1)

where 1
T

∑T
t=1 ‖zt‖2 = Op(1) follows from Assumption 6(a) E‖zt‖ = E‖ 1√

NT

∑T
s=1

∑N
k=1 fs[eksekt

−E(eksekt)]‖2 ≤M for all t. Thus term II is Op
(

1
δNT
√
N

)
.

Term III can be written as

sup
π∈[π1,π2]

∥∥∥∥∥∥ 1
T 2

bπT c∑
t=1

T∑
s=1

(f̂s −H ′fs)f ′tηst + 1
T 2

bπT c∑
t=1

T∑
s=1

H ′fsf
′
tηst

∥∥∥∥∥∥ (A.6)

The first term in (A.6) is bounded by

sup
π∈[π1,π2]

∥∥∥∥∥∥ 1
T 2

bπT c∑
t=1

T∑
s=1

(f̂s −H ′fs)f ′tηst

∥∥∥∥∥∥
≤

(
1
T

T∑
s=1
‖f̂s −H ′fs‖2

) 1
2

sup
π∈[π1,π2]

 1
T

T∑
s=1

∥∥∥∥∥∥ 1
T

bπT c∑
t=1

f ′tηst

∥∥∥∥∥∥
2


1
2

≤
(

1
T

T∑
s=1
‖f̂s −H ′fs‖2

) 1
2

sup
π∈[π1,π2]

 1
T

T∑
s=1

∥∥∥∥∥∥ 1
T

bπT c∑
t=1

f ′t
1
N

N∑
k=1

f ′sλkekt

∥∥∥∥∥∥
2


1
2

≤
(

1
T

T∑
s=1
‖f̂s −H ′fs‖2

) 1
2
 1
T

T∑
s=1

(
1
T

T∑
t=1

∥∥∥∥∥f ′t 1
N

N∑
k=1

f ′sλkekt

∥∥∥∥∥
)2

1
2

≤
(

1
T

T∑
s=1
‖f̂s −H ′fs‖2

) 1
2
 1
T

T∑
s=1

 1
T

T∑
t=1
‖ft‖2

1
T

T∑
t=1

∣∣∣∣∣ 1
N

N∑
k=1

f ′sλkekt

∣∣∣∣∣
2

1
2

≤ 1√
N

(
1
T

T∑
s=1
‖f̂s −H ′fs‖2

) 1
2
 1
T

T∑
t=1
‖ft‖2

1
T

T∑
s=1
‖fs‖2

1
T

T∑
t=1

∥∥∥∥∥ 1√
N

N∑
k=1

λkekt

∥∥∥∥∥
2

1
2

= 1√
N
Op

( 1
δNT

)
Op(1)
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where the last equation uses Assumptions 1 and 6(c). The second term in (A.6) is bounded by

sup
π∈[π1,π2]

∥∥∥∥∥∥ 1
T 2

bπT c∑
t=1

T∑
s=1

H ′fsf
′
tηst

∥∥∥∥∥∥ = sup
π∈[π1,π2]

∥∥∥∥∥∥ 1
T 2

bπT c∑
t=1

T∑
s=1

H ′fs
1
N

N∑
k=1

f ′sλkektf
′
t

∥∥∥∥∥∥
= sup

π∈[π1,π2]

∥∥∥∥∥∥ 1
T

T∑
s=1

H ′fsf
′
s

1
NT

bπT c∑
t=1

N∑
k=1

λkektf
′
t

∥∥∥∥∥∥
≤ ‖H‖

∥∥∥∥∥ 1
T

T∑
s=1

fsf
′
s

∥∥∥∥∥ sup
π∈[π1,π2]

∥∥∥∥∥∥ 1
NT

bπT c∑
t=1

N∑
k=1

λkf
′
tekt

∥∥∥∥∥∥
= Op

( 1√
NT

)

where the last equation follows from Assumption 8(a). Thus, term III is Op
(

1
δNT
√
N

)
.

For term IV, we rewrite it as

sup
π∈[π1,π2]

∥∥∥∥∥∥ 1
T 2

bπT c∑
t=1

T∑
s=1

f̂sf
′
tξst

∥∥∥∥∥∥ ≤ sup
π∈[π1,π2]

∥∥∥∥∥∥ 1
T 2

bπT c∑
t=1

T∑
s=1

(f̂s −H ′fs)f ′tξst + 1
T 2

bπT c∑
t=1

T∑
s=1

H ′fsf
′
tξst

∥∥∥∥∥∥
(A.7)

The first term in (A.7) is bounded by

sup
π∈[π1,π2]

∥∥∥∥∥∥ 1
T 2

bπT c∑
t=1

T∑
s=1

(f̂s −H ′fs)f ′tξst

∥∥∥∥∥∥
≤

(
1
T

T∑
s=1
‖f̂s −H ′fs‖2

) 1
2

sup
π∈[π1,π2]

 1
T

T∑
s=1

∥∥∥∥∥∥ 1
T

bπT c∑
t=1

f ′tξst

∥∥∥∥∥∥
2


1
2

≤
(

1
T

T∑
s=1
‖f̂s −H ′fs‖2

) 1
2

sup
π∈[π1,π2]

 1
T

T∑
s=1

∥∥∥∥∥∥ 1
T

bπT c∑
t=1

f ′t

(
1
N

N∑
k=1

λ′kfteks

)∥∥∥∥∥∥
2


1
2

≤
(

1
T

T∑
s=1
‖f̂s −H ′fs‖2

) 1
2

sup
π∈[π1,π2]

 1
T

T∑
s=1

∥∥∥∥∥∥
 1
T

bπT c∑
t=1

f ′tft

( 1
N

N∑
k=1

λ′keks

)∥∥∥∥∥∥
2


1
2

≤
(

1
T

T∑
s=1
‖f̂s −H ′fs‖2

) 1
2

sup
π∈[π1,π2]

∥∥∥∥∥∥ 1
T

bπT c∑
t=1

f ′tft

∥∥∥∥∥∥ 1√
N

 1
T

T∑
s=1

∥∥∥∥∥ 1√
N

N∑
k=1

λ′keks

∥∥∥∥∥
2

1
2

≤
(

1
T

T∑
s=1
‖f̂s −H ′fs‖2

) 1
2 1
T

T∑
t=1
‖f ′t‖2

1√
N

 1
T

T∑
s=1

∥∥∥∥∥ 1√
N

N∑
k=1

λ′keks

∥∥∥∥∥
2

1
2

= Op

( 1
δNT
√
N

)
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For the second term in (A.7), we have

sup
π∈[π1,π2]

∥∥∥∥∥∥ 1
T 2

bπT c∑
t=1

T∑
s=1

H ′fsf
′
tξst

∥∥∥∥∥∥ = sup
π∈[π1,π2]

∥∥∥∥∥∥ 1
T 2

bπT c∑
t=1

T∑
s=1

H ′fsf
′
t

(
1
N

N∑
k=1

λ′kfteks

)∥∥∥∥∥∥
= sup

π∈[π1,π2]

∥∥∥∥∥∥ 1
NT

T∑
s=1

N∑
k=1

H ′fsλ
′
keks

1
T

bπT c∑
t=1

f ′tft

∥∥∥∥∥∥
≤

∥∥∥∥∥ 1
NT

T∑
s=1

N∑
k=1

H ′fsλ
′
keks

∥∥∥∥∥ 1
T

T∑
t=1
‖f ′t‖2 = Op

( 1√
NT

)

where the last equation uses Assumption 6(b). Therefore, term IV is Op
(

1
δNT
√
N

)
.

Combining the above results the sum I + II + III + IV is Op
(

1
δ2
NT

)
. �

Proof of Theorem 1: It is sufficient to prove that

V ≡ sup
π∈[π1,π2]

√
T

∥∥∥∥∥∥vech

∑bπT ct=1 f̂tf̂
′
t

bπT c
−
∑T
t=bπT c+1 f̂tf̂

′
t

T − bπT c

− vech
(∑bπT c

t=1 H ′ftf
′
tH

bπT c
−
∑T
t=bπT c+1H

′ftf
′
tH

T − bπT c

)∥∥∥∥∥∥
and

V I ≡ sup
π∈[π1,π2]

√
T

∥∥∥∥∥vech
(∑bπT c

t=1 H ′ftf
′
tH

bπT c
−
∑T
t=bπT c+1H

′ftf
′
tH

T − bπT c

)

−vech
(∑bπT c

t=1 H ′0ftf
′
tH0

bπT c
−
∑T
t=bπT c+1H

′
0ftf

′
tH0

T − bπT c

)∥∥∥∥∥
are both op(1). Term V is bounded by

V ≤ sup
π∈[π1,π2]

√
T

∥∥∥∥∥vech
(∑bπT c

t=1 f̂tf̂
′
t −H ′ftf ′tH
bπT c

)∥∥∥∥∥+ sup
π∈[π1,π2]

√
T

∥∥∥∥∥∥vech

∑T
t=bπT c+1 f̂tf̂

′
t −H ′ftf ′tH

T − bπT c

∥∥∥∥∥∥
To save space, we will only prove that the first term in the above inequality is op(1), because the
negligibility of the second term can be proved in a similar way. The first term is bounded by

sup
π∈[π1,π2]

√
T

∥∥∥∥∥vech
(∑bπTc

t=1 f̂t(f̂ ′t − f ′tH) + (f̂t −H ′ft)f ′tH
bπT c

)∥∥∥∥∥
= sup

π∈[π1,π2]

√
T

∥∥∥∥∥vech
(∑bπTc

t=1 (f̂t −H ′ft)(f̂ ′t − f ′tH) +H ′ft(f̂ ′t − f ′tH) + (f̂t −H ′ft)f ′tH
bπT c

)∥∥∥∥∥
≤ sup

π∈[π1,π2]

√
T

(∥∥∥∥∥
∑bπTc
t=1 (f̂t −H ′ft)(f̂ ′t − f ′tH)

bπT c

∥∥∥∥∥+ 2

∥∥∥∥∥
∑bπTc
t=1 H ′ft(f̂ ′t − f ′tH)

bπT c

∥∥∥∥∥
)
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Note that

sup
π∈[π1,π2]

√
T

∥∥∥∥∥
∑bπTc
t=1 (f̂t −H ′ft)(f̂ ′t − f ′tH)

bπT c

∥∥∥∥∥ ≤ sup
π∈[π1,π2]

√
T
∑bπTc
t=1 ‖f̂t −H ′ft‖2

bπT c
≤
√
T
∑T
t=1 ‖f̂t −H ′ft‖2

bπ1T c
= Op

(√
T

δ2
NT

)

where the last equation follows from Lemma 1. Also, Lemma 3 implies that

sup
π∈[π1,π2]

√
T

∥∥∥∥∥∥ 1
bπT c

bπT c∑
t=1

H ′ft(f̂ ′t − f ′tH)

∥∥∥∥∥∥ = Op

(√
T

δ2
NT

)

Since
√
T
N → 0 as N, T →∞, term V is op(1). For term VI, we can bound it by

sup
π∈[π1,π2]

√
T

∥∥∥∥∥
∑bπTc

t=1 H ′ftf
′
tH −H ′0ftf ′tH0

bπT c −

∑T

t=bπTc+1 H
′ftf

′
tH −H ′0ftf ′tH0

T − bπT c

∥∥∥∥∥
= sup

π∈[π1,π2]

√
T

∥∥∥∥∥
∑bπTc

t=1 (H ′ −H ′0)ftf ′tH +H ′0ftf
′
t(H −H0)

bπT c −

∑T

t=bπTc+1(H ′ −H ′0)ftf ′tH +H ′0ftf
′
t(H −H0)

T − bπT c

∥∥∥∥∥
= sup

π∈[π1,π2]

√
T

∥∥∥∥∥(H ′ −H ′0)

(∑bπTc
t=1 ftf

′
t

bπT c −

∑T

t=bπTc+1 ftf
′
t

T − bπT c

)
H +H0

(∑bπTc
t=1 ftf

′
t

bπT c −

∑T

t=bπTc+1 ftf
′
t

T − bπT c

)
(H −H0)

∥∥∥∥∥
≤
√
T‖H −H0‖ sup

π∈[π1,π2]

∥∥∥∥∥
∑bπTc

t=1 ftf
′
t

bπT c −

∑T

t=bπTc+1 ftf
′
t

T − bπT c

∥∥∥∥∥ (‖H‖+ ‖H0‖)

=
√
Top(1)Op

(
1√
T

)
Op(1)

where the last equation uses Assumption 8(b) and the fact that ‖H−H0‖
p→ 0 implied by Assump-

tions 1 - 4 and 7 (See Bai, 2003) . Thus, term VI is op(1). �

Before proving Theorem 2 we present and prove Lemmas 4–8.

