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1. Introduction
The arithmetically aggregated compensating variations Y,CV' and arithmetically aggregated
equivalent variations ZIEVl are adopted in a wide class of policy analyses as normative measures
for evaluating the changes of social welfare according to the changes in the price vector and/or the
money (wealth) distribution on the consumers in the neoclassical market model. Although the
values of the two aggregated measures can in principle be computed only from the market data
(individual expenditure functions), the two measures are not equity-regarding in the sense that
they do not generally satisfy the (fixed-price) Pigu-Dalton principle. Namely, they are not always
increased by sufficiently small progressive monetary transfers from consumers with higher income
levels to those with lower income levels, as long as the total income is preserved and the price
vector is fixed. This disadvantage of the two aggregated measures is significant, since the equity-
regarding property of a normative measure has crucial impacts on the outcomes (policy
recommendations) of the policy analyses using the measure. For example, the progressiveness of
the optimal income tax schedule depends on the equity-regarding property of a normative measure
as studied in the literature of the optimal tax theory, including Fleurbaey and Maniquet (2006).
This paper proposes two types of equity-regarding social welfare indices which satisfy the
Pigu-Dalton transfer principle!: one is the geometrically aggregated compensating ratios [,CR!
and the other is the geometrically aggregated equivalent ratios [;ER.2 Moreover, based on the
Arrovian axiomatic approach, this paper shows that the two proposed indices have solid normative
foundations within the market model, even if the individual heterogeneity both in tastes and in
incomes is admitted, which implies that the scope of applicability of the proposed indices is

significantly wider than that of the normative evaluation based on the representative consumer,

1 Moreover, the product form of the index implies that the “right to live” is justified by the index, i.e., any
given money distribution is socially better than the money distribution in which a consumer’s money
assignment is sufficiently small.

2 The geometric aggregation like this is introduced by Diewert (1984, Section 5) to construct the democratic
price index. The compensating ratio (CR) and equivalent ratio (ER) are introduced by Allen (1949) and
Deaton (1979, Section 2) in different terms. The closely related indices are introduced by Hicks (1942,
Section 7). Blackorby and Donaldson (1987) study the cost-benefit rule based on the Malmquist-type ratio,

which is a variant of the consumer surplus ratios above.



where only the heterogeneity in incomes is admitted.3

In Arrow’s original setting, a social welfare function is defined independent of the economic
systems, and a social welfare function can evaluate possible economic systems as social alternatives
in a social contract situation; however, we assume here that the competitive market system
(including the private ownership) has been established in the society, and we define a social welfare
function in the market by a function which assigns a social ordering on the set of alternatives (pairs
of a price vector and an income distribution) to each possible profile of the market specified by not
only individual preference orderings but also the consumers’ initial holdings of money and initial
price vector. Namely, a profile describes a basic market data including an initial competitive
equilibrium before the underlying government selects a policy, and an alternative describes an ex-
post competitive equilibrium after the government selects a specific policy. By this difference of the
definitions, we hereafter use the phrase “social ordering function” instead of “social welfare
function”, and we attempt to derive the axioms which characterize the social ordering functions
determined by the proposed indices. In particular, we want to find the fundamental axioms which
imply the Pigu-Dalton transfer principle, without assuming the transfer principle as an axiom.
Specifically, not only the two indices, [,CR! and ILER], but also the well-known two arithmetically
aggregated Hicksian variations, >;,CVi and 3,EVi, are used to define the social ordering functions,
which we call CR, ER, CV and EV social ordering functions,* and after deriving the axiomatic
characterization results for the four social ordering functions we compare the four sets of axioms to
find the key axioms which lead to the transfer principle.

It is well-known that the Arrovain impossibility theorem holds even in the market model, i.e.,

there is no social ordering function which satisfies the three Arrovian axioms: Pareto, symmetry

3 As shown in Mas-Colell, et.al. (1995, Section 4.D, Examples 4.D.2 and 4.D.1), the assumption that all

consumers have the same (identical) homothetic preference orderings is needed to ensure the validity of the
normative evaluation based on the representative consumer. See also Slesnick (1998, Section 3.1, Pages
2138, 2140 and 2141) and the references.

4 The geometrically aggregated equivalent variations and arithmetically aggregated equivalent ratios are
introduced as counter examples to prove the independence of the axioms in the main theorems (Theorems 3

and 4) of this paper.



and independence axioms on the set of all possible profiles of the market.> We attempt to derive a
positive result by modifying some of the three axioms and restricting the set of profiles on which the
social ordering function is defined.

First, we modify the independence axiom in the Arrovian impossibility theorem, which we
call the Arrovian independence axiom. Generally, an independence axiom requires that, if the
structures of two profiles coincide for two pairs of alternatives, the social ordering function ought to
lead to an identical social ordering between these pairs. For the Arrovian independence axiom, the
identical structure of profiles is specified by individual preference orderings only, whereas for each
of the four types of (modified) independence axioms introduced here, the identical structure of
profiles is specified by numerical values of the corresponding consumer surplus measures: CV, EV},
CR! and ER!. Since the (fully cardinal) information in terms of consumer surplus is finer than the
(ordinal) information in terms of preference orderings, our independence axioms are weaker than
the Arrovian independence axiom, as long as the individual consumer surplus measures are true
indices of the individual welfares.®

Second, we restrict the set of all profiles, which is the domain of the social ordering functions,
by imposing an additional condition on the individual preference orderings. For the CV and EV
social ordering functions, the domain is restricted to the quasi-linear domain, where the CV and EV
social ordering functions coincide. For the CR and ER social ordering functions, the domain is
restricted to the homothetic domain, where the CR and ER social ordering functions coincide.

