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GENERALIZED WHITTLE ESTIMATE
FOR NONSTATIONARY SPATIAL DATA

YASUMASA MATSUDA

ABSTRACT. This paper considers analysis of nonstationary irregularly spaced
data that may have multivariate observations. The nonstationarity we focus on
here means a local dependency of parameters that describe covariance struc-
tures. Nonparametric and parametric ways to estimate the local dependency
of the parameters are proposed by an extension of traditional periodogram
for stationary time series to that for nonstationary spatial data We introduce
locally stationary processes for which consistency of the estimators are proved
as well as demonstrate empirical efficiency of the methods by simulated and
real examples.

1. INTRODUCTION

Analysis of large spatial data set has been attracting considerable interests re-
cently. The progress of technology makes it possible to collect point reference data
in several tens of thousands of points in such fields as geostatistics, forestry and so
on (Diggle, 2010) and a method for analyzing large irregularly spaced data set has
been in growing needs. Principal difficulties to analyze large spatial data set lie in
the huge dimensionality of covariance matrices that makes the likelihood-based in-
ference infeasible. The calculation of the inverse and determinant for the covariance
matrices takes too much time to evaluate the likelihoods in reasonable time. There
have been mainly two kinds of approaches to cope with the difficulties associated
with the large sample sizes.

One is a method called covariance tapering proposed by Kaufman et al. (2008)
that focuses more on short lag structures of covariances than on long ones. This
method approximates the covariance matrix by the one whose elements with lags
longer than a prespecified length are replaced by 0. Efficient sparse matrix algo-
rithm makes it feasible to evaluate the likelihood for the approximated covariance
matrix. The method by Stein et al. (2004) is regarded as a method in this category.

The other one is a method that focuses more on long lag structures of covariances
than on short ones. A typical example is the predictive process approach presented
by Banerjee et al. (2008), which considered a predictive process on mesh points
as latent variables and built a hierarchical model for spatial data and proposed to
estimate it by an Bayesian approach. A frequency domain approach proposed by
Matsuda and Yajima (2009) is regarded as another example in this category. Bai et
al. (2012) recently proposed a dual approach that aims at taking merits of both of
the two approaches of the covariance tapering and predictive process approaches.

Key words and phrases. cubic B-spline. Gram-Schmidt orthogonalization. local periodogram.
locally stationary process. Matérn class covariance. nonstationary. spectral density function.
Whittle likelihood function.
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Although several methods have been proposed to cope with the difficulties asso-
ciated with the huge dimensionality of covariance matrices, all the existing methods
basically assume that spatial data are stationary, which means that covariance func-
tions depend only on spatial lags. In practice, however, it is rare to find stationarity
in spatial data. For example, land price data that we analyze in Section 5 has vari-
ances that variates locally. Specifically, the variance of land price becomes larger as
the observation points approach the city center, which demonstrates clearly non-
stationary covariance structures.

The purpose of this paper is to propose an method for analysis of nonstation-
arity spatial data which may have multivariate observations by an extension of
a frequency domain approach by Matsuda and Yajima (2009). The key features
unique in this paper are as follows. The first one is that sinusoidal basis functions
employed in Matsuda and Yajima (2009) to detect amplitude of Fourier frequencies
are orthogonalized under the inner product characterized by a weight function to
cope with nonstationarity. As a result, the weighted Fourier transform by the or-
thogonalized basis leads to introduction of the local periodogram and proposition
of the generalized Whittle likelihood function with it. The next one is the introduc-
tion of locally stationary processes for which consistency of the Whittle likelihood
estimators are proved. Locally stationary processes were originally proposed by
Dahlhaus (1997) for analysis of nonstationary time series in order to conduct rigor-
ous theoretical treatment of Whittle likelihood estimators. This paper borrows the
concept of them but define the ones in considerably different manners. Specifically,
the main difference between them lies in the definition in terms of Riemannian
approximation for the stochastic integral in the original definition, which lets our
proposed method more practical in the sense that the generalized Whittle likelihood
is not defined by an integral but by a feasible summation on Fourier Frequencies
for which a proof of consistency is conducted, although asymptotic normality has
not been proved yet unfortunately.

2. SETTING OF OUR PROBLEMS

This paper focuses on a spatial regression model that generates nonstationary
observations on irregularly spaced points. Let X (s) = (X1(s),...,Xp(s)) be b inde-

pendent vectors on s. Then multivariate observations Y (si) = (Y1(sk), .., Ya(sk))
for s,k =1,...,n, are described by

(1) Y(se) = mlsk)+ Z(sk) + ex,

where m(s) = (mi(s),...,mqa(s))" is the mean function given by the following

regression form
mi(s) = X(s)Bi(s),

fori=1,...,a, Z(s) is a zero mean nonstationary error process and ¢y, is a nugget
term given by a sequence of independent random vectors with mean 0 and variance
matrix T'(s). It should be noted that 3;(s) and T'(s) are allowed to be locally
dependent.

The nonstationary process Z(s) has the covariance matrix
(2) R(s,h) = EZ(s+h/2)Z'(s—h/2),

which does depend not only on A but also on s. The dependency of the covariance
on s is attained through a dependency of a parameter § on s that describes the
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covariances, namely
R(s,h) = R(0(s),h).

The local dependency of 6(s) as well as that of T'(s) and (;(s) is an unique feature
that has not been considered well yet to characterize nonstationarity in spatial data,
for which we will work in this paper.

The Fourier transform of the covariance R(6(s), h), which is called the Wigner-
Ville spectrum (Martin and Flandrin, 1985), is given by

(3) F(0(s),\) = (2m)2 R(0(s), h) exp(—iXN'h)dh,

Rz
which defines the nonstationary structures by the dependency on s of the spectral
density F'. Both the definitions of nonstationarity on spatial and frequency domains
exactly correspond mathematically.