Lemma 4: Under Assumption 3(b), for all N and T, there exists a constant M1 < ∞ such that
1
T

∑T
t=1

∑T
s=1 γ

4
N (s, t) ≤ M1. Under Assumption 5(b), for all N and T, there exists a constant

M2 <∞ such that
∑T
s=1 γ

2
N (s, t) ≤M2 for t = 1, 2, ..., T .

Proof of Lemma 4: Let ρ(s, t) ≡ γN (s, t)/
√
γN (s, s)γN (t, t), so |ρ(s, t)| ≤ 1. Since γN (s, s) ≤M for

every s,

1
T

T∑
t=1

T∑
s=1

γ4
N (s, t) = 1

T

T∑
t=1

T∑
s=1

γ2
N (s, s)γ2

N (t, t)ρ4(s, t)

≤ M3

T

T∑
t=1

T∑
s=1
|γN (s, s)γN (t, t)|

1
2 |ρ(s, t)|

= M3

T

T∑
t=1

T∑
s=1
|γN (s, t)| ≤M4

36



where the last inequality follows from Assumption 3(b). Also, we note that for each t,

T∑
s=1

γ2
N (s, t) =

T∑
s=1

γN (s, s)γN (t, t)ρ2(s, t)

≤ M
T∑
s=1
|γN (s, s)γN (t, t)|

1
2 |ρ(s, t)|

= M
T∑
s=1
|γN (s, t)| ≤M2

where the last inequality follows from Assumption 5(a). �

Lemma 5:
(i) Under Assumptions 1 - 4,

1
T

T∑
t=1
‖f̂t −H ′ft‖4 = Op

( 1
T

)
+Op

( 1
N2

)

(ii) Under Assumptions 1 - 5,

1
T

T∑
t=1
‖f̂t −H ′ft‖4 = Op

(
1
δ4
NT

)

(iii) Under Assumptions 1 - 4.
1
T

T∑
t=1
‖f̂t‖4 = Op(1)

Proof of Lemma 5: Equation A.3 implies that

1
T

T∑
t=1
‖f̂t −H ′ft‖4 ≤ 64‖V −1

NT ‖
4 1
T

T∑
t=1

(at + bt + ct + dt)

where

at = 1
T 4

∥∥∥∥∥
T∑
s=1

f̂sγN (s, t)
∥∥∥∥∥

4

, bt = 1
T 4

∥∥∥∥∥
T∑
s=1

f̂sζst

∥∥∥∥∥
4

, ct = 1
T 4

∥∥∥∥∥
T∑
s=1

f̂sηst

∥∥∥∥∥
4

, dt = 1
T 4

∥∥∥∥∥
T∑
s=1

f̂sξst

∥∥∥∥∥
4

.

First,

1
T

T∑
t=1

at ≤
1
T

(
1
T

T∑
s=1
‖f̂s‖2

)2 T∑
t=1

(
1
T

T∑
s=1

γ2
N (s, t)

)2
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Under Assumption 3(b), the above inequality is bounded by

1
T

(
1
T

T∑
s=1
‖f̂s‖2

)2
1
T

T∑
t=1

T∑
s=1

γ4
N (s, t) = Op

( 1
T

)

because 1
T

∑T
s=1 ‖f̂s‖2 = Op(1) and 1

T

∑T
t=1

∑T
s=1 γ

4
N (s, t) ≤ M1 by Lemma 4. However, under

Assumption 5(a), which is stronger than Assumption 3(b), we can derive a sharper bound

1
T

T∑
t=1

at ≤
(

1
T

T∑
s=1
‖f̂s‖2

)2
M2

2
T 2 = Op

( 1
T 2

)

The difference between (i) and (ii) of Lemma 5 is due to the different bounds of 1
T

∑T
t=1 at. The

rest of the proofs of parts (i) and (ii) are the same.
Second,

1
T

T∑
t=1

bt ≤
1
T 5

T∑
t=1

∥∥∥∥∥
T∑
s=1

f̂sζst

∥∥∥∥∥
4

= 1
T 5

T∑
t=1

(
T∑
s=1

T∑
u=1

f̂ ′sf̂uζstζut

)2

≤ 1
T 5

T∑
t=1

(
T∑
s=1

T∑
u=1

(
f̂ ′sf̂u

)2
)(

T∑
s=1

T∑
u=1

ζ2
stζ

2
ut

)

≤
(

1
T

T∑
s=1
‖f̂s‖2

)2
1
T

T∑
t=1

(
1
T 2

T∑
s=1

T∑
u=1

ζ2
stζ

2
ut

)

Since Eζ2
stζ

2
ut ≤ maxs,tE|ζst|4 and E|ζst|4 = N−2E

∣∣∣N−1/2∑N
i=1[eiseit − E(eiseit)]

∣∣∣4 ≤ N−2M , by

Assumption 3(e), 1
T

∑T
t=1 bt = Op

(
1
N2

)
.

Third,

1
T

T∑
t=1

ct ≤
1
T 5

T∑
t=1

∥∥∥∥∥
T∑
s=1

f̂sηst

∥∥∥∥∥
4

≤ 1
T 5

T∑
t=1

∥∥∥∥∥
T∑
s=1

f̂sf
′
sΛ′et/N

∥∥∥∥∥
4

≤ 1
T

T∑
t=1

(
1
T

T∑
s=1
‖f̂s‖2

)2(
1
T

T∑
s=1
‖fs‖2

)2(
1
N2

∥∥∥∥Λ′et√
N

∥∥∥∥4)
= Op

( 1
N2

)

by Assumptions 1 and 6(c).
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Finally,

1
T

T∑
t=1

dt ≤
1
T 5

T∑
t=1

∥∥∥∥∥
T∑
s=1

f̂sξst

∥∥∥∥∥
4

= 1
T 5

T∑
t=1

∥∥∥∥∥
T∑
s=1

f̂se
′
sΛft/N

∥∥∥∥∥
4

≤ 1
T 5

∥∥∥∥∥
T∑
s=1

f̂se
′
sΛ/N

∥∥∥∥∥
4 T∑
t=1
‖ft‖4

≤
(

1
T

T∑
s=1
‖f̂s‖2

)2(
1
TN

T∑
s=1

∥∥∥∥ e′sΛ√
N

∥∥∥∥2)2
1
T

T∑
t=1
‖ft‖4 = Op

( 1
N2

)

by Assumptions 1 and 6(c). Thus, under Assumptions 1 - 4, 1
T

∑T
t=1 at + bt + ct + dt = Op

(
1
T

)
+

Op
(

1
N2

)
, while under Assumptions 1 - 5, 1

T

∑T
t=1 at + bt + ct + dt = Op

(
1
T 2

)
+ Op

(
1
N2

)
. For part

(iii), rewrite 1
T

∑T
t=1 ‖f̂t‖4 as

1
T

T∑
t=1
‖f̂t −H ′ft +H ′ft‖4 ≤

8
T

(
T∑
t=1
‖f̂t −H ′ft‖4 +

T∑
t=1
‖H ′ft‖4

)
= op(1) +Op(1)

by the result in part (i) and Assumption 1. �

Lemma 6: Under Assumptions 1–7, H −H0 = Op
(

1
δNT

)
.

Proof of Lemma 6: By the identity (1/NT )XX ′F̂ ≡ F̂ VNT , we have

(Λ′Λ
N

) 1
2 1
T
F ′
(
XX ′

NT

)
F̂ =

(Λ′Λ
N

) 1
2
(
F ′F̂

T

)
VNT

Note that VNT − V
p→ 0 by Lemma A.3 of Bai 2003. We will prove that VNT − V = Op

(
1

δNT

)
.

Substituting X = FΛ′ + e into the above equation, we get

(Λ′Λ
N

) 1
2
(
F ′F

T

)(Λ′Λ
N

)(
F ′F̂

T

)
+ dNT =

(Λ′Λ
N

) 1
2
(
F ′F̂

T

)
VNT

where

dNT =
(Λ′Λ
N

) 1
2 1
NT 2F

′ (FΛ′e′ + F ′eΛF ′ + F ′ee′
)
F̂

=
(Λ′Λ
N

) 1
2 1
T
F ′(F̂ − FH)VNT = Op

(
1
δ2
NT

)
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by equation (A.2) and Lemma 2. Let

BNT =
(Λ′Λ
N

) 1
2
(
F ′F

T

)(Λ′Λ
N

) 1
2
, B = Σ

1
2
ΛΣFΣ

1
2
Λ, RNT =

(Λ′Λ
N

) 1
2
(
F ′F̂

T

)
,

where BNT − B = Op
(

1
δNT

)
by Assumptions 1 and 2, and RNT is Op(1) and invertible, because

F ′F̂
T is OP (1) and converges to some non-singular matrix by Proposition 1 of Bai (2003). Now we

have (
BNT + dNTR

−1
NT

)
RNT = RNTVNT

Let V ∗NT be a diagonal matrix consisting of the diagonal elements of R′NTRNT . Define ΥNT ≡
RNTV

∗− 1
2

NT , so ΥNT isOp(1) and contains eigenvectors ofBNT+dNTR−1
NT , i.e.

(
BNT + dNTR

−1
NT

)
ΥNT =

ΥNTVNT . Note that dNTR−1
NT = Op

(
1

δ2
NT

)
by the facts that RNT = Op(1) and invertible and that

dNT = Op

(
1

δ2
NT

)
, so BNT +dNTR−1

NT−B = Op
(

1
δNT

)
. Assumption 7 implies that the eigenvalues of

B are distinct, so VNT −V = Op
(

1
δNT

)
and ΥNT −Υ = Op

(
1

δNT

)
This is because both eigenvalues

and eigenvectors are continuously differentiable functions for matrices with distinct eigenvalues.
By Equations (A.1) and (A.2),

1
NT 2 F̂

′FΛ′ΛF ′F̂ + 1
T
F̂ ′(F̂ − FH)VNT = VNT

F̂ ′F

T

Λ′Λ
N

F ′F̂

T
− VNT = Op

(
1
δ2
NT

)

where the last equation follows from Lemma 2. Based on the result that VNT − V = Op
(

1
δNT

)
,

R′NTRNT − V = F̂ ′F

T

Λ′Λ
N

F ′F̂

T
− V = Op

( 1
δNT

)
.