Under the two modifications, it is shown that each of the four social ordering functions is
characterized by the corresponding (modified) independence axiom under the two common axioms,

Pareto and symmetry axioms, on the corresponding (restricted) domain, without assuming the

5 For the Arrovian impossibility theorem in the market model, see Le Breton and Weymark (2011).
6 As shown in this paper (Lemma 5), the fully cardinal information can be completely derived by additional

(ordinal) information by the preference orderings on all triples including the reference alternative as well as
the pair of alternatives, since the values of individual consumer surplus can be computed only by individual
preference orderings on the triples. The independence axiom of the Nash social welfare function is
introduced by almost the same motivation by Kaneko and Nakamura (1979), except money is replaced with

expected utility.



numerical representability of social orderings and interpersonal utility comparisons.” Conse-
quently, the CR and ER social ordering functions comes from their respective independence axioms.
Moreover, it is also shown that the Arrovian impossibility theorem holds if the domain is enlarged
in each of the characterizations,® which clarify the scope of the applicability of the proposed indices,
IL,CR! and JLER in the economic environment. Since we do not assume any interpersonal
condition for consumers’ preferences, the scope of applicability of the proposed indices is
significantly wider than that of the standard methods evaluating the market outcomes.

In the next section, we introduce a simple economic environment with a finite number of
consumers where a social alternative is defined as a distribution of money on the consumers, and
we introduce two social ordering functions: the arithmetic mean social ordering function which
ranks money distributions by the arithmetic mean of the money distribution and the geometric
mean social ordering function which ranks money distributions by the geometric mean of the
money distribution. It is shown that the two social ordering functions are characterized by the
three axioms in Arrovian form: Pareto, symmetry and independence axioms (Theorem 1). Section 3
defines the social ordering function in the neo-classical economic environment with m consumption
goods, and introduces the four social ordering functions determined by the aggregated consumer
surplus measures. Section 4 introduces the axioms in Arrovian form to characterize the four social
ordering functions. Although some independence axioms are suitably weakened comparing with
the Arrovian independence axiom, the negative result (Theorem 2) is derived when the domain is
the full domain. Finally, the domains are restricted to derive positive characterization results,
making use of Theorem 1. In Section 5, the CV and EV social ordering functions are axiomatically
characterized on the quasi-linear domain (Theorem 3). In Section 6, the CR and ER social ordering

functions are axiomatically characterized on the homothetic domain (Theorem 4).

7 Jorgenson and Slesnick (1984) and Slivinski (1987) consider the axiomatic foundations of aggregate

consumer surplus measures, assuming the specific form of interpersonal utility comparison (cardinal full
comparability), or restricting the possible social welfare functions within the class of social welfare functions
which can be numerically represented by the (additively separable) Bergson-Samuelson social welfare
functions. A comprehensive derivations of these normative measures are given in Ebert and Welsch (2004)
and Fleurbaey and Hammond (2004, Section 6).

8 This implies that the restricted domains are the maximal domains for the characterizations to hold. The

concept of maximal domain like this is introduced by Ching and Serizawa (1998) in a different setting.



2. The arithmetic and geometric mean social ordering functions on the set of
money distributions
This section introduces social ordering functions in a simple environment with a finite number of
consumers and a consumption commodity called money, and this section axiomatically charac-
terizes the two social ordering functions.

There are n (n =2 ) number of consumers, and the set of consumers is denoted by N = {1,
2, -+, n}. There is just one type of consumption commodity called money (numéraire or composite
commodity), and i's consumption set is the set of all positive amounts of money denoted by X, = IR_l+ Y
A positive money distribution x = (x;, %5, *, %) on N is called an alternative, and the set of all
alternatives is denoted by X=R?,. Each consumer ie N initially owns an amount of money x? €
X, and i has a preference ordering on the consumption set X;. The initial distribution of money is
denoted by x° = (0, xJ,+, x%) ¢ X. We assume that i's preference ordering is a complete and
transitive binary relation on X, satisfying the monotonicity. Since there is just one type of
preference ordering on X; for each ie N, a profile of society is described by an initial distribution
of money x0 e X for simplicity, which implies that the set of profiles coincides with the set of

alternatives X. A social ordering x is a complete and transitive binary relation on X. The

symmetric and asymmetric parts of x are denoted by ~ and >, respectively. Let R be the set of

all social orderings on X.