The problem in this paper is how to estimate 6(s), T'(s) and G;(s) for ¢ =
1,...,a as a function of s. After estimation of 0(s) and T'(s) is considered in
a nonparametric way, that of 6(s) and T(s) will be considered in a parametric
way. And that of 3;(s) will be also considered in a parametric way under the
error covariances with the estimated parameters. It should be emphasized that the
nonparametric way does not mean assuming no parametric models in covariances
but means assuming no parametric models in local dependencies of the parameters
that describe covariances. The reason why the nonparametric estimation as well
as the parametric one is considered in this paper is that the nonparametric one is
helpful in identifying a parametric form of the local dependency and in providing
good starting values for the optimization process in the parametric estimation.

For example, let us consider a Matérn class covariance that is described by
smoothness, sill and range parameters denoted as § = (v, 7, p). Then the nonsta-
tionary structure is introduced by local dependency of parameters 6 on s in the
covariance

v(s)
7(s) {2v/m@)|1l/0ls) —
(4)  R@(s).h) = { o)) Koo (2“”')

2T (v (s)) 0
or equivalently, by that in the spectral density function

¢(s)

5 F(6(s),\) = —,
®) VP TR

for a(s) = 24/v(s)/p(s) and ¢(s) = v(s)a(s)?**)r(s)/m. We will discuss nonpara-
metric estimation of (v(s), 7(s), p(s)), and will also consider parametric estimation
of them when, for example, cubic B-spline functions are fitted to describe their
local dependencies.

We keep in mind as a nonstationary model for practical applications a Matérn
class with local dependency identified by cubic B-spline functions, although no
specific models are identified for R(6(s),h) in Sections 3 and 4 to let discussions
be as general as possible. In Section 5 for empirical studies, however, a Matérn
class covariance with local dependency identified by cubic B splines is applied to
simulated and real examples.
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3. ESTIMATION

Suppose we have observed Y (s;) in (1) on irregularly spaced points si € S, k =
1,...,n. We discuss estimation of 6(s) in the spectrum F(6(s),\), T(s) in the
nugget term and G;(s) for i = 1,...,a in the mean function. First, after introducing
nonparametric estimates for 8(s) and T'(s), we will consider parametric ones, when
0(s) and T'(s) are described as 0y, (s) and Ty, (s) for some parameters ¢ and ¢s,
respectively. Next, under the covariances estimated with él and (52, the generalized
least squares estimator is proposed for the regression coefficients §;(s) when (;(s)s
are identified as (3;(s)’ = U(s)y for a basis function U(s) and parameters ).

The features distinguished from existing frequency domain approaches are the
employment of the Gram-Schmidt procedure for empirical orthogonalization of
Fourier basis functions, by which the local periodogram is defined.

3.1. Estimation of the covariance parameters. Let us start from nonparamet-
ric estimation of 6(u) and T'(u) over u € [0, B1] x [0, B2] which should be included
in S. Fix a positive integer r, such that b + 2r, < n and a weight function
wp(x) = w(x/h) for a bandwidth » > 0 and a positive and continuous function
w(z) on R? that has a maximum on the origin and converges to 0 as |z| — oo.
Introduce a set of mesh points on R? as

omj 2k
of = {(;]7;)7(j,k)EZQ7k>0U{j>0,k=0}}.
1 2

The elements are sorted with ascending order by the distances from the origin and
put the first r,, elements and their symmetric points with respect to the origin as
Q.F and Q. , respectively. Define

Q,=QruQ,,

which is an extension of Fourier frequencies used in time series (Brockwell and
Davis, 1980, page 332) to those in spatial data.

It is well known that the set of Fourier series on Fourier frequencies constitutes
an orthogonal basis in time series case (Brockwell and Davis, 1991,page 332). Since
it is not in general an orthonormal basis when the data points are irregularly spaced,
the set of the basis functions exp(iw},s;) for wy, € Q;} is forced to be orthonormalized
under the inner product weighted on u defined by

Sp—u

st (2

for f,g € C" on the observed points s,,p=1,...,n.

The sequence of b+, vectors in C™, which are the independent vectors and the
Fourier series on Q.F, i.e., the union of X (s) = (X1(s), ..., Xs(s)) and exp(iw’s),w; €
QF, is orthogonalized under the inner product weighted on « by the Gram-Schmidt
procedure. And define the orthonormalized ones for exp(iw’s) as §u(wj, 5p), which

satisfy < &,(w;), &u(wj) >u= d;; for Kronecker’s delta.

<fag>u =
P

n

1
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Then the local periodogram on u € [0, B1] X [0, Bs] is, for wy, € Q;F, defined by

d(u,wr) = <Y, &(wk) >u= ZY(SP)mw <$phu) ’

p=1
H, = w % —u),
2
(6) I{u,wy) = 5] d(u,wy)d(u wk)/
’ dr?H, ’ ’
where |B| = Bj - Bg, and I(u,wy) is called as the local periodogram matrix on

u € [0, B1] X [0, Bs], which is regarded as an extension of traditional one for time
series.

Based on the local periodogram on u, the nonparametric estimators are 6(u) and
T(u) that minimize

() QuB.T) = 4B Y tr [{F(0wn) + blu,wn, )T} ()]
wr€D
+10g |F (6 0r) + b, wp, )T,

where D is a prefixed region on R? and

M) = o 3 ules e st (20,
S}

which is the term caused by the nugget effect which does not appear usually in
traditional Whittle likelihoods for time series. The proof of Lemma 1 in Section
7 reveals how b(u,w,w) is inserted in the likelihood to treat the effect caused by
the nugget term. We call the objective function in (7) the local Whittle likelihood
function on w.