Recall that diag(R′NTRNT ) = V ∗NT . Therefore,

V ∗NT − V = diag
(
R′NTRNT − V

)
= Op

( 1
δNT

)
(A.8)

Using ΥNT = RNTV
∗− 1

2
NT and the definition of RNT , we have F ′F̂

T =
(

Λ′Λ
N

)− 1
2 ΥNTV

∗ 1
2

NT . Comparing
F ′F̂
T and its probability limit gives

F ′F̂

T
− Σ−

1
2

Λ ΥV
1
2 =

(Λ′Λ
N

)− 1
2
− Σ−

1
2

Λ

ΥNTV
∗ 1

2
NT + Σ−

1
2

Λ (ΥNT −Υ)V ∗
1
2

NT + Σ−
1
2

Λ Υ
(
V
∗ 1

2
NT − V

1
2

)

= Op

( 1
δNT

)
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by Assumption 2 and Equation (A.8). Therefore,H−H0 = (Λ′Λ/N)(F ′F̂ /T )V −1
NT−ΣΛplim(F ′F̂ /T )V −1 =

Op
(

1
δNT

)
by Assumption 2 and the result that VNT − V = Op

(
1

δNT

)
Note that VNT and V are

diagonal matrices consisting of positive eigenvalues, so they are invertible. �

Lemma 7: (i) Under Assumptions 1 - 4,

sup
π∈[π1,π2]

sup
0≤j≤bπT c−1

∥∥∥Γ̂1,j(π, F̂ )− Γ̂1,j(π, FH)
∥∥∥ = Op

(
T−

1
4
)

+Op
(
N−

1
2
)

sup
π∈[π1,π2]

sup
0≤j≤T−bπT c−1

∥∥∥Γ̂2,j(π, F̂ )− Γ̂2,j(π, FH)
∥∥∥ = Op

(
T−

1
4
)

+Op
(
N−

1
2
)

sup
0≤j≤T−1

∥∥∥Γ̂j(F̂ )− Γ̂j(FH)
∥∥∥ = Op

(
T−

1
4
)

+Op
(
N−

1
2
)

(ii) Under Assumptions 1 - 5,

sup
π∈[π1,π2]

sup
0≤j≤bπT c−1

∥∥∥Γ̂1,j(π, F̂ )− Γ̂1,j(π, FH)
∥∥∥ = Op

( 1
δNT

)

sup
π∈[π1,π2]

sup
0≤j≤T−bπT c−1

∥∥∥Γ̂2,j(π, F̂ )− Γ̂2,j(π, FH)
∥∥∥ = Op

( 1
δNT

)

sup
0≤j≤T−1

∥∥∥Γ̂j(F̂ )− Γ̂j(FH)
∥∥∥ = Op

( 1
δNT

)

Proof: To save space, we will only prove the first equations of part (i) and (ii), because the rest can
be proved using a similar argument.

sup
π∈[π1,π2]

sup
0≤j≤bπTc−1

∥∥Γ̂1,j(π, F̂ )− Γ̂1,j(π, FH)
∥∥

= sup
π∈[π1,π2]

sup
0≤j≤bπTc−1

∥∥∥∥∥ 1
bπT c

bπTc∑
t=j+1

vech(f̂tf̂ ′t − Ir)vech(f̂t−j f̂ ′t−j − Ir)′

− 1
bπT c

bπTc∑
t=j+1

vech(H ′ftf ′tH − Ir)vech(H ′ft−jf ′t−jH − Ir)′
∥∥∥∥∥

≤ sup
π∈[π1,π2]

sup
0≤j≤bπTc−1

{
1
bπT c

bπTc∑
t=j+1

∥∥vech(f̂tf̂ ′t − Ir)vech(f̂t−j f̂ ′t−j −H ′ft−jf ′t−jH)′
∥∥

+ 1
bπT c

bπTc∑
t=j+1

∥∥vech(f̂tf̂ ′t −H ′ftf ′tH)vech(H ′ft−jf ′t−jH − Ir)′
∥∥}

≤ sup
π∈[π1,π2]

sup
0≤j≤bπTc−1

{
1
bπT c

bπTc∑
t=j+1

∥∥f̂tf̂ ′t∥∥∥∥f̂t−j f̂ ′t−j −H ′ft−jf ′t−jH∥∥+ 1
bπT c

bπTc∑
t=j+1

r
∥∥f̂t−j f̂ ′t−j −H ′ft−jf ′t−jH∥∥

+ 1
bπT c

bπTc∑
t=j+1

∥∥f̂tf̂ ′t −H ′ftf ′tH∥∥∥∥H ′ft−jf ′t−jH∥∥+ 1
bπT c

bπTc∑
t=j+1

r
∥∥f̂tf̂ ′t −H ′ftf ′tH∥∥}

= V II + V III + IX +X
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Term V II is bounded by,

sup
π∈[π1,π2]

sup
0≤j≤bπT c−1

 1
bπT c

bπT c∑
t=j+1

‖f̂t‖4
 1

2
 1
bπT c

bπT c∑
t=j+1

∥∥∥f̂t−j(f̂ ′t−j − f ′t−jH) + (f̂t−j −H ′ft−j)f ′t−jH
∥∥∥2
 1

2

≤ sup
π∈[π1,π2]

sup
0≤j≤bπT c−1

 1
bπT c

bπT c∑
t=j+1

‖f̂t‖4
 1

2
 2
bπT c

bπT c∑
t=j+1

∥∥∥f̂t−j(f̂ ′t−j − f ′t−jH)
∥∥∥2

+ 2
bπT c

bπT c∑
t=j+1

∥∥∥(f̂t−j −H ′ft−j)f ′t−jH∥∥∥2
 1

2

≤ sup
π∈[π1,π2]

sup
0≤j≤bπT c−1

 1
bπT c

bπT c∑
t=j+1

‖f̂t‖4
 1

2

 2
bπT c

bπT c∑
t=j+1

‖f̂t−j‖4
2
bπT c

bπT c∑
t=j+1

‖f̂ ′t−j − f ′t−jH‖4
 1

2

+

 2
bπT c

bπT c∑
t=j+1

‖f̂t−j −H ′ft−j‖4
2
bπT c

bπT c∑
t=j+1

‖f ′t−jH‖4
 1

2


1
2

≤
(

1
bπ1T c

T∑
t=1
‖f̂t‖4

) 1
2

( 2
bπ1T c

T∑
t=1
‖f̂t‖4

2
bπ1T c

T∑
t=1
‖f̂ ′t − f ′tH‖4

) 1
2

+
(

2
bπ1T c

T∑
t=1
‖f̂t −H ′ft‖4

2
bπ1T c

T∑
t=1
‖f ′tH‖4

) 1
2


1
2

=

Op
(
T−

1
4
)

+Op
(
N−

1
2
)

by Lemma 5(i) under Assumptions 1− 4

Op
(

1
δNT

)
by Lemma 5(ii) under Assumptions 1− 5

where 1
T

∑T
t=1 ‖f̂t‖4 = Op(1) follows from Lemma 5(iii). Using a similar argument, one can prove

that terms VIII, IX and X are Op
(
T−

1
4
)

+ Op
(
N−

1
2
)
under Assumptions 1 - 4, and Op

(
1

δNT

)
under Assumptions 1 - 5. �

Lemma 8: Under Assumptions 1 - 7,

sup
π∈[π1,π2]

sup
0≤j≤bπT c−1

∥∥∥Γ̂1,j(π, FH)− Γ̂1,j(π, FH0)
∥∥∥ = Op

( 1
δNT

)

sup
π∈[π1,π2]

sup
0≤j≤T−bπT c−1

∥∥∥Γ̂2,j(π, FH)− Γ̂2,j(π, FH0)
∥∥∥ = Op

( 1
δNT

)

sup
0≤j≤T−1

∥∥∥Γ̂j(FH)− Γ̂j(FH0)
∥∥∥ = Op

( 1
δNT

)
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Proof: To save space, we will only prove the first equation of Lemma 8, because the proofs of the
rests are analogous.

sup
π∈[π1,π2]

sup
0≤j≤bπT c−1

∥∥∥Γ̂1,j(π, FH)− Γ̂1,j(π, FH0)
∥∥∥

= sup
π∈[π1,π2]

sup
0≤j≤bπT c−1

∥∥∥∥∥∥ 1
bπT c

bπT c∑
t=j+1

vech(H ′ftf ′tH − Ir)vech(H ′ft−jf ′t−jH − Ir)′

− 1
bπT c

bπT c∑
t=j+1

vech(H ′0ftf ′tH0 − Ir)vech(H ′0ft−jf ′t−jH0 − Ir)′
∥∥∥∥∥∥

≤ sup
π∈[π1,π2]

sup
0≤j≤bπT c−1

 1
bπT c

bπT c∑
t=j+1

∥∥∥vech(H ′ftf ′tH − Ir)vech(H ′ft−jf ′t−jH −H ′0ft−jf ′t−jH0)′
∥∥∥

+ 1
bπT c

bπT c∑
t=j+1

∥∥∥vech(H ′ftf ′tH −H ′0ftf ′tH0)vech(H ′0ft−jf ′t−jH0 − Ir)′
∥∥∥


≤ sup
π∈[π1,π2]

sup
0≤j≤bπT c−1

 1
bπT c

bπT c∑
t=j+1

∥∥H ′ftf ′tH∥∥ ∥∥∥H ′ft−jf ′t−jH −H ′0ft−jf ′t−jH0
∥∥∥

+ r

bπT c

bπT c∑
t=j+1

∥∥∥H ′ft−jf ′t−jH −H ′0ft−jf ′t−jH0
∥∥∥+ r

bπT c

bπT c∑
t=j+1

∥∥H ′ftf ′tH −H ′0ftf ′tH0
∥∥

+ 1
bπT c

bπT c∑
t=j+1

∥∥H ′ftf ′tH −H ′0ftf ′tH0
∥∥ ∥∥∥H ′0ft−jf ′t−jH0

∥∥∥


= XI +XII +XIII +XIV

Term XI is bounded by

XI ≤ sup
π∈[π1,π2]

sup
0≤j≤bπTc−1

 1
bπT c

bπTc∑
t=j+1

‖f ′tH‖4

 1
2
 1
bπT c

bπTc∑
t=j+1

∥∥H ′ft−jf ′t−j(H −H0) + (H −H0)′ft−jf ′t−jH0
∥∥2

 1
2

≤ sup
π∈[π1,π2]

sup
0≤j≤bπTc−1

 1
bπT c

bπTc∑
t=j+1

‖f ′tH‖4

 1
2
 2
bπT c

bπTc∑
t=j+1

(
‖H ′ft−jf ′t−j‖2 + ‖ft−jf ′t−jH0‖2) 1

2

‖H −H0‖

≤ sup
π∈[π1,π2]

 1
bπT c

bπTc∑
t=1
‖f ′tH‖4

 1
2
 2
bπT c

bπTc∑
t=1

(
‖H ′ftf ′t‖2 + ‖ftf ′tH0‖2) 1

2

‖H −H0‖

≤

(
1

bπ1T c

T∑
t=1
‖f ′tH‖4

) 1
2
[

2
bπ1T c

(
‖H ′‖2 + ‖H0‖2) T∑

t=1
‖ft‖4

] 1
2

‖H −H0‖ = Op(1)Op
(

1
δNT

)

by Assumption 1 and Lemma 6. The proofs of terms XII, XIII and XIV are similar to that of term
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XI. �

Proof of Theorem 2: It is enough to show that

sup
π∈[π1,π2]

∥∥∥Ω̂m(π, F̂ )− Ω̂m(π, FH0)
∥∥∥ p→ 0 for m = 1, 2

∥∥∥Ω̂(F̂ )− Ω̂(FH0)
∥∥∥ p→ 0

We will only prove the first equation when m = 1, and the rests can be proved using a similar
argument. Note that

sup
π∈[π1,π2]

∥∥∥Ω̂1(π, F̂ )− Ω̂1(π, FH0)
∥∥∥

≤ sup
π∈[π1,π2]

∥∥∥Ω̂1(π, F̂ )− Ω̂1(π, FH)
∥∥∥+ sup

π∈[π1,π2]

∥∥∥Ω̂1(π, FH)− Ω̂1(π, FH0)
∥∥∥

= XV +XV I

For term XV ,

sup
π∈[π1,π2]

∥∥∥Ω̂1(π, F̂ )− Ω̂1(π, FH)
∥∥∥

≤ sup
π∈[π1,π2]

∥∥∥∥∥∥Γ̂1,0(π, F̂ ) +
bπT c−1∑
j=1

k

(
j

SbπT c

)(
Γ̂1,j(π, F̂ ) + Γ̂1,j(π, F̂ )′

)

−Γ̂1,0(π, FH)−
bπT c−1∑
j=1

k

(
j

SbπT c

)(
Γ̂1,j(π, FH) + Γ̂1,j(π, FH)′

)∥∥∥∥∥∥
Note that

∣∣∣k ( j
SbπTc

)∣∣∣ ≤ 1 and k
(

j
SbπTc

)
= 0 if j > SbπT c for Bartlett and Parzen kernels. Thus,

XV ≤ sup
π∈[π1,π2]

∥∥∥Γ̂1,0(π, F̂ )− Γ̂1,0(π, FH)
∥∥∥+ 2 sup

π∈[π1,π2]

SbπTc∑
j=1

∥∥∥Γ̂1,j(π, F̂ )− Γ̂1,j(π, FH)
∥∥∥(A.9)

For Bartlett kernel, the RHS of (A.9) is Op
(
T

1
3

δNT

)
by Lemma 7(ii) and Condition 1(a) that SbπT c ≤

KT
1
3 for any π ∈ [π1, π2] ⊂ (0, 1), so term XV is op(1) if T

2
3
N → 0 as N, T →∞. For Parzen kernel,

the RHS of (A.9) is Op
(
T

1
5

T
1
4

)
+ Op

(
T

1
5

N
1
2

)
by Lemma 7(i) and Condition 2(a) that SbπT c ≤ KT

1
5

for any π ∈ [π1, π2] ⊂ (0, 1), so term XV is op(1) if T
2
5
N → 0 as N, T →∞. For the QS kernel, term
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XV is bounded by

sup
π∈[π1,π2]