A social ordering function W is a function W : X — R assigning a social ordering x € R to
each profile (initial money distribution) x°e X, which is a prototype for the social ordering function
in the market model introduced in the next sectioh. The symmetric and asymmetric parts of W(x?)
are denoted by W;(x%) and Wg(x%), respectively. Specifically, the arithmetic mean social ordering
function W2 is defined by

xWAODy & (X, nx)n= (X _\y)/n forany x0,x,yeX. (1)
The arithmetic mean social ordering WA(x®) simply ranks money distributions by the arithmetic
mean of them, independent of the initial money distributions x°. Since n is a fixed constant, one
can alternatively define WA by

xWARDy & 3. % 2 3\ forany x0,x,yeX. 2)



Consequently, the social indifference curves are linear parallel lines in the space of money
distributions, and then WA(x% does not satisfy the Pigu-Dalton transfer principle for all x°. The
geometric mean social ordering function W€ on X is defined by

xWexOy o (II_yx)V"2 ([I_py)V® forany x% x,ye X. 3)
The geometric mean social ordering WS(x®) simply ranks money distributions by the geometric
mean of them, independent of the initial money distributions x°. Since n is a fixed constant, one
can alternatively define WG by

xWoE%y & M nx 2Ty,

or xWéx")y =X ylogx 2% ylogy, forany x0,x,ye X 4)

Hence W€ can be regarded as one of the well-known Atkinson’s (1970) social welfare functions
parameterized by the degree of inequality aversion. For the next lemma, we need a definition: a
money distribution y is obtained from a money distribution x by a progressive transfer if there
exists a pair i,je Nand &> 0 such that xi—8=yi>yj =xj+6 and x, =y, forall ke NAi, j}=

{leN:1e{i,j}} The following lemma is well-known:

Lemma 1: For any x°, x, y € X such that y is obtained from x by a progressive transfer, it holds

that yW2 (x%x and yWS(x0x.

Lemma 1 means that Wé(x%) satisfies the Pigu-Dalton transfer principle for all x° e X, although
WA does not satisfy the principle for all x%< X.°

To characterize the two social ordering functions, let us consider the following axioms:
Pareto: For any %9, x,y € X, if x;>y; forall ie N, then xWg(x0)y.
Symmetry: xWI(xo) fox for any x% x ¢ X and any permutation 6 of N, where fox = Koy Xoc2y
vty Xy 10

The Pareto axiom is standard. The symmetry axiom requires that the two alternatives are socially

indifferent if one is derived by a permutation of the individual money allocations of the other one

9 See Dutta (2002, Section 3.1) for the Pigu-Dalton transfer principle.
10 A function f: N = N is called a permutation on N if and only if f is a one-to-one and onto function. The

symmetry axiom can not be replaced with a weaker symmetry axiom to characterize the two social ordering

functions. See Remark 1 at the end of this section.



independent of the initial money distribution. See Figure 1.

A

X2

Figure 1: XWI(XO)QOX

/ xl

The above two axioms impose the conditions on a social ordering for a given profile. The next
axiom is the independence axiom, which specifies the inter-profile consistency of a social ordering
function. Practically, an independence axiom requires that, if the (local) structures of two profiles
coincide for two pairs of money distributions, the social ordering function ought to lead to identical
social ordering between these pairs. Depending on the specification of the identical structure of
profiles, the definition of independence axiom has some variations. The first one is the following

independence axiom:
A-independence: If x! —x? =y!—y? and x2—x0=y?2—y? then x! Wx?) x%2 = y!WH%y2

The A-independence axiom requires that if the differences from the corresponding initial money
distributions coincides for two pairs of money distributions, the social ordering function ought to
lead to an identical social ordering between these pairs. Consequently, the initial money distribu-
tion is a reference point to identify the same (preference) structure for different pairs of

alternatives. See Figure 2. 4
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In order to state the next independence axiom, we need a notation: x/y = (%, ¥y %9/55, xn/yn) €

X for all x,y € X. The next independence axiom is the R-independence axiom:
R-Independence: If xVx% = yY/y? and x%x° = y%y?, then x'W(x"x? & y'W(y?)y>.

The R-independence axiom requires that if the ratios of the money distributions over the
corresponding initial money distributions coincides for two pairs of money distributions, the social

ordering function ought to lead to an identical social ordering between these pairs.!! See Figure 3.
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As a main result of this section, we have the following theorem:

Theorem 1: (A) A social ordering function W satisfies the Pareto, symmetry and A-independence

axioms if and only if W coincides with the arithmetic mean social ordering function W4, i.e.,
xWxYy © G yx)n 2 (T _\y)/n forany x%,x,ye X

(B) A social ordering function W satisfies the Pareto, symmetry and R-independence axioms if and

only if W coincides with the geometric mean social ordering function WE, ie.,

WOy o (L 52 [ yy)V" for any x0, x,y e X.12

Theorem 1(A) states that the arithmetic mean social ordering function W2 defined by (1) is
characterized by the three axioms: Pareto, symmetry and A-independence axioms, and Theorem

1(B) states that the geometric mean social ordering function W¢ defined by (3) is characterized by

11 In the price index theory, Irving Fisher introduced a closely related axiom called the commensurability
test, which requires that the index number should be invariant against the changing the units of

measurement of prices or quantities. For the Fisher’s commensurability test, see Diewert (2008).



the three axioms: Pareto, symmetry and R-independence axioms. Hence the difference of the two
social ordering functions is simply explained by the difference of the independence axioms.