Now let us turn to parametric estimation for #(u) and T'(u) in which case the
parameters ¢; and ¢ describe 6(u) and T'(u) as 0y, (u) and Ty, (u), respectively,
over u € [0, B1] x [0, B2]. Let K be a set of mesh points over [0, B1]| x [0, Bg] given
by (iB; "h?,jBy "h?) for 0 < p<landi,j=1,2,....

Based on the local periodograms on u; € K, the parameters ¢, and ¢, are

estimated by the ones, which we denote as rj;l, QEQ, that minimize
L(¢y, ¢2) = 4m®|B|~Ph*
X DNt [{F 0, (), ) + s ) T ()} T 00)
uj €K wy€D
(8) +10g |F(0g, (u)), wk) + blug, wr, wi) T, ()] -
The objective function to be minimized in (8) is called the generalized Whittle

likelihood function. Then 6(u) and T'(u) are estimated by 6 (s) and T} (s), re-
spectively.

Remark 1. It is required to store the values of I(u;,ws) and b(u;, wy,wy) for uy €
K,w, € Qf in the minimization in (8), which requires the orthonormlizations of
exp(iwjsk),w; € Q! under each one of the inner products weighted on u; € K.
The orthohonalizations for each point constitute the most time consuming part of
the estimation procedure.
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Remark 2. The orthonormalizations of exp(iw}sy,),w; € Qf are equivalent to those
of cos(wjsk),sin(wsy),w; € QF, which we denote as a,(w;),bu(w;), from which

&u(wj, s) is constructed as a, (w;) + by (w;).

Remark 3. The order of the basis functions on Fourier frequencies affects seriously
the result of the Gram-Schmidt orthogonalization procedure, and hence estimation
performances. It is recommended from our experiences that the Gram-Schmidt
procedure should be applied to the independent vectors before to exp(iw;sk),wj €
Q;} in the ascending order by the distances of w; from the origin. This is because
the ascending order lets the periodograms on high frequencies, which play a crucial
role in estimation performance, be more efficient approximations for the spectrum
than any other order does. The consistency proof in Section 4, however, requires
no special rules for ordering in Q.

Remark 4. To conduct the estimation, r, that determine D and the bandwidth
h must be prefixed. The choices of them should be made jointly depending on
performances of the Gram-Schmidt procedure applied to Fourier basis functions.
Larger 7, and smaller h provide more unbiased but unstable estimates by making
Fourier series lose more easily the linear independence as a basis function, and
hence make the Gram-Schmidt procedure infeasible, while smaller r, and larger h
provide more biased but stable estimates by making them linearly independent.

3.2. Mean function estimation. Let us consider an estimation for the mean
function m;(s) = X(s)8i(s),i = 1,...,a in model (1), when G;(s) is described as

9) Bi(s) = U(s)(Wi1,.-- %ip),

for a basis function U(s) = (U1(s),...,Uc(s)) on [0, B1] x [0, Bs] and parameters
¥ij = (Vij1,---ije). Thereason why we restrict a parametric form for 5;(s) to a
linear one is that a linear one makes it possible to re-express (1) as a linear regression
form and to apply generalized least squares estimate. Namely, substitution of (9)
into (1) provides the following linear regression form

Yilsk) = X(sx) QU(sk)tbi + Zis, + ik

for k =1,...,n, where ¢; = vec(¥;1,...,%ip)-
The parametric estimates ¢ and ¢ minimizing the Whittle likelihood in (8) let
us estimate the error covariance structures by the ¢ th diagonal element of

N Sy, + 8 Sy, + s
Vg = R<9¢31<”2 q),sp—sq>+TA2 (p2 q),

for p,q = 1,...,n, which we denote as f/;-,pq. The error covariance matrix is
evaluated as the n by n matrix V; whose (p,q)th element is V,,. Let Y; be
(Yi(s1),...,Yi(sn)) and let L be the nxbc matrix whose kth row is X (si) @ U(sk).
Then the GLS is

o A -1 N
(10) b = (VL) DV,
and ; j(s) is estimated by

Bij(s) = Uls)iy,
forj=1,...,b.
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4. CONSISTENCY

This section clarifies in what conditions our proposed estimators are consistent.
In irregularly spaced data analysis, special care is necessary for the asymptotics. As
Dahlhaus (1997) pointed out, it is impossible to estimate consistently the parameter
6 =06(s),s € [0,B1] x [0, Bs] in the asymptotics that the domain By, By tends to be
large, since finer and finer observations are not available. Even in the fixed domain
asymptotics, which is the one based on growing observations under fixed domains
(Stein, 1999, page 62), consistency is not available because of a lack of data with
longer spatial lags than the fixed domain. The only way to avoid the inconsistency,
we need to assume that

(11) 0(s) = 0 (;11 ;22)

under the asymptotics that By, By tend to be large.

This section provides the models that satisfy (11) with the asymptotics under
which our estimators proposed in the previous section are consistent. The no-
table features lie in the following two points. First, the models to satisfy (11)
is constructed by an extension of locally stationary models by Dahlhaus (1997).
Secondly, the asymptotics are built not by introducing randomness but in a deter-
ministic manner to account for the irregularity of the data points.

4.1. Locally stationary processes. Dahlhaus (1997) proposed a locally station-
ary process for rigorous asymptotic treatment of regular nonstationary time series.
We extend the locally stationary process for time series to that for spatial data that
may be observed on irregular locations. The main differences are the changes of
domain of the spectrum from [—7, 7] to R? and the adoption of Riemannian sum
for stochastic integral.