∥∥∥Γ̂1,0(π, F̂ )− Γ̂1,0(π, FH)
∥∥∥+ 2

SbπTc∑
j=1

∣∣∣∣∣k
(

j

SbπT c

)∣∣∣∣∣ ∥∥∥Γ̂1,j(π, F̂ )− Γ̂1,j(π, FH)
∥∥∥


+ sup
π∈[π1,π2]

2
bπT c−1∑

j=SbπTc+1

∣∣∣∣∣k
(

j

SbπT c

)∣∣∣∣∣ ∥∥∥Γ̂1,j(π, F̂ )− Γ̂1,j(π, FH)
∥∥∥


= a+ b

Term a is Op
(
T

1
5

T
1
4

)
+Op

(
T

1
5

N
1
2

)
by Lemma 7(i) and Condition 2(a). For term b, note that

k(x) = 25
12π2x2

sin
(

6πx
5

)
6πx

5
− cos

(6πx
5

)

It is obvious that for any |x| > 1, there exists M > 0, such that
∣∣∣∣ sin( 6πx

5 )
6πx

5
− cos

(
6πx

5

)∣∣∣∣ < M .
Therefore, term b is bounded by

sup
π∈[π1,π2]

S2
bπT c

bπT c−1∑
j=SbπTc+1

25M
6π2j2

∥∥∥Γ̂1,j(π, F̂ )− Γ̂1,j(π, FH)
∥∥∥


≤

25M
(
K2T

1
5
)2

6π2

T∑
j=bK1T

1
5 c

1
j2

 sup
π∈[π1,π2]

∥∥∥Γ̂1,j(π, F̂ )− Γ̂1,j(π, FH)
∥∥∥

≤

25M
(
K2T

1
5
)2

6π2

ˆ T

bK1T
1
5 c−1

1
j2

 sup
π∈[π1,π2]

∥∥∥Γ̂1,j(π, F̂ )− Γ̂1,j(π, FH)
∥∥∥

≤
25M

(
K2T

1
5
)2

6π2

(
1

bK1T
1
5 c − 1

− 1
T

)
Op

( 1
δNT

)

= O
(
T

2
5
)
O
(
T−

1
5
)
Op

( 1
δNT

)
= Op

(
T

1
5

δNT

)

Thus, for QS kernels, term XV is op(1) if T
2
5
N → 0 as N, T → ∞. Using Lemma 8, one can show

that term XVI is op(1) in using a similar argument. �

To prove Theorem 3 we present Lemma 9.

Lemma 9: Under Assumptions 1 - 9,
(i) if

√
T/N → 0, then supπ∈[π1,π2] ‖A(π, FH)‖ = Op(1) and supπ∈[π1,π2] ‖A(π, F̂ )‖ = Op(1);

(ii) supπ∈[π1,π2] ‖Ŝ(π, FH0)−1‖ = Op(1) and supπ∈[π1,π2] ‖Ŝ(π, F̂ )−1‖ = Op(1);
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(iii) supπ∈[π1,π2]

∥∥∥Ŝ(π, F̂ )−1 − Ŝ(π, FH0)−1
∥∥∥ = op(1).

Proof of Lemma 9:
For part (i),

sup
π∈[π1,π2]

A(π, FH) = sup
π∈[π1,π2]

∥∥∥∥∥∥vech

 1
bπT c

bπT c∑
t=1

H ′ftf
′
tH −

1
T − bπT c

T∑
t=bπT c+1

H ′ftf
′
tH

∥∥∥∥∥∥
≤ sup

π∈[π1,π2]

∥∥∥∥∥∥ 1
bπT c

bπT c∑
t=1

ftf
′
t −

1
T − bπT c

T∑
t=bπT c+1

ftf
′
t

∥∥∥∥∥∥ ‖H‖2
= OP (1)

by Assumption 8(b).

sup
π∈[π1,π2]

‖A(π, F̂ )‖ ≤ sup
π∈[π1,π2]

‖A(π, FH0)‖+ sup
π∈[π1,π2]

∥∥∥A(π, F̂ )−A(π, FH0)
∥∥∥ = Op(1)+Op

(√
T

δ2
NT

)

by Theorem 1. If
√
T/N → 0, then the second term is op(1).

Now, we consider part (ii). Assumption 9(a) and the fact that 0 < π1 ≤ π ≤ π2 < 1 imply that
supπ∈[π1,π2] ‖Ŝ(π, FH0)−( 1

π+ 1
1−π )Ω‖ = op(1). Since Ω is positive definite, supπ∈[π1,π2] |ρmin(Ŝ(π, FH0))−

ρmin(( 1
π + 1

1−π )Ω)| ≤ supπ∈[π1,π2] ‖Ŝ(π, FH0) − ( 1
π + 1

1−π )Ω‖ = op(1),13 where ρmin(.) denote the
minimum eigenvalue of a symmetric matrix. This means that the eigenvalues of Ŝ(π, FH0) are
bounded away from zero uniformly in π, so supπ∈[π1,π2] ‖Ŝ(π, FH0)−1‖ = Op(1). For the second
part of (ii), we have supπ∈[π1,π2] ‖Ŝ(π, F̂ ) − ( 1

π + 1
1−π )Ω‖ ≤ supπ∈[π1,π2] ‖Ŝ(π, F̂ ) − Ŝ(π, FH0)‖ +

supπ∈[π1,π2] ‖Ŝ(π, FH0)− ( 1
π + 1

1−π )Ω‖ = op(1) by Theorem 2 and Assumption 9(a), so

sup
π∈[π1,π2]

|ρmin(Ŝ(π, F̂ ))− ρmin(( 1
π

+ 1
1− π )Ω)| ≤ sup

π∈[π1,π2]
‖Ŝ(π, F̂ )− ( 1

π
+ 1

1− π )Ω‖ = op(1).

This means that the eigenvalues of Ŝ(π, F̂ ) are bounded away from zero uniformly in π, which
implies supπ∈[π1,π2] ‖Ŝ(π, F̂ )−1‖ = Op(1).

For part (iii),

sup
π∈[π1,π2]

∥∥∥Ŝ(π, F̂ )−1 − Ŝ(π, FH0)−1
∥∥∥

= sup
π∈[π1,π2]

∥∥∥Ŝ(π, FH0)−1
(
Ŝ(π, FH0)− Ŝ(π, F̂ )

)
Ŝ(π, F̂ )−1

∥∥∥
≤ sup

π∈[π1,π2]

∥∥∥Ŝ(π, FH0)−1
∥∥∥ sup
π∈[π1,π2]

∥∥∥Ŝ(π, FH0)− Ŝ(π, F̂ )
∥∥∥ sup
π∈[π1,π2]

∥∥∥Ŝ(π, F̂ )−1
∥∥∥

= op(1)
13This inequality follows from Golub and van Loan (1989, Corollary 8.1.3, p. 411).
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using the result in part (ii) and Theorem 2. �

Proof of Theorem 3: For part (i),

sup
π∈[π1,π2]

∣∣∣WT (π, F̂ )−WT (π, FH0)
∣∣∣

≤ sup
π∈[π1,π2]

∣∣∣A(π, F̂ )′
[
Ŝ(π, F̂ )−1 − Ŝ(π, FH0)−1

]
A(π, F̂ )

∣∣∣+

sup
π∈[π1,π2]

∣∣∣[A(π, F̂ )′ −A(π, FH0)′
]
Ŝ(π, FH0)−1A(π, F̂ )

∣∣∣+ sup
π∈[π1,π2]

∣∣∣A(π, FH0)′Ŝ(π, FH0)−1
[
A(π, F̂ )−A(π, FH0)

]∣∣∣
= op(1)

using results of Lemma 9 and Theorem 1. The result that supπ∈[π1,π2]

∣∣∣LMT (π, F̂ )− LMT (π, FH0)
∣∣∣ =

op(1) can be proved in a similar way.
For part (ii), since supπ∈[π1,π2]WT (π, FH0) d→ supπ∈[π1,π2]Qp(π) by Assumption 9(b), it is sufficient
to show that ∣∣∣∣∣ sup

π∈[π1,π2]
WT (π, F̂ )− sup

π∈[π1,π2]
WT (π, FH0)

∣∣∣∣∣ = op(1).

Note that WT (π, F̂ ) = WT (π, F̂ )−WT (π, FH0)+WT (π, FH0). Taking supreme on both sides gives

sup
π∈[π1,π2]

WT (π, F̂ ) ≤ sup
π∈[π1,π2]

WT (π, F̂ )−WT (π, FH0) + sup
π∈[π1,π2]

WT (π, FH0)

So supπ∈[π1,π2]WT (π, F̂ )−supπ∈[π1,π2]WT (π, FH0) ≤ supπ∈[π1,π2]

∣∣∣WT (π, F̂ )−WT (π, FH0)
∣∣∣ = op(1)

by the result in part (i). Similarly, one can also show that supπ∈[π1,π2]WT (π, FH0)−supπ∈[π1,π2]WT (π, F̂ ) ≤
supπ∈[π1,π2]

∣∣∣WT (π, F̂ )−WT (π, FH0)
∣∣∣ = op(1). Combining these two inequalities give the desired

result. The result for the LM-like statistic can be proved in a similar way. �

Proof of Corollary 1: It is sufficient to prove that supπ∈[π1,π2]

∣∣∣∣exp
(
WT (π,F̂ )

2

)
− exp

(
WT (π,FH0)

2

)∣∣∣∣ =
op(1). By mean value theorem, there exists a sequence of cπ ∈ [0, 1] such that

sup
π∈[π1,π2]

∣∣∣∣∣exp
(
WT (π, F̂ )

2

)
− exp

(
WT (π, FH0)

2

)∣∣∣∣∣
= sup

π∈[π1,π2]

∣∣∣∣∣12
[
WT (π, F̂ )−WT (π, FH0)

]
exp

(
cπWT (π, F̂ )

2 + (1− cπ)WT (π, FH0)
2

)∣∣∣∣∣
≤ sup

π∈[π1,π2]

∣∣∣∣12
[
WT (π, F̂ )−WT (π, FH0)

]∣∣∣∣ sup
π∈[π1,π2]

∣∣∣∣∣exp
(
WT (π, F̂ )

2 + WT (π, FH0)
2

)∣∣∣∣∣
= op(1)

where the last equality follows from the fact that both supπ∈[π1,π2]WT (π, F̂ ) and supπ∈[π1,π2]WT (π, FH0)
are Op(1) by Theorem 3 and Assumption 9(b). �
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B Proofs of the Results in Section 2.5

We present the proof of Proposition 1 and Lemma 10 and then prove Theorem 4.

Proof of Proposition 1: The proof is the same as that of Theorem 2 of Bai and Ng (2002). To show
that Bai and Ng’s information criteria are applicable to the equivalent models, it is sufficient to
verify that (2.17) and (2.18) satisfy Assumptions A–D of Bai and Ng (2002). Our Assumption 3 is
identical to Assumption C of Bai and Ng (2002). Thus, we only need to verify that (2.16) satisfies
the following assumptions under types 1 and 2 breaks:
Assumption A (Bai and Ng, 2002): E ‖gt‖4 < ∞, and T−1∑T

t=1 gtg
′
t
p→ ΣG as T → ∞ for some

positive definite matrix ΣG.
Assumption B (Bai and Ng, 2002): ‖θi‖ ≤ θ̄ < ∞, ‖Θ′Θ/N − ΣΘ‖ → 0 for some r × r positive
definite matrix ΣΘ.
Assumption D (Bai and Ng, 2002): E

(
1
N

∑N
i=1

∥∥∥ 1√
T

∑T
t=1 gteit

∥∥∥2
)
≤M .

Under type 1 break, gt ≡ (f ′0,t, f ′1,t, 01×q1)′ if 1 ≤ t ≤ bπ∗T c, and gt ≡ (f ′0,t, 01×q1 , f
′
1,t)′ if

bπ∗T c+1 ≤ t ≤ T . It is straightforward that E ‖gt‖4 <∞ because of E ‖ft‖4 <∞ by Assumption 1.
By Assumption 10(a), ΣG(1) is positive definite. To verify Assumption B, we have ‖θi‖ ≤

√
2λ̄ <∞

by Assumption 2 and 10(a), and the limit of Θ′(1)Θ(1)/N is positive definite by Assumption 10(a).
Also, the verification of Assumption D is straightforward based on Assumption 4 and structure of
gt.