The three axioms in Theorem 1(A) are mutually independent. Practically, constructing some
counter examples, we can prove that the Pareto and symmetry axioms each is independent of the
other axioms. For the independence of the Pareto axiom, define a social ordering function W' by
xWixOy o X% < X Y and for the independence of the symmetry axiom, define a social
ordering function W2 by xW2(x")y & 2x +x, + "~ +X_ 22y,;+ ¥, + ~ +y,. It holds by Theorem
1(B) that the social ordering function W€ satisfies the Pareto and symmetry axioms. However
WG does not satisfy the A-independence axiom.!? Hence the A-independence axiom is independent
of the other axioms. Similarly we can prove that the three axioms in Theorem 1(B) are mutually
independent.!?

The Arrovian independence axiom in this setting can be stated as follows:

Arrovian independence: For any x%, x,y, y%, x* and any y* € X, if 2y, xt2yf forallie

N, then xW(x%y o x*W(yy*.

The A-independence axiom is weaker than the Arrovian independence axiom, since the if-part of the
A-independence axiom is strengthened by introducing a stronger condition to identify the same
structures of the two profiles on different pairs of alternatives. Ifthere is a social ordering function
W satisfying the Pareto, symmetry and Arrovian independence axioms on X, it holds by Theorem
1(A) that W coincides with WA, Since WA does not satisfies the Arrovian independence axiom,
we have that there is no social ordering function satisfying the Pareto, symmetry and Arrovian
independence axioms on X. This means that the Arrovian impossibility theorem holds in this

setting.14

12 Setting x0=(2,2,1,,1),y%=x=(3,2,1,-, 1), x*=(2,3,1, -, 1), y*=(4,2,1,,1) and y=(3, 3, 1,
---, 1), we have that xW(;’(xo) x* and yW%(yO)y*, but x—x=y*—y0=(1,0,0,,0),and x*—x"=y—y°
= (Oy 1’ O) % 0)

13 For the independence of the Pareto axiom, define a social ordering function W2 by xW3x%y < Lnx
< Hienys -

14 Even if the symmetry axiom is replaced with the non-dictatorship axiom, the impossibility theorem can be

proved, by the standard manner as in Mas-Colell et.al. (1995, Proposition 21.C.1).

10



Remark 1: In Theorem 1, the symmetry axiom can be replaced with the two axioms: the weak
symmetry axiom (If x° satisfies xJ=x= - =x0 then xW(x"°x for any x e X and any
permutation 8 of N) and the anonymity axiom (W(x%) = W(00x% for any x%e X and any

permutation 8 of N).

3. The four types of aggregate consumer surplus measures and the correspond-
ing social ordering functions in the neo-classical market model
This section introduces the four types of aggregate consumer surplus measures in the standard neo-
classical (partial) market model with a finite number of consumers and a finite number of private
consumption goods, and defines the Arrovian social ordering functions determined by the aggregate
measures in the market model.

There are n (n = 2) number of consumers, and the set of consumers is denoted by N = {1, 2,
«-,n}. Thereare m (m >2) types of consumption goods, and the (individual) consumption set is
denoted by Y =R? for all consumers. An individual preference ordering x is a smooth, strictly

convex and strictly monotone binary relation on the consumption set Y.15 The symmetric and

asymmetric parts of x are denoted by ~ and >, respectively. Let M be the set of all preference

orderings on Y. An n-tuple X =(x,, %, , &) € M" is called an N-list of individual preference

orderings on Y.

An qlternative (p,x) is a pair of a price vector p = (p;, Py, ", Py,) and a positive money
distribution x = (%, Xy, ", %,) on N. A profile is a pair of an alternative (p° x% and an N-list of
individual preference orderings % € M*, where (p° x° describes the initial state of the market,

i.e., p° is the initial price vector and x° is the initial distribution of money.16 For a price vector p

m

++,and x is

15 More precisely, x is smooth, strictly convex and strictly monotone on Y’s interior R
continuous on Y.

16 A profile (p?, x% %) specifies not only the basic market data (x9, %) as well as the initial competitive
price vector p9 of the market before the underlying government selects a policy, and an alternative (p, x)
specifies a competitive price vector p and the consumers’ holdings of money x after a specific policy is
implemented by the government. This implies that the money distributions as well as the price vectors are

variables depending on the policies, whereas the preference orderings * are invariable, whichever policy is

selected.

11



€ P and an amount of money (budget) x > 0, the demand function of consumer ie N with the
preference ordering %, di(p, x: x.) € Y, is defined by
p-di(p, x: x)<x and di(p, x: z)x;y forall ye Y with p-y < x. 5)

Since di(p, x: z;) is homogeneous degree zero with respect to (p, x) for all ie N, we can normalize
the price vectors by p, =1 for any price vector p = (p,, Py, P,,) Without loss of generality. The
set of alternatives is denoted by P xX, where P ={(p;, p,,", p,,)€ RT,: p; =1} is the set of
normalized price vectors and X =R?, is the set of positive money distributions on N. Moreover, a
profile is denoted by f= (p° x° %), and the set of profiles is denoted by PxXx M™.