In some general conditions, a stationary process on R? with the spectral density
matrix F(\) has the spectral representation:

(12) / exp(iX's)A(N)dE(N),
R2
where
ANVAD) = FO),
and £(\) is an orthogonal increment process such that
Cov (d§(>\1)7 dg()\Q)) = 51210,

for the Dirac delta function 4.
We generalize the stationary expression (12
A(N) to be dependent locally inside [0, B;] X |

frequencies given by
2rj 2wk . 9
Q = ——, — k)eZ* ;.
{(31’32>’(]7)€ }

Put |B| = By x By and let us express s/B for (s1/B1, s2/B2), and w; for an element
of 2 with an integer j, for notational simplicity.

) to nonstationary one by allowing
0, Bo]. Let Q be the set of Fourier
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Definition 1. Zp(s) is a locally stationary process over [0, By] X [0, Bz] with trans-
fer matrix function A, if there exists a representation

472 ., s
(13) Zp(s) = ﬁ ze:ﬂexp(zsz)A (E,wj) zj,

where the following holds.

(i) {2;,J € Z} is a sequence of independent and identically distributed random
vectors with z; = Z; for j, k such that wy = —w;, and with mean 0, Ez;z;" =
I, and finite fourth order moments.

(i) There exists a function A : [0,1]2 x R? — R**® with A(u, —\) = A(u, \).

Let us approximate Z(s) in (1) whose spectrum is identified by the parameter 6
that satisfies (11), namely

F(0(s), M) = F(0(s/B), ),

by the locally stationary process Zp(s) in (13) with the transfer function that
satisfies

A, VA, N) = F(0(u),\)
for u € [0,1]2. This approximation is justified asymptotically in the sense that the
covariances of the latter converges to the ones of the former. Hence it is reasonable
to assume later in proving consistency that the error term Z(s) is given by the
locally stationary process.
Specifically, let us define the spectral density matrix of Zg(s) by

Fg(u,\) := (2r)2 [ Cov(Zg(uB + h/2), Zg(uB — h/2)) exp(—i\'h)dh,
R2
where the covariance is defined to be 0 when w + h/(2B) or w — h/(2B) is outside
[0,1]%. Then we have the convergence of Fp to F in the following theorem.

—_—

Theorem 1. If Zp(s) is the locally stationary process in (13) with A(u, A)A(u, A)
F(0(u),\), F(0(u),\) € L3(R?) uniformly in u € [0,1]> and A(u, \) is continuous
with respect to u uniformly in A € R?, then we have for all u € [0, 1]?,

[ F(w2) = F(O(), )} {Fau, ) = F(6(w), MY dx = o(1),

as B, By tends to co.

Proof. We have

1 g A h N iy
Fp(u,A) = W/RQ exp(iA h)dhﬁ E;QA(U‘F @awj)A(U— ﬁvw]') exp(—ih'w;),
wj
and
F(u,\) = ;/ exp(iN'h)dh | F(u,w)exp(—ih'w)dw.
(2m)? Jge R2

By Perseval equality, we have

4

/]R2 {F(u,A) — F(u, )} {FB(u,\) — F(u,\)} d\ = /R2 c(h)e(h) dh,
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3 o 4r® h N o
c(h) = /R2 F(u,w) exp(—ih'w)dw — B[ Z A(u+ ﬁ,wj)A(u — ﬁ,wj) exp(—ih'w;j),

w;j €N

which are both L*(R) regardless of B, and bounded by

2
F(u,w) exp(—ih'w)dw — 4% Z F(u,w;) exp(—ih'w;)
R? ‘ | w; €N
+ 4—7T2 Z F(u W')fA(u+i wi)A(u — == w')l
|B‘ = ERadV) 23’ J 23’ J )
wj

both terms of which converge to 0 for each h. It follows that the result follows by the
dominated convergence theorem.

4.2. Assumptions. Let us give the detailed conditions required for consistency of
the nonparametric and parametric estimators. Assumption 2 given below defines
the asymptotic regime under which consistency is considered, where we follow a
deterministic manner to describe the irregularity of the data points. Assumption 4
(ii) states that the parametric models for (u) and T'(u) are not necessarily correct,
i.e., 04, (u) and Ty, (u) do not necessarily include 6(u) and T'(u) for any ¢; and ¢o,
respectively.

Assumption 1. In (1), the mean function is given by m(s) = B(s/B) with X (s) =
1 for a continuous function 3 on [0,1]2, the error process Z(s) is given by the locally
A

stationary process Zp(s) with A(u,)\)A(u,)\)/ = F(0(u),\) for u € [0,1]? and the
nugget T(s) = T(s/B) for a continuous function T on [0,1]?. The transfer function

matriz A(u, \) is uniformly bounded and continuous in u and .

Assumption 2. Asymptotics is defined with a positive integer k in the following
sense. As k tends to be large, the region [0, B1] x [0, Ba] = [0, Bf] x [0, B}] tends
to [0,00] x [0,00], inside which the sample size n = ny and the observation points
Sp = spk ,p=1,...,ny must satisfy the followings uniformly in u € [0,1]2.
(i) there exists a continuous function C(u,w) on [0,1]% x R? such that, for
Wk, Wy € QF such that |wp—w;| > b1, b(uB, wi,wi) — C(u,w), b(uB,wg,w;) —
0 and bo(uB,uB,wy,w;) — 0, where
|BI?