Under type 2 break, gt ≡ (f ′0,t, f ′1,t)′ if 1 ≤ t ≤ bπ∗T c, and gt ≡ (f ′0,t, f ′1,tZ ′)′ if bπ∗T c+1 ≤ t ≤ T .
First note that E ‖gt‖4 <∞ by ‖Z‖ <∞ and Assumption 1. Also, the limit of T−1∑T

t=1 gtg
′
t is

ΣG(2) = π∗ΣF + (1− π∗)
[

Σ0,0
F Σ0,1

F Z ′

ZΣ0,1′
F ZΣ1,1

F Z ′

]

by Assumption 1. ΣG(2) is positive definite because ΣF is positive definite and
[

Σ0,0
F Σ0,1

F Z ′

ZΣ0,1′
F ZΣ1,1

F Z ′

]
is positive semi-definite. Assumption B automatically holds by Assumption 2 since Θ(2) = Λ under
type 2 break. Finally, the verification of Assumption D is straightforward based on Assumption 4
and structure of gt. We have completed the verification of Assumptions A–D of Bai and Ng (2002).
�

Lemma 10: Under Assumptions 1–6, 8(a) and 10,
(i) T−1∑T

t=1 ‖f̂t − J ′gt‖2 = Op(δ−2
NT );

(ii) For any π1 and π2 that satisfy 0 < π1 < π2 < 1,

sup
π∈[π1,π2]

∥∥∥∥∥∥ 1
bπT c

bπT c∑
t=1

(f̂t − J ′gt)g′t

∥∥∥∥∥∥ = Op

(
1
δ2
NT

)
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sup
π∈[π1,π2]

∥∥∥∥∥∥ 1
T − bπT c

T∑
t=bπT c+1

(f̂t − J ′gt)g′t

∥∥∥∥∥∥ = Op

(
1
δ2
NT

)

Proof of Lemma 10: Parts (i) and (ii) are just analogs of Lemmas 1 and 3. Part (i) is simply
Theorem 1 of Bai and Ng (2002) for the equivalent models. The proof only requires verification of
Assumptions A–D in Bai and Ng (2002), which has been done in the proof of Proposition 1.
For part (ii), the proof is almost the same as that of Lemma 3. To use the argument in the proof
of Lemma 3, we will need the following conditions:
Condition A. There exists an M1 <∞ such that for all N and T :
(a) for each t, E

∥∥∥ 1√
NT

∑T
s=1

∑N
k=1 gs[eksekt − E(eksekt)]

∥∥∥2
≤M1;

(b) E
∥∥∥ 1√

NT

∑T
t=1

∑N
k=1 gtθ

′
kekt

∥∥∥ ≤M1;

(c) for each t, E
∥∥∥ 1√

N

∑N
i=1 θieit

∥∥∥4
≤M1.

Condition B. For any constants π1 and π2 that satisfy 0 < π1 ≤ π∗ ≤ π2 < 1,
supπ∈[π1,π2]

∥∥∥ 1√
NT

∑bπT c
t=1

∑N
k=1 gtθ

′
kekt

∥∥∥2
= Op(1) and supπ∈[π1,π2]

∥∥∥ 1√
NT

∑T
t=bπT c+1

∑N
k=1 gtθ

′
kekt

∥∥∥2
=

Op(1).
These two conditions can be easily verified. Under type 1 break, gt ≡ (f ′0,t, f ′1,t, 01×q1)′ if

1 ≤ t ≤ bπ∗T c, gt ≡ (f ′0,t, 01×q1 , f
′
1,t)′ if bπ∗T c + 1 ≤ t ≤ T , and θk ≡ (λ′0,k, λ′1,k, λ′2,k)′. Hence,

parts (a)–(c) of Condition A are implied by Assumptions 6(a)–6(c), respectively. Condition B is
implied by Assumption 8(a). Under type 2 break, gt ≡ ft if 1 ≤ t ≤ bπ∗T c, gt ≡ (f ′0,t, f ′1,tZ ′)′ if
bπ∗T c + 1 ≤ t ≤ T , and θk ≡ λk. Since Z is bounded by Assumption 10(b), Conditions A and B
hold by Assumptions 6 and 8(a). �

Proof of Theorem 4: (i)

1
bπ∗T c

bπ∗T c∑
t=1

f̂tf̂
′
t −

1
T − bπ∗T c

T∑
t=bπ∗T c+1

f̂tf̂
′
t

=

 1
bπ∗T c

bπ∗T c∑
t=1

J ′gtg
′
tJ −

1
T − bπ∗T c

T∑
t=bπ∗T c+1

J ′gtg
′
tJ

+ 1
bπ∗T c

bπ∗T c∑
t=1

(
f̂tf̂
′
t − J ′gtg′tJ

)

− 1
T − bπ∗T c

T∑
t=bπ∗T c+1

(
f̂tf̂
′
t − J ′gtg′tJ

)

Note that

1
bπ∗T c

bπ∗T c∑
t=1

(
f̂tf̂
′
t − J ′gtg′tJ

)

= 1
bπ∗T c

bπ∗T c∑
t=1

[(
f̂t − J ′gt

)
g′tJ +

(
f̂t − J ′gt

) (
f̂ ′t − g′tJ

)
+ J ′gt

(
f̂ ′t − g′tJ

)]
= Op

(
1
δ2
NT

)
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by Lemma 10. Similarly, 1
bT−π∗T c

∑T
t=bπ∗T c+1

(
f̂tf̂
′
t − J ′gtg′tJ

)
= Op(δ−2

NT ).
Under type 1 break, recall D1, D2 and C defined by (2.19) , so we have

1
bπ∗T c

bπ∗Tc∑
t=1

J ′gtg
′
tJ−

1
T − bπ∗T c

T∑
t=bπ∗Tc+1

J ′gtg
′
tJ

p→ J ′0


 Σ0,0

F Σ0,1
F 0

Σ0,1′
F Σ1,1

F 0
0 0 0

−
 Σ0,0

F 0 Σ0,1
F

0 0 0
Σ0,1′
F 0 Σ1,1

F


 J0 ≡ C

by Assumption 8(b) and the definitions of J and J0. Matrix C contains non-zero entries because
D1 −D2 is not zero due to the positive definiteness of Σ1,1

F and the fact that J0 is a non-singular
matrix.

Under type 2 break, recall D1, D2 and C defined by (2.20) , so we have

J ′

 1
bπ∗T c

bπ∗T c∑
t=1

gtg
′
t −

1
T − bπ∗T c

T∑
t=bπ∗T c+1

gtg
′
t

 J p→ J ′0

[
0q0×q0 Σ0,1

F (Iq1 − Z ′)
(Iq1 − Z)Σ0,1′

F Σ1,1
F − ZΣ1,1

F Z ′

]
J0 ≡ C

by Assumption 8(b) and the definitions of J and J0. Matrix C contains non-zero entries because
Σ1,1
F − ZΣ1,1

F Z ′ is not zero by Assumption 10(b) and the fact that J0 is a non-singular matrix.

(ii) First, note that Assumption 10(c) is the analog of Assumption 7. Hence, Theorem 2 still holds
for the equivalent models under the alternative and we have ‖Ŝ(π∗, GJ0) − Ŝ(π∗, F̂ )‖ = op(1) and
‖S̃(π∗, GJ0) − S̃(π∗, F̂ )‖ = op(1). Second, we will show that ‖Ŝ(π∗, GJ0)−1 − Ŝ(π∗, F̂ )−1‖ = op(1)
and ‖S̃(π∗, GJ0)−1− S̃(π∗, F̂ )−1‖ = op(1). Let ρmax(A) and ρmin(A) denote the largest and smallest
eigenvalue of a matrix A, respectively. Hall (2000) shows that if the HAC estimates are not correctly
demeaned, then the HAC estimator is asymptotically equivalent to the sum of two matrices: one of
these matrices is positive definite andO(1); the other is positive semi-definite and diverges at the rate
of the bandwidth parameter. Using these results, we can see that plimT→∞

(
ρmin[Ŝ(π∗, GJ0)]

)
> 0

and plimT→∞

(
ρmin[S̃(π∗, GJ0)]

)
> 0. This implies that both ‖Ŝ(π∗, GJ0)−1‖ and ‖S̃(π∗, GJ0)−1‖

are Op(1), because ‖Ŝ(π∗, GJ0)−1‖ ≤ Mρmax[Ŝ(π∗, GJ0)−1] = M
(
ρmin[Ŝ(π∗, GJ0)]

)−1
= Op(1)

for some positive constant M < ∞ (see Hall (2000), Eq. (16), p.1525). Since Theorem 2 im-
plies that ‖Ŝ(π∗, GJ0) − Ŝ(π∗, F̂ )‖ = op(1) and ‖S̃(π∗, GJ0) − S̃(π∗, F̂ )‖ = op(1), it follows that
plimT→∞

(
ρmin[Ŝ(π∗, F̂ )]

)
> 0 and plimT→∞

(
ρmin[S̃(π∗, F̂ )]

)
> 0, which also implies that both

‖Ŝ(π∗, F̂ )−1‖ and ‖S̃(π∗, F̂ )−1‖ are Op(1). Now, we have

‖Ŝ(π∗, GJ0)−1−Ŝ(π∗, F̂ )−1‖ ≤ ‖Ŝ(π∗, GJ0)−1‖‖Ŝ(π∗, F̂ )−Ŝ(π∗, GJ0)‖‖Ŝ(π∗, F̂ )−1‖ = Op(1)op(1)Op(1).
(B.1)

We can show‖S̃(π∗, GJ0)−1 − S̃(π∗, F̂ )−1‖ = op(1) using a similar argument.
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Finally,

WT (π∗, F̂ )

= A(π∗, F̂ )′Ŝ(π∗, F̂ )−1A(π∗, F̂ )

= T

max(Sbπ∗Tc, ST−bπ∗Tc)

[
1√
T
A(π∗, F̂ )′

] [
max(Sbπ∗Tc, ST−bπ∗Tc)Ŝ(π∗, F̂ )−1

] [ 1√
T
A(π∗, F̂ )′

]
= T

max(Sbπ∗Tc, ST−bπ∗Tc)
[vech(C)′ + op(1)]

{
max(Sbπ∗Tc, ST−bπ∗Tc)

[
Ŝ(π∗, GJ0)−1 + op(1)

]}
[vech(C) + op(1)]

→ ∞

by Assumption 11, part (i) of Theorem 4, and (B.1). Also, it can be proved that LMT (π∗, F̂ )→∞
using a similar argument. supπ∈[π1,π2]WT (π, F̂ ) and supπ∈[π1,π2] LMT (π, F̂ ) are also consistent tests
due to the consistency of WT (π∗, F̂ ) and LMT (π∗, F̂ ) . �
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Table 1: Size of Structural Break Tests with Known Break Date, r = 3

Bonferroni Statistics Pooled Statistics W and LM

DGPs β P ωε N T s0Bon sGLSBon sHACBon S0
BE SGLSBE SHACBE W0 WB WQS LM0 LMB LMQS r̂

N1 100 100 0.024 0.023 0.001 0.046 0.047 0.019 0.040 0.011 0.011 0.040 0.010 0.014 3.00
100 200 0.038 0.039 0.006 0.049 0.049 0.032 0.039 0.020 0.021 0.039 0.023 0.023 3.00
200 100 0.020 0.020 0.006 0.052 0.050 0.024 0.042 0.011 0.011 0.042 0.014 0.016 3.00
200 200 0.034 0.034 0.003 0.050 0.052 0.041 0.048 0.024 0.026 0.048 0.027 0.028 3.00

N2 0 100 100 0.025 0.024 0.001 0.048 0.048 0.020 0.041 0.011 0.011 0.041 0.010 0.015 3.00
0 100 200 0.039 0.040 0.001 0.048 0.048 0.034 0.040 0.019 0.021 0.040 0.022 0.023 3.00
0 200 100 0.020 0.020 0.001 0.051 0.050 0.026 0.042 0.012 0.010 0.042 0.013 0.015 3.00
0 200 200 0.033 0.033 0.003 0.051 0.053 0.041 0.049 0.024 0.026 0.049 0.029 0.027 3.00