For any ie Nand any p°ec P, a pair (0, x,) eR, X9 is called an admissible characteristics
of consumer i under p° if and only if di(p°, x: %) is a regular solution of (5), i.e., d'(p°, ¥ x,) >
e’ where e%=(0,-,0). Let C(p% ={ (0, x)e R x o :d(p% x x) > e’} be the set of
admissible characteristics of consumer i under p% It holds by the definition that

C,(p%) =Cy(p» == C_(p° forall p’c P. (6)
Setting P*={pe P: C,(p) #¢ for some ie N}, the set of admissible profiles F is defined by

F={(p"x°, %) e PxXxM": (x),5),_y € C,YxCy(pHx = xC (p%)}. ¢
It holds by (6) and (7) that the set of admissible profiles F is determined by the Cartesian product

17

of the symmetric sets of the admissible individual characteristics. Since the consumer i’s

preference ordering x, of the profile f= (p°, x°, %) completely determines the consumer #’s demand

function for all i e N, we hereafter use the notation di(p, x: f) instead of di(p, x: ;).

For any profile f=(p° x°, %) e F, any price vector p € P and any consumption vector y ¢ Y,

the consumer i’s expenditure function, ui(p, y: ), is defined by

u(p,y:) = min pz. (8)
ze{weY: wx;y}

For a given profile f= (p° x% %) e F, the consumer i's compensating variation (CV) of an
alternative (p, x) e PxX is defined by

CVi(p, x: ) = Wi(p, di(p, x;: ): H) — Wi(p, d(p® xI: O): f) = x' — pi(p, d'p’, x3: O): ), 9)

17 In Arrow’s original setting, this condition is introduced as an axiom for the social welfare functions called

the unrestricted preference domain. See Le Breton and Weymark (2011, Part I, Section 1) for the axiom.

12



and the equivalent variation (EV) of (p, x) is defined by
EVi(p, x: f) = pi(p®, di(p, x;: D: H —pi(p°, di(p® x: H: H = pi(p®, dip, x: : H-x0.  (10)
The two measures above are well-known. Based on Allen (1949, page 199) and Deaton (1979,
Section 2), we introduce the following two measures: the consumer i's compensating ratio (CR) of
an alternative (p, X) e PxX is defined by
CRi(p, x: ) = Wi(p, di(p, x;: f): H) / pi(p, di(p®, x%: f): H) =x / pi(p, di(p®, x%: H: f: (11)
and the equivalent ratio (ER) of (p, x) is defined by
ERi(p, x: f) = pi(p®, di(p, x;: ): ) / pi(p®, di(p®, x0: N): ) = pi(p°, di(p, x;: H: H/xJ. (12)
Namely, the value of CRi(p, x: f) defined as a ratio of expenditure functions evaluated at di(p®, x{:
f) and di(p, x;: f) under a common reference price vector p, and the value of ERi(p, x: f) defined
as the same ratio under a common reference price vector pP.
For a given profile f = (p° x° %) e F, an alternative (p, x) e PxX is called admissible iff
the following regularity conditions hold:
(1) For each ie N, there exists some z >0 such that
di(p®, x9: f) ~, di(p, z;: ) and di(p, y: f) > e? for all y e [min(x,, z,), max(x;,z,)]:
(ii) For each ie N, there exists some z >0 such that
di(p, x;: D) ~, di(p®, z: ) and di(p®, y: ) > e° forall y € [min(x?,z), max(x?,z)].
Let A(f) be the set of admissible alternatives of fe F. Then we have the following well-known
lemma:
Lemma 2: For any f=(p% x°% =)< F and any ie N, the following assertions hold:
@  dip®, x%: ) ~, dip, x,— CVi(p, x: N): ) > e for all (p, %) cA(D).
G dip, x: D ~, di(p’, x¥+ EVi(p, x: £): ) > &° for all (p, x) e A(f).
(iii) The (indirect) preference ordering of %, on A(f) is represented by EVi(p, x: ), i.e.,
di(p, x;: ) x, di(q, y;: ) & EVi(p,x: )2 EVi(q, y: ) for all (p, %), (q,y) cAlf).
(v) dip®, x%: ) ~ di(p, x,/CRi(p, x: ©): ) > ° for all (p, x) cA(f).
(v) di(p, x;: D~ di(p® xXERYp, x: ): f) > e for all (p, x) cA(f).
(vi) The (indirect) preference ordering of %, on A(f) is represented by ERi(p, x: ), i.e.,

di(p, x;: ) %, di(q, y;: § & ERXp, x: ) 2ER¥(q, y: f) for all (p, %), (q,y)cAd.

It holds by Lemma 2(iii,vi) that EVi(p, x: f) and ERi(p, x: f) are specific forms of indirect utility

13



functions of % on A(f). The other two measures CVi(p, x: f) and CRi(p, x: f) do not have the
property as shown by Example 1 in Appendix C.

A social ordering function W is a function defined on F which assigns a complete and
transitive binary relation on A(f) for each fe F. The symmetric and asymmetric parts of W()
are denoted by Wi(f) and Wg(f), respectively. Specifically, the social ordering function determined
by the arithmetically aggregated compensating variations, WCV is defined by

@, 0 WV (q,y) & % CVip,x: D) 2 3, (CVi(q,y: ) (13)
for all fe F and all (p, x), (q,y) € A(). The social ordering function WCV is simply called the CV
social ordering function hereafter. Replacing CVi with EVi in the definition of WCV, the EV
social ordering function, WEV is defined by

@, WD (q,y) & I BV, x 23 (EViq,y: (4
for all fe F and all (p, x), (q,y) ¢ A().