16774HulBHu2B

x Z Eur B (W, 3p)Eun B (Wi, Sp)w <Sp _hmB) v <8P _hU2B>

p=1
(ii) the empirical correlation between exp(iwg-sp),j =k, ie.,

bQ(UlB7UQB,Wk,CUl) =

2

Y

n
_ . sp —uB
(14) plu,wp —w) = H, Zexp {iwg —wi) sptw (p A > )
p=1
satisfies
S lofuw)] < C,
W.EN

for a constant C.
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Assumption 3. The bandwidth h = hy satisfies
hy — 00, By 'hy, — 0,
fori=1,2, as k tends to be large, under the asymptotics in Assumption 2.

Assumption 4. In the nonparametric and parametric estimation given by mini-
mizing the likelihood (7) and (8), respectively,

(i) When we fit 0 and T for 6(u) and T'(u), respectively, in the nonparametric
estimation, for each u € [0,1]2, (,T) € ©, C R?, where ©,, is compact
and the function F(,\) + C(u, \)T is uniformly bounded from above and
below and continuous on ©, x D. (01, T1) # (02, Ts) implies F(01,\) +
C(u, Ty # F(0s, A) + Clu, /\)Tg on a set with positive Lebesque measure
and (0(w), T(u)) exists in the interior of ©,,.

(ii) When we fit a parametric model 04, (u) and Ty, (u) for O(u) and T'(u),
respectively, in the parametric estimation, (¢1,¢2) € ® C RY, where @ is
compact and the function F(04(u), X) + C(u, \)Ty, (u) is uniformly bounded
from above and below and continuous on ® x [0,1]> x D. (¢1, ¢2) # ((251, b2)
implies F (0, (u), A) + C(u, ATy, (u) # F (b5, (u), A) + C(u, A)Tdb (u) on a
set with positive Lebesque measure and (43, #3) that minimize

Lo(¢1,¢2) =

S L 0,020 4 0 T )™ (0, )+ O NT )
[0,1]2

+log |F (04, (1), A) + C(u, \) Ty, (w)| dud.
exists uniquely and lies in the interior of ®.

4.3. Consistency. Let us prove consistency of the nonparametric and parametric
estimates under Assumptions 1-3, 4(i) and Assumptions 1-3, 4(ii), respectively.

Theorem 2. If Assumptions 1, 2, 3 and /(i) hold, the nonparametric estimators
O(uB) and T(uB) minimizing (7) converge in probability to O(u) and T(u) for
u € [0, 1]%, respectively, under the asymptotics in Assumption 2.

Proof. By Lemma 3, we have for a fixed u € [0,1]2,
Qup(8,T) — Qu(6,1)
in probability, where
Q@,T) = /D fr [{F(@ )+ Clu, )\)T}_l (F(6(u), \) + C(u, A)T(u)}]
+Jog‘FK§,A)%—CXu,AXf‘dA.
By the identifiability condition in Assumption 4, for (6, T) # (0(u), T(u)),
Qu(0,T) — Q4(6(u), T(u)) =

’F (0, 0) + C(u, \) ] ) i1
/D log 7 TR {{F(@,/\)JrC(u,/\)T} {F(e(u),AHC(u,A)T(u)}] — 1] dx

0(w), A) + C(u, )T (u

> 0.
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For any ¢ > 0, there is a § > 0 such that, for any (61,771) and (62, T>) that satisfy
‘(GlaTl) - (027T2)| < 57

P (IQup(01,T1) — Qup(b2,T2)| <€) — L.
It follows that the consistency follows by Walker (1964, Lemma 2).

Theorem 3. If Assumptions 1, 2, 3 and 4(ii) hold, the parametric estimators (;31
and ¢o minimizing (8) converge in probability to ¢9 and @3, respectively, under the
asymptotics in Assumption 2.

Proof. By Lemma 5, we have

L(¢1,¢2) — Lo(¢1, ¢2)

in probability. The rest of the proof follows in exactly the same way as that in
Theorem 2.

5. EMPIRICAL EXAMPLES

This section considers empirical performances of the estimators proposed in Sec-
tion 3. In the first experiment, empirical performances of the nonparametric and
parametric estimators that minimize (7) and (8), respectively, are examined for sim-
ulated data when the mean function is designed to be 0. In the second experiment,
the mean function estimation by (10) in addition to the parametric estimation by
minimizing (8) are conducted for land price data in Tokyo.

We restrict our attention to uni-dimensional observations for which the empirical
studies are conducted. For the two experiments, a Matérn class covariance is fitted
in every estimation, where the parametric estimation employs cubic B-splines to
describe local dependency of the parameters, and where the weight function is
designed as w(x/h,y/h) = exp(—z?/h) exp(—y*/h).

5.1. Simulation studies. We conduct the nonparametric and parametric esti-
mates for simulated data a hundred times to show the empirical properties of them.
We simulate nonstationary data by (1) on uniformly scattered points over the region
[0, 30] x [0, 30], where the mean function is designed to be 0 and the covariance func-
tion is specified with an isotropic Matérn class in (4), where the local dependencies
of the parameters are are designed by

v(s) = 2.0-15exp {_ (51— 15)2130(52 —15)2 } |
(15) 7(s) = 10+ 20exp { (51— 15)2130(52 — 15)? } |

p(s) = 2+3exp { (51 — 15)2130(52 —15)?2 } |

T(s) = 1+3exp {_ (51 — 15)2130(@ —15)? } |

For 100 sets of the simulated data with n = 8000, we fit a Matérn class to
construct the nonparametric estimators for (v, 7, p,T) over the region B = [5,25] x
[5,25]. They were conducted by minimizing (7), when we set h = 42 and took first
1000 elements in ,} as D. In Figure 1, the median and the 5 and 95 percentiles
for 100 nonparametric estimators are shown in comparison with the true values as
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FIGURE 1. The nonparametric estimators for the parameters
v, T, p, T over the region {(z,x)|5 <z < 25}.

a function of the location over the line {(z,x)|10 < x < 20}. We find that the 90
% confidence intervals of nonparametric estimators for all the parameters include
the true values. The nonparametric estimation accounts for the local dependency
of the parameters considerably well. The estimation performance for the nugget
parameter is better than that of the other parameters.