N2 0.1 6 100 100 0.027 0.027 0.001 0.116 0.112 0.055 0.035 0.008 0.007 0.035 0.010 0.019 3.22
0.1 6 100 200 0.039 0.038 0.004 0.105 0.102 0.075 0.042 0.015 0.014 0.042 0.016 0.016 3.66
0.1 6 200 100 0.022 0.021 0.000 0.133 0.127 0.069 0.040 0.012 0.011 0.040 0.014 0.014 3.00
0.1 6 200 200 0.034 0.035 0.005 0.126 0.121 0.094 0.044 0.021 0.024 0.044 0.022 0.024 3.00
0.1 6 200 500 0.045 0.045 0.013 0.134 0.134 0.115 0.044 0.033 0.035 0.044 0.031 0.034 3.02
0.1 8 100 200 0.030 0.030 0.001 0.104 0.103 0.057 0.031 0.002 0.001 0.031 0.003 0.037 6.37
0.1 8 200 100 0.021 0.020 0.001 0.167 0.162 0.089 0.037 0.012 0.013 0.037 0.011 0.013 3.03
0.1 8 200 200 0.037 0.036 0.004 0.157 0.156 0.111 0.043 0.015 0.015 0.043 0.018 0.017 3.46

N3 0 100 100 0.840 0.028 0.037 1.000 0.075 0.864 0.592 0.069 0.049 0.592 0.060 0.035 3.02
0 100 200 0.923 0.039 0.060 1.000 0.057 0.759 0.608 0.087 0.061 0.608 0.057 0.050 3.00
0 200 100 0.903 0.025 0.043 1.000 0.085 0.986 0.610 0.066 0.046 0.610 0.063 0.035 3.00
0 200 200 0.968 0.033 0.063 1.000 0.061 0.964 0.620 0.082 0.059 0.620 0.058 0.054 3.00
0 200 500 0.990 0.043 0.087 1.000 0.052 0.793 0.630 0.075 0.072 0.630 0.059 0.056 3.00
0 500 100 0.954 0.020 0.037 1.000 0.147 1.000 0.596 0.069 0.045 0.596 0.059 0.042 3.00
0 500 200 0.995 0.033 0.080 1.000 0.068 1.000 0.616 0.086 0.060 0.616 0.058 0.055 3.00

N3 0.5 100 150 0.995 0.031 0.109 1.000 0.054 0.926 0.658 0.076 0.063 0.658 0.053 0.041 3.15
0.5 100 200 0.996 0.028 0.099 1.000 0.055 0.860 0.639 0.083 0.059 0.639 0.056 0.054 3.01
0.5 200 150 1.000 0.026 0.141 1.000 0.063 0.997 0.658 0.078 0.067 0.658 0.062 0.053 3.11
0.5 200 200 1.000 0.027 0.125 1.000 0.060 0.988 0.638 0.085 0.060 0.638 0.060 0.056 3.01
0.5 200 500 1.000 0.032 0.115 1.000 0.054 0.839 0.630 0.079 0.075 0.630 0.059 0.061 3.00
0.5 500 150 1.000 0.022 0.167 1.000 0.083 1.000 0.654 0.088 0.071 0.654 0.064 0.052 3.03
0.5 500 200 1.000 0.023 0.161 1.000 0.083 1.000 0.642 0.083 0.064 0.642 0.057 0.052 3.00

Note: The nominal size is 5%. For Bonferroni statistics and pooled statistics, the superscript “0” denotes that the statistics assume conditional homoskedasticity
and no serial correlation in the residuals; the superscript “GLS” stands for Breitung and Eickmeier’s (2011) estimates based on a quasi-demean transformation; the
superscript “HAC” means that HAC estimates are used to compute the statistic. For LM and W , the subscript “0” means that the statistic uses White’s (1980)
conditional heteroskedasticity robust estimate; subscripts “B” and “QS” denote statistics based on HAC estimates with Bartlett and QS kernels, respectively. All
HAC estimates are based on Newey and West’s method (1994). r̂ is the number of factors estimated by ICp1 of Bai and Ng (2002).
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Table 2A: Power against a Break at T/2
DGP A1: the equivalent factor model with time-invariant loadings has 4 factors.

Bonferroni Statistics Pooled Statistics W and LM

b N T s0Bon sGLSBon sHACBon S0
BE SGLSBE SHACBE W0 WB WQS LM0 LMB LMQS r̂

1/3 100 100 0.540 0.521 0.024 1.000 1.000 1.000 0.075 0.022 0.020 0.075 0.020 0.022 3.00
1/3 100 200 1.000 1.000 0.500 1.000 1.000 1.000 0.092 0.049 0.054 0.092 0.055 0.054 3.00
1/3 200 100 0.539 0.525 0.168 1.000 1.000 1.000 0.069 0.020 0.020 0.069 0.018 0.018 3.00
1/3 200 200 0.987 0.987 0.392 0.995 0.995 0.994 0.095 0.054 0.056 0.095 0.055 0.060 3.01
1/3 200 500 0.617 0.618 0.601 0.654 0.654 0.630 0.480 0.468 0.467 0.480 0.463 0.466 3.40
1/3 500 200 0.627 0.628 0.197 0.646 0.645 0.624 0.444 0.412 0.415 0.444 0.408 0.412 3.39
1/3 500 500 0.053 0.054 0.006 0.094 0.092 0.051 1.000 1.000 1.000 1.000 1.000 1.000 4.00

2/3 100 100 0.028 0.026 0.001 0.066 0.065 0.022 0.999 0.603 0.458 0.999 0.416 0.278 4.00
2/3 100 200 0.041 0.042 0.002 0.069 0.068 0.030 1.000 0.976 0.988 1.000 0.973 0.982 4.00
2/3 200 100 0.019 0.018 0.000 0.057 0.055 0.068 1.000 0.617 0.468 1.000 0.413 0.270 4.00
2/3 200 200 0.037 0.037 0.002 0.059 0.061 0.027 1.000 0.977 0.988 1.000 0.967 0.982 4.00

1 100 100 0.020 0.020 0.001 0.052 0.053 0.028 1.000 0.611 0.467 1.000 0.415 0.279 4.00
1 100 200 0.038 0.039 0.002 0.059 0.059 0.028 1.000 0.970 0.985 1.000 0.958 0.974 4.00
1 200 100 0.018 0.017 0.001 0.050 0.051 0.077 1.000 0.645 0.494 1.000 0.434 0.288 4.00
1 200 200 0.034 0.035 0.002 0.054 0.055 0.027 1.000 0.975 0.985 1.000 0.965 0.979 4.00

2 100 100 0.018 0.018 0.001 0.053 0.052 0.026 1.000 0.606 0.464 1.000 0.377 0.254 4.00
2 100 200 0.036 0.037 0.003 0.062 0.061 0.028 1.000 0.984 0.992 1.000 0.969 0.985 4.00
2 200 100 0.019 0.018 0.000 0.051 0.049 0.061 1.000 0.601 0.470 1.000 0.377 0.259 4.00
2 200 200 0.032 0.032 0.001 0.052 0.054 0.026 1.000 0.978 0.988 1.000 0.961 0.983 4.00

Note: The parameter b controls the size of the shift in factor loadings. For Bonferroni statistics and pooled statistics, the

superscript “0” denotes that the statistic assumes conditional homoskedasticity and no serial correlation in the residuals; the

superscript “GLS” stands for Breitung and Eickmeier’s (2011) estimates based on a quasi-demean transformation; the superscript

“HAC” means that HAC estimates are used to compute the statistic. For LM and W , the subscript “0” means that the statistic

uses White’s (1980) conditional heteroskedasticity robust estimate; subscripts “B” and “QS” denote statistics based on HAC

estimates with Bartlett and QS kernels, respectively. All HAC estimates are based on Newey and West’s method (1994). r̂ is

the number of factors estimated by ICp1 of Bai and Ng (2002).
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Table 2B: Power against a Break at T/2
DGP A2: the equivalent factor model with time-invariant loadings has 4 factors.

Bonferroni Statistics Pooled Statistics W and LM

α N T s0Bon sGLSBon sHACBon S0
BE SGLSBE SHACBE W0 WB WQS LM0 LMB LMQS r̂

0.2 100 100 0.986 0.986 0.347 0.986 0.986 0.985 0.106 0.038 0.034 0.106 0.031 0.027 3.01
0.2 100 200 0.912 0.912 0.907 0.914 0.914 0.910 0.197 0.151 0.155 0.197 0.151 0.153 3.09
0.2 200 100 0.890 0.889 0.295 0.894 0.893 0.888 0.199 0.099 0.078 0.199 0.074 0.063 3.11
0.2 200 200 0.235 0.234 0.203 0.271 0.270 0.224 0.836 0.814 0.817 0.836 0.812 0.816 3.80

0.4 100 100 0.076 0.074 0.010 0.114 0.111 0.065 0.972 0.600 0.442 0.972 0.416 0.282 3.95
0.4 100 200 0.047 0.047 0.004 0.078 0.077 0.032 1.000 0.986 0.994 1.000 0.979 0.987 4.00
0.4 200 100 0.027 0.027 0.001 0.062 0.060 0.053 1.000 0.613 0.469 1.000 0.400 0.273 4.00
0.4 200 200 0.035 0.035 0.001 0.057 0.057 0.022 1.000 0.988 0.995 1.000 0.981 0.989 4.00

0.6 100 100 0.026 0.025 0.001 0.052 0.052 0.021 1.000 0.623 0.460 1.000 0.424 0.280 4.00
0.6 100 200 0.040 0.039 0.003 0.067 0.066 0.028 1.000 0.979 0.990 1.000 0.970 0.981 4.00
0.6 200 100 0.017 0.016 0.000 0.055 0.052 0.061 1.000 0.631 0.481 1.000 0.413 0.271 4.00
0.6 200 200 0.036 0.037 0.002 0.050 0.051 0.027 1.000 0.983 0.990 1.000 0.974 0.985 4.00

0.8 100 100 0.021 0.020 0.000 0.057 0.055 0.028 1.000 0.600 0.457 1.000 0.417 0.274 4.00
0.8 100 200 0.038 0.037 0.002 0.060 0.061 0.030 1.000 0.974 0.987 1.000 0.963 0.978 4.00
0.8 200 100 0.020 0.019 0.000 0.054 0.054 0.052 1.000 0.627 0.480 1.000 0.430 0.286 4.00
0.8 200 200 0.034 0.035 0.001 0.053 0.054 0.027 1.000 0.976 0.986 1.000 0.967 0.981 4.00

Note: The parameter α controls the percentage of factor loadings that have structural breaks . For Bonferroni statistics

and pooled statistics, the superscript “0” denotes that the statistic assumes conditional homoskedasticity and no serial corre-

lation in the residuals; the superscript “GLS” stands for Breitung and Eickmeier’s (2011) estimates based on a quasi-demean

transformation; the superscript “HAC” means that HAC estimates are used to compute the statistic. For LM and W , the

subscript “0” means that the statistic uses White’s (1980) conditional heteroskedasticity robust estimate; subscripts “B” and

“QS” denote statistics based on HAC estimates with Bartlett and QS kernels, respectively. All HAC estimates are based on

Newey and West’s method (1994). r̂ is the number of factors estimated by ICp1 of Bai and Ng (2002).
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Table 2C: Power against a Break at T/2
DGPA3: the equivalent factor model with time-invariant loadings has 3 factors.