Based on Diewert’s (1984, Section 5, Equation (25)) multiplicative democratic index, the
social ordering function determined by the geometrically aggregated compensating ratios, WCR is
defined by

(P, x) WD (q,y) & IL_yCR(p,x: ) 2 II_CRiq, y: D (15)
for all fe F and all (p, x), (q, y) € A(f). The social ordering function WCE ig called the CR social
ordering function. Replacing CR! with ER! in the definition of WCR, the ER social ordering
function, WER s defined by

(P, x) WER(f) (q,y) & I_\ERi(p,x: ) > [I_yER(q, y: f) (16)
forall fe F and all (p, x), (q,y) € A(f).

In order to clarify the relationships between the four social ordering functions defined above
and the other normative evaluation methods in this literature, we introduce some equivalent
indices each determines one of the social ordering functions above. It holds by (9) and (13) that

(P, x) WCV(f) (q, y)

& Loy ¥ — Ty M, A% X} 0:0) 2 B ey - B y1ilg, dip®, x3: £: ) amn
forall fe F and all (p, x), (q, y) € A(f), which implies that an equivalent index of X, CV! is
given by [arithmetically aggregated incomes] — [arithmetically aggregated (subsistence) cost-of-
living]l. Hence WCV(f) does not satisfy the Pigu-Dalton transfer principle under fixed price vectors.

It holds by (11) and (15) that
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(p, x) WCE() (q, y)

& Y ylog x' — X _ylog pi(p, dip®, x%: D: ) > X, _Jogy'— %, log ui(q, d¥(p®, x}: ): ) (18)
forall fe F and all (p, x), (q,y) € A(f), which implies that an equivalent index of [L,.yCR! is
given by [arithmetically aggregated logarithms of incomes] — [arithmetically aggregated loga-
rithms of (subsistence) cost-of-living]. Since the former part of this is the Atkinson index, the index
can be interpreted as the price-adjusted Atkinson index. Then we have the following proposition as

a direct consequence of (17), (18) and Lemma 1:

Proposition 1: For all fe F and all (p, x), (q,y) € A(f) such that y is obtained from x bya

progressive transfer and p = q, it holds that (q,y) W?V(f) (p,x) and (q,y) WgR o) (p, x).

Proposition 1 means that the social ordering WCE(f) satisfies the Pigu-Dalton transfer principle
under fixed price vectors for all fe F, although the social ordering WEV(f) does not satisfy the
principle for all fe F. Incase of WEV and WER, as shown in Example 2 in Appendix C, we can
show that there exists a profile of market f* ¢ F such that the two social orderings WEV(f¥) and
WER(f*) do not satisfy the Pigu-Dalton transfer principle for some alternatives and WEV(f¥) and

WEE(f¥) satisfy the principle for some of the other alternatives.

4. Axioms for the social ordering functions in the neo-classical market model

This section attempts to extend the characterization theorem of the two social ordering functions in
the simple environment of money distributions presented in Section 2 to the neo-classical market
model introduced in the previous section. First, we provide some axioms in Arrovian form for the
four social ordering functions in the market model, based on the three axioms in the simple
environment. Concretely, the common Pareto and symmetry axioms are provided for all of the four
social ordering functions, and a specific type of independence axiom is provided for each of the social
ordering functions. Second, we check whether the social ordering functions can be characterized by
the axioms.

Let us introduce the axioms. The Pareto axiom in the market model can be stated as:

Pareto: For any profile f=(p° x°, %) ¢ F and any two alternatives (p, x), (q, y) cA(f),

d(p, x: ) > di(q,y;: D forall ie N = (p,x) WD (q, V).
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The Pareto axiom above is standard. We have the following lemma proved in Appendix A:

Lemma 3: (A) The social ordering functions WEV and WER gsatisfy the Pareto axiom. (B) The

social ordering functions WCV and WCR do not satisfy the Pareto axiom.

The next axiom is the symmetry axiom. Even though the consumers generally have different
preferences (tastes) and initial money incomes in the neo-classical market model, we require the
symmetry (anonymity) among the consumers in the space of the (ex post) money distributions as
long as the price vector is fixed, partly since each consumer i can freely dispose i’s own money

income based on i’s own preferences in the market.

Symmetry: (p, x) W,(f) (p, 60x) for any profile fe F, any alternative (p, x) € A(f) and any permu-

tation 8 of N such that 0ox=x and (p, 0ox) e A(f), where 6ox = (xe(l), Xoy Xe(n))-

This axiom means the symmetry of social indifference surfaces in the space of money distributions

under the fixed price vector. We have the following lemma proved in Appendix A:

Lemma 4: (A) The social ordering function WCV and WCR gatisfy the symmetry axiom. (B) The

social ordering functions WEV and WER do not satisfy the symmetry axiom.

The last axiom is the independence axiom. In the neo-classical market model, the
independence axiom has some variations dependent on the specification of the identical structure of

the profiles. We consider the following four independence axioms:

CV-independence: For any profiles f= (p° x°, ) and f* = (¢, y° %*) in F,let (p!, x!) and
(p?,x%) be alternatives in A(f), and let (q?, y!) and (g2, y?) be alternatives in A(f*). Suppose that
dipt, x1+8;: ) z, dipY, x: ) & di(ql, y1+5;: ) x7 di(g’, y?: )
holds for all ie N and all & > ~ min(x!, y}), and suppose that
di(p?, x2+5.: f) x, di(p®, x*: ) & di(g?, y? +8i:’f*) x; di(qC y¥: )
holds for all ie N and all & > —min(x?, y?). Then it holds that

(P, xH) W) (p? x2) < (ql, yH) W) (g2, y?).