Also for 100 sets of the simulated data, we fit cubic B-spline functions to (v(s), 7(s), p(s), T(s))
over the region [5,25] x [5,25] to construct the parametric estimators for them. A
cubic B-spline function, which has minimal support with respect to a given degree,
smoothness and domain partition, is numerically evaluated by the de Boor algo-
rithm (de Boor, 2001). Choose the knots (a;,b;) for i,5 = 0,...,8 over the region
by

ai =5+5(1—2),b; =5+5(j — 2),

and construct the basis functions ¢, ,, and dg ,,, for m =1,2,3 and p,¢=0,...,8—
m by the recursion formula,

S1 — Clp ap+m+1 — 81

[ S = —Cp.m-1(81) + [ _1(s
pm (1) P——— 1(s1) s — appy L 1(s1),
59— b b 1— 82
dgm(s2) = s qb dgm—1(s2) + == L o dar1m—1(52),
qg+m — Yq g+m+1 = Ug+1
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v T
true | med. | 5% | 95% || true | med. | 5% | 95%
2.85| 2.10 | 1.50 | 3.58 || 17.53 | 17.60 | 10.48 | 32.61
177 1.62 | 0.93 | 291 || 16.49 | 12.22 | 5.33 | 33.81
0.60 | 0.68 | 0.19 | 1.56 || 27.39 | 19.26 | 9.05 | 36.13
p T

3.39 | 472 | 335 | 717 | 1.87 | 2.11 | 1.75 | 2.48

3.02 | 268 | 1.64 | 490 || 1.93 | 2.12 | 1.76 | 2.62

4.59 | 4.07 | 1.69 | 8.23 | 3.63 | 3.50 | 2.66 | 4.10
TABLE 1. The 5, 95 percentiles and medain of the estimated pa-
rameters of the cubic B-splines fitted to v(s),7(s), p(s) and T'(s)
over [5,25]2, where only the three elements in each case are selected
to be shown.

with the initial values given by, for p,¢=0,...,7,

1 ifa, <51 <aptr,
c0(s1) { 0 otherwise
1 if bq S So < bq+1.
dg,0(s2) { 0 otherwise
By using the basis cubic B-splines ¢, 3(s1) X dg,3(s2) for p,g =0, ...,4 as a basis for

our parametric function, the parametric function is given by the linear combination
with a parameter 6, namely by

(16) Z Op,qCp,3(s1) X dg3(s2),

p,q=0

which is fitted to v(s),7(s), p(s) and T'(s) over the region s € [5,25]%. The dimen-
sion of the parameters results in 25 x 4 = 100.

We estimated the parameters 6, , that identifies each one of v(s), 7(s), p(s) and
T(s) for 100 sets of simulated data by minimizing the Whittle likelihood functions
in (8), when we design the mesh points by (5 + 2i,5 4 25) for 4,5 = 0,...,10 over
[5,25] x [5,25]. Here the optimization procedure was conducted numerically by the
BFGS method with the initial values evaluated by the nonparametric estimators
in the first experiment. The median, the 5 and 95 percentiles of the estimated
parameters were evaluated in comparison with the theoretical values calculated by
fitting (16) directly to (15). In Table 1, typical 3 estimators are selected to be
shown among 25 ones for each of v(s),7(s), p(s) and T'(s) to save space. We find
that all the parameters are estimated well enough for the 90 % confidence regions
to include the true values. The local dependency of the nugget is estimated best
among those of the four parameters as in the first experiment.

5.2. Applications to real data. This section applies the nonstationary regression
model in (1) to land price data, which were collected by the Japanese Ministry of
Land, Infrastructure and Transport in 2001. This is the record of land prices (yen
per square meter) with longitudes and latitudes of 5573 irregularly spaced sampling
points in the residential areas around Tokyo, which is shown in Figure 2, where the
co-ordinates are modified with units of kilometers. Land price in each point attaches
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FIGURE 2. The points on which land prices are observed with
one unit being adjusted to 1 km. The nonstationary structure
is analyzed by local dependency of the spectrum over {(z,y)|20 <
x <45,35 <y <65}

the time in minutes it takes by train from the central Tokyo and the distance in
meter from the nearest train station, which we use as the independent variables
denoted as d; and ds, respectively.

Cubic B-splines are fitted to describe the local dependencies over the region
B = [20,45] x [35,65] of all the parameters that we concern, i.e., the regression
coefficients in the mean function and the parameters in the Matérn class in (4)
that we fit to the covariance and the nugget variance. Here the knots for the spline
functions are selected as

a; =20+ 25(i — 2)/3,b; = 35 + 30(j — 2)/4,

fori = 0,...,7and j = 0,...,8, and the cubic B-spline functions are designed
exactly as in (16).

The fitted curve of the cubic B-splines that minimize (8) for v,7,p and T are
shown in Figure 3, while the fitted curve of the splines estimated by (10) for the
regression coeflicients of d; and ds, denoted as (34, and Bg4,, are shown in Figure 4.

Here D was designed as first 600 elements in ;7 with the bandwidth h = 62 and
the mesh points in (20 + 24,30 4 2j) for : =0,...,12 and j =0,...,17.