Bonferroni Statistics Pooled Statistics W and LM

c2 N T s0Bon sGLSBon sHACBon S0
BE SGLSBE SHACBE W0 WB WQS LM0 LMB LMQS r̂

3/4 100 100 0.025 0.024 0.001 0.047 0.046 0.019 0.134 0.048 0.044 0.134 0.040 0.038 3.00
3/4 100 200 0.040 0.040 0.005 0.050 0.050 0.033 0.335 0.204 0.199 0.335 0.207 0.203 3.00
3/4 200 100 0.022 0.022 0.000 0.050 0.048 0.022 0.140 0.050 0.054 0.140 0.050 0.046 3.00
3/4 200 200 0.034 0.035 0.003 0.051 0.052 0.038 0.349 0.219 0.211 0.349 0.223 0.214 3.00
3/4 200 500 0.045 0.049 0.010 0.055 0.055 0.047 0.831 0.792 0.784 0.831 0.777 0.785 3.00
3/4 500 200 0.029 0.029 0.002 0.047 0.046 0.040 0.351 0.226 0.215 0.351 0.225 0.218 3.00
3/4 500 500 0.046 0.047 0.010 0.052 0.053 0.047 0.825 0.782 0.779 0.825 0.772 0.779 3.00

1/2 100 100 0.025 0.025 0.001 0.047 0.047 0.016 0.761 0.430 0.394 0.761 0.344 0.287 3.00
1/2 100 200 0.039 0.040 0.005 0.050 0.051 0.029 0.993 0.966 0.957 0.993 0.954 0.947 3.00
1/2 200 100 0.024 0.023 0.001 0.049 0.050 0.019 0.797 0.467 0.431 0.797 0.380 0.307 3.00
1/2 200 200 0.033 0.033 0.003 0.051 0.053 0.032 0.996 0.969 0.963 0.996 0.961 0.956 3.00

1/4 100 100 0.026 0.026 0.001 0.044 0.048 0.026 1.000 0.956 0.941 1.000 0.749 0.691 3.00
1/4 100 200 0.040 0.040 0.003 0.053 0.054 0.028 1.000 1.000 1.000 1.000 1.000 1.000 3.00
1/4 200 100 0.023 0.023 0.000 0.048 0.047 0.059 1.000 0.968 0.960 1.000 0.754 0.704 3.00
1/4 200 200 0.031 0.031 0.002 0.051 0.052 0.031 1.000 1.000 1.000 1.000 1.000 1.000 3.00

0 100 100 0.031 0.031 0.000 0.070 0.074 0.235 1.000 1.000 0.999 1.000 0.779 0.806 3.00
0 100 200 0.043 0.043 0.001 0.074 0.075 0.041 1.000 1.000 1.000 1.000 1.000 1.000 3.00
0 200 100 0.028 0.029 0.000 0.057 0.061 0.770 1.000 1.000 0.999 1.000 0.777 0.814 3.00
0 200 200 0.043 0.044 0.000 0.064 0.066 0.142 1.000 1.000 1.000 1.000 1.000 1.000 3.00

Note: The parameter c controls the ratio of post- and pre-break factor loadings. For Bonferroni statistics and pooled

statistics, the superscript “0” denotes that the statistic assumes conditional homoskedasticity and no serial correlation in the

residuals; the superscript “GLS” stands for Breitung and Eickmeier’s (2011) estimates based on a quasi-demean transformation;

the superscript “HAC” means that HAC estimates are used to compute the statistic. For LM and W , the subscript “0” means

that the statistic uses White’s (1980) conditional heteroskedasticity robust estimate; subscripts “B” and “QS” denote statistics

based on HAC estimates with Bartlett and QS kernels, respectively. All HAC estimates are based on Newey and West’s method

(1994). r̂ is the number of factors estimated by ICp1 of Bai and Ng (2002).
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Table 3: Size of Structural Break Tests with Unknown Break Date, r = 3

sup-W exp-W mean-W

DGPs β P ωε N T sup-W0 sup-WB sup-WQS exp-W0 exp-WB exp-WQS mean-W0 mean-WB mean-WQS r̂

N2 0 100 200 0.049 0.011 0.007 0.067 0.011 0.006 0.064 0.015 0.013 3.00
0 100 500 0.088 0.028 0.021 0.083 0.030 0.024 0.063 0.034 0.033 3.00
0 200 200 0.055 0.014 0.009 0.073 0.015 0.011 0.073 0.018 0.017 3.00
0 200 500 0.087 0.029 0.020 0.088 0.030 0.023 0.066 0.035 0.034 3.00
0 500 200 0.060 0.013 0.008 0.079 0.013 0.009 0.073 0.019 0.016 3.00
0.1 6 200 200 0.062 0.014 0.009 0.075 0.013 0.010 0.071 0.016 0.015 3.00
0.1 6 200 500 0.090 0.029 0.021 0.085 0.031 0.022 0.063 0.034 0.033 3.02

N3 0 100 200 0.846 0.059 0.054 0.903 0.066 0.046 0.894 0.099 0.066 3.00
0 100 500 0.919 0.083 0.095 0.931 0.091 0.082 0.896 0.117 0.102 3.00
0 200 200 0.852 0.061 0.055 0.896 0.068 0.049 0.891 0.100 0.069 3.00
0 200 500 0.920 0.092 0.101 0.929 0.100 0.088 0.903 0.119 0.104 3.00
0 500 200 0.855 0.066 0.052 0.896 0.069 0.049 0.890 0.104 0.070 3.00

sup-LM exp-LM mean-LM

DGPs β P ωε N T sup-
LM0

sup-
LMB

sup-
LMQS

exp-
LM0

exp-LMB exp-LMQS mean-
LM0

mean-
LMB

mean-
LMQS

r̂

N2 0 100 200 0.033 0.009 0.008 0.042 0.013 0.012 0.045 0.023 0.027 3.00
0 100 500 0.043 0.024 0.028 0.051 0.028 0.035 0.054 0.039 0.040 3.00
0 200 200 0.046 0.012 0.012 0.053 0.019 0.017 0.053 0.029 0.031 3.00
0 200 500 0.041 0.019 0.023 0.046 0.024 0.030 0.052 0.038 0.042 3.00
0 500 200 0.036 0.011 0.008 0.044 0.014 0.011 0.052 0.025 0.026 3.00
0.1 6 200 200 0.031 0.009 0.007 0.043 0.012 0.011 0.050 0.026 0.025 3.00
0.1 6 200 500 0.041 0.024 0.026 0.047 0.027 0.031 0.046 0.034 0.037 3.02

N3 0 100 200 0.826 0.048 0.046 0.867 0.059 0.059 0.856 0.089 0.078 3.00
0 100 500 0.896 0.047 0.053 0.909 0.060 0.066 0.875 0.079 0.079 3.00
0 200 200 0.840 0.050 0.045 0.875 0.065 0.060 0.856 0.091 0.083 3.00
0 200 500 0.895 0.048 0.052 0.908 0.062 0.066 0.880 0.080 0.079 3.00
0 500 200 0.847 0.052 0.046 0.879 0.068 0.060 0.861 0.101 0.087 3.00

Note: The nominal size is 5%. The subscript “0” means that the statistic uses White’s (1980) conditional heteroskedasticity robust estimate; subscripts “B” and
“QS” denote statistics based on HAC estimates with Bartlett and QS kernels, respectively. All HAC estimates are based on Newey and West’s method (1994). r̂ is
the number of factors estimated by ICp1 of Bai and Ng (2002).
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Table 4A: Power against Unknown Break Date
DGP A1: the equivalent factor model with time-invariant loadings has 4 factors.

b N, T sup-W0 sup-WB exp-W0 exp-WB mean-W0 mean-WB r̂

1/3 100,200 0.072 0.019 0.108 0.023 0.121 0.032 3.00
1/3 200,200 0.078 0.022 0.105 0.026 0.117 0.040 3.00
1/3 500,200 0.435 0.359 0.454 0.389 0.462 0.392 3.39
1/3 200,500 0.482 0.435 0.491 0.441 0.484 0.453 3.40
1/3 500,500 1.000 1.000 1.000 1.000 1.000 1.000 4.00

2/3 100,200 1.000 0.895 1.000 0.960 1.000 0.953 4.00
2/3 200,200 1.000 0.891 1.000 0.961 1.000 0.951 4.00
2/3 500,200 1.000 0.904 1.000 0.966 1.000 0.958 4.00
2/3 200,500 1.000 1.000 1.000 1.000 1.000 1.000 4.00
2/3 500,500 1.000 1.000 1.000 1.000 1.000 1.000 4.00

1 100,200 1.000 0.887 1.000 0.950 1.000 0.940 4.00
1 200,200 1.000 0.919 1.000 0.963 1.000 0.952 4.00
1 500,200 1.000 0.901 1.000 0.960 1.000 0.951 4.00
1 200,500 1.000 1.000 1.000 1.000 1.000 1.000 4.00
1 500,500 1.000 1.000 1.000 1.000 1.000 1.000 4.00

2 100,200 1.000 0.828 1.000 0.937 1.000 0.940 4.00
2 200,200 1.000 0.842 1.000 0.940 1.000 0.937 4.00
2 500,200 1.000 0.830 1.000 0.927 1.000 0.930 4.00
2 200,500 1.000 1.000 1.000 1.000 1.000 1.000 4.00
2 500,500 1.000 1.000 1.000 1.000 1.000 1.000 4.00

b N sup-LM0 sup-LMB exp-LM0 exp-LMB mean-LM0 mean-LMB r̂

1/3 100,200 0.058 0.017 0.076 0.029 0.088 0.048 3.00
1/3 200,200 0.065 0.023 0.081 0.033 0.090 0.050 3.00
1/3 500,200 0.418 0.216 0.432 0.283 0.462 0.392 3.39
1/3 200,500 0.453 0.431 0.464 0.443 0.470 0.453 3.40
1/3 500,500 1.000 0.999 1.000 1.000 1.000 1.000 4.00

2/3 100,200 1.000 0.571 1.000 0.702 1.000 0.847 4.00
2/3 200,200 1.000 0.561 1.000 0.693 1.000 0.833 4.00
2/3 500,200 1.000 0.561 1.000 0.700 1.000 0.848 4.00
2/3 200,500 1.000 1.000 1.000 1.000 1.000 1.000 4.00
2/3 500,500 1.000 0.999 1.000 1.000 1.000 1.000 4.00

1 100,200 1.000 0.565 1.000 0.692 1.000 0.822 4.00
1 200,200 1.000 0.615 1.000 0.743 1.000 0.856 4.00
1 500,200 1.000 0.579 1.000 0.703 1.000 0.836 4.00
1 200,500 1.000 1.000 1.000 1.000 1.000 1.000 4.00
1 500,500 1.000 0.998 1.000 0.999 1.000 0.999 4.00

2 100,200 1.000 0.466 1.000 0.603 1.000 0782 4.00
2 200,200 1.000 0.493 1.000 0.626 1.000 0.784 4.00
2 500,200 1.000 0.473 1.000 0.598 1.000 0.765 4.00
2 200,500 1.000 1.000 1.000 1.000 1.000 1.000 4.00
2 500,500 1.000 0.997 1.000 0.999 1.000 1.000 4.00

Note: The parameter b controls the size of the shift in factor loadings. The subscript “0” means that the statistic uses White’s
(1980) conditional heteroskedasticity robust estimate; subscript “B” denotes statistics based on HAC estimates with Bartlett
kernel. All HAC estimates are based on Newey and West’s method (1994). r̂ is the number of factors estimated by ICp1 of Bai
and Ng (2002). 59



Table 4B: Power against Unknown Break Date
DGP A2: the equivalent factor model with time-invariant loadings has 4 factors.