EV-independence: For any profiles f=(p% x° %) and f*=(q°%y% &*) in F,let (p!, x!) and

(p?, x2) be alternatives in A(f), and let (q!, y!) and (g2, y2) be alternatives in A(f*). Suppose that
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di(pt, xi: D) =, dipl, x%+5,;: H & di(gl, y1: )z} di(q’, y?+8; f*) and
di(p?, x2: ) x, di(p?, x0+5,: ) & di(q? y2: ) x] di(qC, yP+5,;: 1)
hold for all ie N and all § > - min(x?, y?). Then it holds that

(p!, xH) WD (p? x?) o (ql, y) WE*) (42, y2).

CR-independence: For any profiles f=(p% x°% %) and f* = (¢’ y° =*) in F,let (p!,x!) and
(p2?, x2) be alternatives in A(f), and let (g, y1) and (g2, y? be alternatives in A(f*). If

digp?, 8:x: O, dip, x2: ) & di(ql, &y} )z d(qC, y?: ) and

di(p?, Si-x2i 1D %, di(p?, x?: f) o dig? 8i-y%: %) Z’; di(q®, y?: )
hold for all ie N and all §> 0, then it holds that

(ph, xH) WD (p?, x2) o (g}, yH) W(F*) (2, y?).

ER-independence: For any profiles f=(p° x% %) and f* =(q°% y°% =* in F,let (p!, x}) and
(p?, x2) be alternatives in A(f), and let (ql, y!) and (g2, y2) be alternatives in A(f*). If
ditpl, x1: O %, di(p?, 5:x0: O & diql, y1: ) %] diq® 8,30 :f*) and

dip?, x2: ) %, (%, §:x): ) & di@? y2: ) x; di(d, 8371 £

[t S O

hold for all ie N and all §;> 0, then it holds that

(@ xH) W (p?, x?) & (gt yH) W) (a?, y2).
We have the following lemma:

Lemma 5: For any profiles f=(p°, x° %) and f*=(¢, y°, =*) in F,let (p', x1) and (q!,y") be
alternative in A(f) and A(f*), respectively. For any i e N, the following assertions hold:

(A) dip?, x} +8: Nz, di(p?, x%: ) & diq, y1+5; %) z} di(q®, y?: ) holds for all §, >~ min(x},y}) if
and only if CVi(p?!, x1: f) = CVi(q!, y1: ).

(B) dip!, xk O =z, d(p°, x0+5;: ) & di(q!, yk ) x7 di(q’, y2+8;: %) holds for all §,>—min(x), y?) if
and only if EVi(p!, x1: f) = EVi(q}, y: *).

(C) dipl, §:%%: ) x, dip®, x% ) & di(ql, §;y% £) x7 di(q®, y?: ) holds for all §,>0 if and only if
CRi(p!, x!: f) = CRi(¢q?, yi: f¥).

D) dpl, xk: D =, dip?, 5.x: ) & dig?, y: /) x| di(q°, &y%: ) holds for all ;>0 if and only if
ERi(pl, x1: f) = ERi(q?, yt: f*).
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Lemma 5 is proved in Appendix A. It follows from Lemma 5 that the if-part of each independence
axiom specifies the identical structure of the two profiles on the pairs of alternatives by means of
the values of the corresponding individual consumer surplus measure. For example, the CV-

independence axiom is equivalent to the following axiom:

CV-independence*: For any profiles f and f* in F,let (pl,x!) and (p? x2) be alternatives in
A(D), and let (q',y!) and (q2, y2) be alternatives in A(f¥). If CVi(pl, x!: f) = CVi(g!, y1: f*) and
CVi(p?, x%: f) = CVi(gZ, y% f¥) for all ie N, then (p?, x!) W(f) (p?, x?) & (g1, y1) W(E*) (¢, y2).

Similarly, one can state the other independence axioms: EV-independence, CR-independence and
ER-independence axioms in terms of individual EVi, CRi and ER! values, respectively. Hence, it
follows from the definition of consumer surplus measures, the CV-independence and EV-
independence axioms are variants of the A-independence axiom, and the CR-independence and ER-
independence axioms are variants of the R-independence axiom. Moreover, as a direct consequence

of Lemma 5, we have the following lemma:

Lemma 6: The social ordering functions, WCV, WEV, WCR and WER gatisfy the CV-independence,

EV-independence, CR-independence and ER-independence axioms on F, respectively.

It follows from Lemmas 3, 4 and 6 that each of the four social ordering functions does not satisfy
one of the three axioms provided for the social ordering function. As a main result of this section,
we show a stronger assertion that there is no social ordering function satisfying the three axioms in

the neo-classical market model, whichever independence axiom is selected:

Theorem 2: (A) There is no social ordering function satisfying the Pareto, symmetry and CV-
independence axioms on F. (B) There is no social ordering function satisfying the Pareto,
symmetry and EV-independence axioms on F. (C) There is no social ordering function satisfying
the Pareto, symmetry and CR-independence axioms on F. (D) There is no social ordering function

satisfying the Pareto, symmetry and ER-independence axioms on F.
The Arrovian independence axiom in this setting can be defined as:

Arrovian independence: For any profiles f=(p? x% %) and f*=(q° y° =% in F,let (p!, x!)

and (p?, x2) be alternatives in A(f), and let (ql, y1) and (g2, y2) be alternatives in A(f*). If
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dicp!, x1: ) x, di(p?, x%: ) & d{q’,y}: %) z; di(g?, y2: %)

holds for all i e N, then it holds that (p!, x) W() (p2, x2) & (g}, y1) W(f®) (g2, y2).