Figure 3 detects attracting features of the Matérn class parameters. The area
where the smoothness parameter is estimated as high around (25,50) is the res-
idential region developed in recent periods called Tama new towmn. The highly
estimated smoothness corresponds with the reasonable expectation that land price
varies more smoothly in recently developed areas than in old areas because the de-
velopments conducted together at one time work to ease individual effects caused
by various environmental factors. The sill and nugget parameters are estimated
as higher in the regions near the center of Tokyo than in the suburbs. This may
be because land price in the city center becomes more sensitive to environmental
factors such as access to sunlight, distances from roads, train lines and so on.
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FiGURE 3. The fitted curve for the parameters v, 7 and p for the
Matérn class and nugget T over [20,45] x [35,65] by the cubic B-
spline functions.

Figure 4 detects well the tendency that the negative impact of the distance from
the city center and the nearest station becomes higher in the regions near the city
center than in the suburbs. This is a reasonable nature of land price.

6. CONCLUDING REMARKS

Let us state two final comments on the estimation procedures. The first one is
the use of the frequency domain approach that works efficiently for large spatial
data that may be nonstationary with multivariate observations. Our method re-
quires no modeling of covariances but that of spectral densities in every estimation
except for the mean function estimation. As in Im et al. (2007), difficulty to check
the positive definiteness of covariances often makes us propose covariance models
through spectral densities, in which case our frequency domain approach works.

The final one is an easy extension of our method to spatial temporal data, which
may be nonstationary both in space and time. The exactly same procedure can be
applied to estimate spectral densities on spatial and temporal domains with local
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FIGURE 4. The fitted curve for 84, and B4, over [20, 45] x[35, 65] by
the cubic B-spline functions, where 84, and (4, are the regression
coefficients for time distance by train in minutes from the central
Tokyo and for distances from the nearest station in meter, respec-
tively.

dependent parameters. The crucial point to be noted is that the separability of
Fourier basis functions in space and time given by
exp{i(w's+ Nt)} = exp(iw's)exp(i\'t)

makes it possible to orthogonalize them separately, which means that the orthogo-
nalization procedure is conducted just by the union of the time consumed by it on
spatial and time domains. Hence our procedure can provide nonstationary spatial
temporal data with an efficient way of analysis.

It follows that our method is of greater use than existing spatial domain methods
are in the progress of technologies that can collect huge data sets in the forms of
spatial or spatial temporal data located in several tens of thousand of data points,

which may often show nonstationarity.
7. LEMMAS
Lemma 1. If Assumptions 1, 2 and 3 hold, then for wx € QF and u € [0, 1]?,
El(uB,wr) = F(0(u),wr)+ Cu,wr)T (u) + o(1),

under the asymptotics in Assumption 2.

Proof. From the definition in (13), we have

[ |B _ ——— (s, —uB
%d(uE,wk) = 1/2 Z ZA( ,w]) zj exp(iw}sp)un (Wi, Sp)w (%)

wjeﬂp 1
[1B] &~ ———— (s,—uB
+ i H,p ngffuB (Wi, 8p)w A .
It follows that
EI(UB7(“)1€) = Z F(a(u)awj)K(wjvwk)+b(uB7wk7wk)T(u)+o(1)a

w;iEQ
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where

— ~ i — — uB
K(wj,wy) = HuBl, Zexp(zw;sp)fuB(wk,sp)w<%>

p=1

and where

Z K(wj,wr) = Z K(wj,wr) + o(1)

w;ER w; €Qn
= Z K(wk7wj)+o(1):1+o(1)7
wj €Ny

by Parseval equality. It follows that, for p,g =1,...,a,

Z Fpq(0(u), w;) K (wj,wk) — Fpq(0(u), wk)
w; €Q

D {Fpa(0(w),w5) = Fpg(B(u), i)} K (wj, wi) | + (1)

w;i €Q
< Do F(ws) = Fpg(wn)| K(ws,wn) +C D> K(ws,wr) +0(1)
|w]-7wk|§h*1 |wj7wk|>h*1

= 0(h™") +o(1) = o(1),
by the mean value theorem, which completes the proof.

Lemma 2. If Assumptions 1, 2 and 3 hold, for v € [0,1]? and wk,w; € Q) such that
|wk — wl| > hil,
|B| =
Vog(u, wi,wr) = mCov (dp(uB,wk),dq(uB,wl)> = o(1),

under the asymptotics in Assumption 2.

Proof. By the definition of d(uB,w), we have

Vig(u,wi, i) = Y Fpg(0(w),w;) L(wj, wk, wj, wi) + b(uB, wi, wi)Tpg(u) + o(1),

wj EQ

where

L(wj, wk,wj,w) = Hyp x

(S ezt (2522) W3- ootepmigamnnm (2522)

p=1

Since

Z L(wj,wg,wj,wy) = Z L(wk, wj,wi, w;) + o(1)

w;i €N w;iEQy

H;é Zexp {z(wk — wl)/sp} w (#) +o(1),
p=1

by Parseval equality, and ijen |L(wj,wrk,wj,wr)| < 1by Schwartz inequality, Vipq(u, wi,wi)
is bounded by
Z | Fpq(0(w), ws) — Fpq(0(u), wi)| | L(w;, wk, w;s, wi)]

w;j EQ

4 000 ) B[S exp {ion — sy (2718 ) |4 uB o) T

p=1
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The first term converges to 0 by the same argument in Lemma 1, while the second and
third terms converge to 0 under Assumption 2.

Lemma 3. If Assumptions 1, 2 and 3 hold, for u € [0,1]?, a finite region D C R? and a
continuous function G(\) on D,

47®|B|™* Z tr[G(wk)I(uB, wg)] —>/Dt7"[G()\) {F(0(u), ) + C(u, \)T(u)}] dA,

wp€D
in probability under the asymptotics in Assumption 2.