α N, T sup-W0 sup-WB exp-W0 exp-WB mean-W0 mean-WB r̂

0.2 100,200 0.166 0.106 0.199 0.114 0.216 0.128 3.09
0.2 200,200 0.822 0.745 0.830 0.794 0.833 0.793 3.80
0.2 500,200 1.000 0.911 1.000 0.976 1.000 0.981 4.00
0.2 200,500 1.000 1.000 1.000 1.000 1.000 1.000 4.00
0.2 500,500 1.000 1.000 1.000 1.000 1.000 1.000 4.00

0.4 100,200 1.000 0.924 1.000 0.975 1.000 0.969 4.00
0.4 200,200 1.000 0.909 1.000 0.969 1.000 0.966 4.00
0.4 500,200 1.000 0.903 1.000 0.973 1.000 0.974 4.00
0.4 200,500 1.000 1.000 1.000 1.000 1.000 1.000 4.00
0.4 500,500 1.000 1.000 1.000 1.000 1.000 1.000 4.00

0.6 100,200 1.000 0.916 1.000 0.968 1.000 0.961 4.00
0.6 200,200 1.000 0.896 1.000 0.963 1.000 0.961 4.00
0.6 500,200 1.000 0.908 1.000 0.966 1.000 0.967 4.00
0.6 200,500 1.000 1.000 1.000 1.000 1.000 1.000 4.00
0.6 500,500 1.000 1.000 1.000 1.000 1.000 1.000 4.00

0.8 100,200 1.000 0.895 1.000 0.952 1.000 0.944 4.00
0.8 200,200 1.000 0.907 1.000 0.965 1.000 0.957 4.00
0.8 500,200 1.000 0.889 1.000 0.955 1.000 0.954 4.00
0.8 200,500 1.000 1.000 1.000 1.000 1.000 1.000 4.00
0.8 500,500 1.000 1.000 1.000 1.000 1.000 1.000 4.00

α N, T sup-LM0 sup-LMB exp-LM0 exp-LMB mean-LM0 mean-LMB r̂

0.2 100,200 0.150 0.070 0.172 0.093 0.184 0.128 3.09
0.2 200,200 0.820 0.455 0.826 0.580 0.828 0.708 3.80
0.2 500,200 1.000 0.519 1.000 0.678 1.000 0.852 4.00
0.2 200,500 1.000 1.000 1.000 1.000 1.000 1.000 4.00
0.2 500,500 1.000 1.000 1.000 1.000 1.000 1.000 4.00

0.4 100,200 1.000 0.600 1.000 0.731 1.000 0.869 4.00
0.4 200,200 1.000 0.551 1.000 0.698 1.000 0.855 4.00
0.4 500,200 1.000 0.520 1.000 0.674 1.000 0.842 4.00
0.4 200,500 1.000 1.000 1.000 1.000 1.000 1.000 4.00
0.4 500,500 1.000 1.000 1.000 1.000 1.000 1.000 4.00

0.6 100,200 1.000 0.591 1.000 0.721 1.000 0.850 4.00
0.6 200,200 1.000 0.551 1.000 0.695 1.000 0.843 4.00
0.6 500,200 1.000 0.547 1.000 0.689 1.000 0.846 4.00
0.6 200,500 1.000 0.999 1.000 0.999 1.000 1.000 4.00
0.6 500,500 1.000 0.999 1.000 1.000 1.000 1.000 4.00

0.8 100,200 1.000 0.578 1.000 0.699 1.000 0.944 4.00
0.8 200,200 1.000 0.570 1.000 0.706 1.000 0.843 4.00
0.8 500,200 1.000 0.551 1.000 0.685 1.000 0.829 4.00
0.8 200,500 1.000 0.998 1.000 1.000 1.000 1.000 4.00
0.8 500,500 1.000 0.999 1.000 0.999 1.000 0.999 4.00

Note: The parameter α controls the percentage of factor loadings that have structural breaks. The subscript “0” means that
the statistic uses White’s (1980) conditional heteroskedasticity robust estimate; subscript “B” denotes statistics based on HAC
estimates with Bartlett kernel. All HAC estimates are based on Newey and West’s method (1994). r̂ is the number of factors
estimated by ICp1 of Bai and Ng (2002). 60



Table 4C: Power against Unknown Break Date
DGP A3: the equivalent factor model with time-invariant loadings has 3 factors.

c2 N,T sup-W0 sup-WB exp-W0 exp-WB mean-W0 mean-WB r̂

3/4 100,200 0.204 0.056 0.278 0.084 0.328 0.130 3.00
3/4 200,200 0.202 0.056 0.282 0.087 0.327 0.133 3.00
3/4 500,200 0.204 0.063 .0288 0.096 0.328 0.143 3.00
3/4 200,500 0.678 0.503 0.729 0.600 0.751 0.654 3.00
3/4 500,500 0.673 0.500 0.729 0.597 0.751 0.648 3.00

1/2 100,200 0.941 0.632 0.970 0.798 0.979 0.852 3.00
1/2 200,200 0.952 0.646 0.977 0.816 0.983 0.864 3.00
1/2 500,200 0.957 0.663 0.980 0.827 0.985 0.873 3.00
1/2 200,500 1.000 1.000 1.000 1.000 1.000 1.000 3.00
1/2 500,500 1.000 1.000 1.000 1.000 1.000 1.000 3.00

1/4 100,200 1.000 0.983 1.000 0.999 1.000 0.999 3.00
1/4 200,200 1.000 0.983 1.000 0.998 1.000 0.999 3.00
1/4 500,200 1.000 0.987 1.000 0.999 1.000 0.999 3.00
1/4 200,500 1.000 1.000 1.000 1.000 1.000 1.000 3.00
1/4 500,500 1.000 1.000 1.000 1.000 1.000 1.000 3.00

0 100,200 1.000 0.999 1.000 1.000 1.000 1.000 3.00
0 200,200 1.000 0.999 1.000 1.000 1.000 1.000 3.00
0 500,200 1.000 1.000 1.000 1.000 1.000 1.000 3.00
0 200,500 1.000 1.000 1.000 1.000 1.000 1.000 3.00
0 500,500 1.000 1.000 1.000 1.000 1.000 1.000 3.00

c2 N,T sup-LM0 sup-LMB exp-LM0 exp-LMB mean-LM0 mean-LMB r̂

3/4 100,200 0.195 0.071 0.249 0.102 0.282 0.161 3.00
3/4 200,200 0.194 0.061 0.251 0.100 0.285 0.163 3.00
3/4 500,200 0.188 0.063 0.248 0.104 0.285 0.169 3.00
3/4 200,500 0.646 0.482 0.706 0.579 0.723 0.637 3.00
3/4 500,500 0.646 0.478 0.700 0.570 0.724 0.630 3.00

1/2 100,200 0.948 0.533 0.968 0.715 0.969 0.811 3.00
1/2 200,200 0.955 0.534 0.974 0.728 0.974 0.821 3.00
1/2 500,200 0.961 0.538 0.978 0.732 0.976 0.827 3.00
1/2 200,500 1.000 1.000 1.000 1.000 1.000 1.000 3.00
1/2 500,500 1.000 1.000 1.000 1.000 1.000 1.000 3.00

1/4 100,200 1.000 0.773 1.000 0.965 1.000 0.983 3.00
1/4 200,200 1.000 0.759 1.000 0.966 1.000 0.982 3.00
1/4 500,200 1.000 0.746 1.000 0.963 1.000 0.979 3.00
1/4 200,500 1.000 1.000 1.000 1.000 1.000 1.000 3.00
1/4 500,500 1.000 1.000 1.000 1.000 1.000 1.000 3.00

0 100,200 1.000 0.671 1.000 0.991 1.000 0.996 3.00
0 200,200 1.000 0.644 1.000 0.987 1.000 0.994 3.00
0 500,200 1.000 0.633 1.000 0.987 1.000 0.991 3.00
0 200,500 1.000 1.000 1.000 1.000 1.000 1.000 3.00
0 500,500 1.000 1.000 1.000 1.000 1.000 1.000 3.00

Note: The parameter c controls the ratio of post- and pre-break factor loadings. The subscript “0” means that the statistic uses
White’s (1980) conditional heteroskedasticity robust estimate; subscript “B” denotes statistics based on HAC estimates with
Bartlett kernel. All HAC estimates are based on Newey and West’s method (1994). r̂ is the number of factors estimated by
ICp1 of Bai and Ng (2002). 61



Table 5A: Power Comparison with CDG tests for Unknown Break Date
DGP A1: the equivalent factor model with time-invariant loadings has 4 factors.

b N T sup-LM0 sup-LMCDG
0 sup-LMB sup-LMCDG

B sup-W0 sup-WCDG
0 sup-WB sup-WCDG

B r̂

0.33 100 200 0.058 0.052 0.017 0.033 0.072 0.071 0.019 0.061 3.00
0.33 200 200 0.065 0.048 0.023 0.029 0.078 0.070 0.022 0.059 3.01
0.33 500 200 0.418 0.389 0.216 0.371 0.435 0.428 0.359 0.419 3.39
0.33 200 500 0.453 0.353 0.431 0.338 0.482 0.445 0.435 0.440 3.40
0.33 500 500 1.000 0.937 0.999 0.931 1.000 1.000 1.000 1.000 4.00

0.66 100 200 1.000 0.902 0.571 0.866 1.000 1.000 0.895 1.000 4.00
0.66 200 200 1.000 0.668 0.561 0.574 1.000 1.000 0.891 1.000 4.00
0.66 500 200 1.000 0.864 0.561 0.817 1.000 1.000 0.904 1.000 4.00
0.66 200 500 1.000 0.746 0.999 0.716 1.000 1.000 1.000 1.000 4.00
0.66 500 500 1.000 0.946 0.999 0.938 1.000 1.000 1.000 1.000 4.00

1 100 200 1.000 0.940 0.565 0.892 1.000 1.000 0.887 1.000 4.00
1 200 200 1.000 0.778 0.614 0.663 1.000 1.000 0.919 1.000 4.00
1 500 200 1.000 0.914 0.579 0.854 1.000 1.000 0.901 1.000 4.00
1 200 500 1.000 0.861 0.997 0.839 1.000 1.000 1.000 1.000 4.00
1 500 500 1.000 0.970 0.998 0.964 1.000 1.000 1.000 1.000 4.00

2 100 200 1.000 1.000 0.465 0.992 1.000 1.000 0.827 0.997 4.00
2 200 200 1.000 1.000 0.494 0.995 1.000 1.000 0.842 0.997 4.00
2 500 200 1.000 1.000 0.473 0.995 1.000 1.000 0.830 0.996 4.00
2 200 500 1.000 1.000 0.999 1.000 1.000 1.000 1.000 1.000 4.00
2 500 500 1.000 1.000 0.997 1.000 1.000 1.000 1.000 1.000 4.00

Note: The parameter b controls the size of the shift in factor loadings. The superscript “CDG” denotes the CDG tests. The
subscript “0” means that the statistic uses White’s (1980) conditional heteroskedasticity robust estimate; subscript “B” denotes
statistics based on HAC estimates with Bartlett kernel. All HAC estimates are based on Newey and West’s method (1994). r̂
is the number of factors estimated by ICp1 of Bai and Ng (2002).
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Table 5B: Power Comparison with CDG tests for Unknown Break Date
DGP A3: the equivalent factor model with time-invariant loadings has 3 factors.

c2 N T sup-LM0 sup-LMCDG
0 sup-LMB sup-LMCDG

B sup-W0 sup-WCDG
0 sup-WB sup-WCDG

B r̂

3/4 100 200 0.195 0.039 0.071 0.024 0.204 0.049 0.056 0.042 3.00
3/4 200 200 0.194 0.039 0.061 0.028 0.202 0.048 0.056 0.044 3.00
3/4 500 200 0.188 0.038 0.063 0.024 0.204 0.054 0.063 0.043 3.00
3/4 200 500 0.646 0.046 0.482 0.038 0.678 0.045 0.503 0.036 3.00
3/4 500 500 0.646 0.050 0.478 0.043 0.673 0.046 0.500 0.042 3.00

1/2 100 200 0.948 0.055 0.533 0.035 0.941 0.036 0.632 0.035 3.00
1/2 200 200 0.955 0.049 0.534 0.035 0.952 0.040 0.646 0.041 3.00
1/2 500 200 0.961 0.054 0.538 0.034 0.957 0.042 0.663 0.041 3.00
1/2 200 500 1.000 0.068 1.000 0.056 1.000 0.031 1.000 0.030 3.00
1/2 500 500 1.000 0.069 1.000 0.058 1.000 0.032 1.000 0.034 3.00

1/4 100 200 1.000 0.068 0.773 0.049 1.000 0.017 0.983 0.028 3.00
1/4 200 200 1.000 0.056 0.759 0.043 1.000 0.023 0.983 0.035 3.00
1/4 500 200 1.000 0.066 0.746 0.048 1.000 0.024 0.987 0.036 3.00
1/4 200 500 1.000 0.081 1.000 0.070 1.000 0.017 1.000 0.018 3.00
1/4 500 500 1.000 0.084 1.000 0.069 1.000 0.021 1.000 0.023 3.00

0 100 200 1.000 0.072 0.671 0.052 1.000 0.138 0.999 0.210 3.00
0 200 200 1.000 0.062 0.644 0.051 1.000 0.400 0.999 0.487 3.00
0 500 200 1.000 0.067 0.633 0.052 1.000 0.665 1.000 0.728 3.00
0 200 500 1.000 0.082 1.000 0.068 1.000 0.519 1.000 0.563 3.00
0 500 500 1.000 0.082 1.000 0.067 1.000 0.804 1.000 0.828 3.00

Note: The parameter c controls the ratio of post- and pre-break factor loadings. The superscript “CDG” denotes the CDG
tests. The subscript “0” means that the statistic uses White’s (1980) conditional heteroskedasticity robust estimate; subscript
“B” denotes statistics based on HAC estimates with Bartlett kernel. All HAC estimates are based on Newey and West’s method
(1994). r̂ is the number of factors estimated by ICp1 of Bai and Ng (2002).
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