Proof. The expectation of the left hand side is

4n?[BI7 Y tr[Glwi) {F(8(w), wi) + Clu,w)T(w)}] + o(1),

wr€D

and the first term converges to the right hand side by Lemma 1.
The variance is evaluated by 370 ./ /) Qpgprg’s Where Qpgprqr is

167T4|B‘72 Z Gpq(wi)Gprgr (i) [E{1gp(uB,wi) Iy (uB,wi)} — Elgp(uB, wi) Elyy (uB, wi)]

wg,w €D
= 167T4|B‘72 Z Gpa(wr) Gy g (wi)
wg,w €D
+167"4|B‘72 Z Vg (w, wi, wi) Vi gr (0, wie, wi) Gpg (Wi ) Gpr g7 (wi)
wg,w €D

+167T4|B‘_2 Z Vg (U, Wiy —wi) Vi g (1w, wie, —wi1) Gpg (Wi ) Gprgr (wi).

wg,w €D

2
|B|

meum (dq(uB, wi), dp(uB, wi), dg' (uB,wy), dp (uB, wl))

The first term is bounded as

C1|B|™ > Fup(0(u), w;) Forpr (0(u),w;) | D Gpglwr) K (wj,wr) Y Gprgr (W) K (wj,wi)

w; €N wr€eD wieD

+Ca|BI7? D Grg(wi)Grgr (wi)b(u, wi, wi),

wg,w €D

which converge to 0 by the dominated convergence theorem under Assumption 2, while
the rest terms converge to 0 by Lemma 2 and the dominated convergence theorem.

Lemma 4. If Assumptions 1, 2 and 3 hold, for wy,w; € Qb and for ui,us € [0,1]* such
that |Jui — uz| > (B 'h)? fori=1,2 and0 < p < 1,

o |B| ( 7) _
Wpq(u1, u2, wi,w;) = 47r2Hi{23H11L£23 Cov (dp(u1B,wk),dq(u2B,wi) ) = o(1),

under the asymptotics in Assumption 2.

Proof.

!

Wg(ur,ug,wi,wi) = Y Ap(ur,wy)Ag(us,w;) M(wy,wr,wi) + N(wk, wi) + o(1),
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where

M (wj, wk,wr)

(H'LL1BHUQB)_1/2 {Z exp(iszp)mw (W) }

p=1

{3 ettt (2522 ) | <o

p=1

N(w,w) = (4m)"*|B| (Hu,pHuy5)"*
x Z£u1B(Wk: $p)&us B (Wi, Sp)w (sp 7hU1B) w (sp 7hUQB) =o(1),

p=1

under the assumption |u1 — uz| > (B; 'h)? by the dominated convergence theorem. Since

Yo cq |l M(wj,wr,wi)| <1 by Schwartz inequality, we have the conclusion by the domi-
J

nated convergence theorem.

Lemma 5. If Assumptions 1, 2 and 3 hold, for a finite region D C R?, a continuous func-
tion G(u, \) on [0,1]>xD and u; be a mesh point on [0,1]* given by (ma(By 'h)?, m2(B3 'h)?)
formi,me=1,2,... and 0 < p < 1,

47®| B PR Z Z tr(G(uj, we)I(u;B,wg)]

u;j€[0,1]2 wp €D

— / / tr|G(u, \) {F(0(w),\) + C(u, \)T(u)}] dudX,
[0,112 /D
in probability under the asymptotics in Assumption 2.
Proof. The expectation of the left hand side is
47®|B|7 PR Z Z tr [G(uj, wi) {F(0(u;),wr) + C(u, \)T(u)}] + o(1),
u;€[0,1]2 wp €D
and the first term converges to the right hand side.
The variance is evaluated as Y Rygprqr and Rpgp gy is

a
p,q,p’,q'=1

167T4|B‘_2_2ph4p Z Z qu(ul,wl)Gp/q/(uQ,wz)

uy,uz€[0,1]2 wi,w2 €D

X [E {qu(ulB,wl)[q/p/ (u2B,w2)} — Efqp(ulB,wl)E[q/p/(ugB,qu)]

o BJ?
= 16YB|7*7RY > > 4|—qu(?117601)017'¢(“27¢02)
u1,uz€[0,1]2 w1, w2 €D 167% Huy 5 Hu,

X cum (dq(mB, w1),dp(u1B,w1), dg (u2 B, w2), dy (u2 B, w2)>

16| AL Z Z Wap (1, uz, w1, w2) Wy (w1, uz, wi, w2)Gpg (U1, w1)Gprgr (u2, w2)
uy,u2€[0,1]2 wi,w2 €D
+16ﬂ-4|B‘_2_2rh0h4p Z Z qu(u1,uz,w1,—w2)Wq/p/ (u17u27w17_WQ)GPCI(UMwl)Gp/q/('UAZ,wZ)-

wy,uz€[0,1]2 wi,w2E€D

The first term is bounded by
CI|B|_2_2ph4p Z Z Fop(0(u1), w;) Z Gpq(ur, w1) K (u1,wj, w1)

w; €y €[0,1]2 wi1€D
X > Fyy(0(uz),w;) Y Gy (us,ws) K (uz,wj,ws)
uz€[0,1]2 wa€D

+C:|B

Ry Y Gpg@n)Gyrg (w2)ba(un, uz, wi,w),

w1,w2€D uy,usy€(0,1]2
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which converge to 0 under Assumption 2, while the rest terms converge to 0 by Lemma
4.
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