Since it holds by Lemma 5(B) and Lemma 2(iii) that the if-part of the Arrovian independence axiom
is weaker than the if-part of the EV independence axiom, the Arrovian independence axiom is
stronger than the EV-independence axiom. Hence, it holds by Theorem 2(B) that there is no social
ordering function satisfying the Pareto, symmetry and Arrovian independence axioms on F, which

means that the Arrovian impossibility theorem holds in the market model.

5. Characterization of the two social ordering functions, WCV and WEV

This section derives the positive characterization results of the two social ordering functions WCV
and WEV, by restricting the domains of social ordering functions. Even in case of the domains
smaller than the full domain F, the domains are required to satisfy the symmetry property as the
condition (6) for the full domain F,i.e., a subset of F* of F is called an admissible domain if and
only if there exists a subset C% (p% of Ci(po) forall ie N and all pc P*={pe P: C(p) #¢ for
some ie N} such that:

(1) C%EH=CYEY =" =C%(pY forall p’c P*,

Gi) F*={ (p%x’%)eF: (&), %) _,eC} (PO xC:(phHx - xC* P9
In particular, we consider the quasi-linear domain in which all individual preference

orderings are quasi-linear. Formally, a profile fe F is quasi-linear if and onlyif forall ie N
and all (p, x), (q, y) cA{)
di(p, x: ) ~, di(q, y: H = di(p, x;: D) +&el ~ di(q, y;: ) +5-e! forall §>0.

Let FL be the set of quasi-linear profiles. The set FL has the following properties:

Lemma 7: (A) FL is an admissible domain. (B) For any f= (p° x° %)e F, the following
statements are mutually equivalent:

(i) fe FL

(i) dip, x;+8: ) =di(p, x;: ) + Fe! forall ie N, all (p,x) e A(f) and all > 0.

(iii) CVip,x:f)=EVip,x:f) forall ie N and all (p, x) e A(D).

(iv) The indirect preference ordering of x; on A(Q is represented by CVi(p, x: f) for all i e N,

ie., di(p, x: Dx, di(q, y: H < CVi(p, x:f)2CVi(q, y: ) for all (p, x),(q,y) cAW.
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(C) Let F* be an admissible domain such that FLc F* and F* # FL. There exists a profile ge
F* on which WCV does not satisfy the Pareto axiom, and there exists a profile h € F* on which

WEV does not satisfy the symmetry axiom. (D) For any profiles f=(p° x° %), g=(¢, y° =% e

FL,if % = x* then WCV(H) = WCV(g) on A N A(g).

Lemma 7 is proved in Appendix A. It follows from Lemma 7(A) that FL is determined by the
Cartesian product of the symmetric sets of individual characteristics satisfying the quasi-linear
condition. Lemma 7B(i & ii) means that our quasi-linearity condition is equivalent to the standard
definition of the quasi-linearity in terms of preference orderings on the consumption set, i.e., the
parallelness of indifference surfaces, and Lemma 7B(i < iii) means that the WV social ordering
function coincides with the WEV social ordering function on FL. Consequently, the following

proposition holds by Proposition 1:

Proposition 2: For all fe F* and all (p, x), (q, y) € A(f) such that y is obtained from x by a
progressive transfer and p = q, it holds that (p, y) WFV(f) (q, x).

Proposition 2 means that the social ordering WEV(f) does not satisfy the Pigu-Dalton transfer
principle under fixed price vectors for all quasi-linear profiles fe FL. Moreover, it holds by Lemma
7B( ¢ iii) that the CV-independence axiom is weaker than the Arrovian independence axiom on
FL. It holds by Lemma 7(B,D) that the two social orderings WCV(f) and WEV() are independent

of the selections of the initial states (p° x° on the quasi-linear profiles f = (p° x°, %) ¢ FL.

The Lemmas 3(A), 4(A), 6 and 7TB(i & iii) together imply that the two social ordering
functions, WCV and WEV satisfy the Pareto, symmetry, CV-independence and EV-independence
axioms on FL. The next theorem implies that there is no other social ordering function satisfying

the axioms on the domain:

Theorem 3: (A) The following four statements for a social ordering function W defined on the
quasi-linear domain FL are mutually equivalent:

(1) W satisfies the Pareto, symmetry and CV-independence axioms,

(ii) W satisfies the Pareto, symmetry, and EV-independence axioms,

(iii) W coincides with WCV, i.e.,

P, xWhH(qy) o X CVip,x:H23, (CVi(q,y: D for all fe FLand all (p, ), (q,y) € Alf),
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(iv) W coincides with WEV, ie.,

@D WD (q,y) & % EVip, x: D23, _EVig,y: ) forallfe F' and all (p, %), (q, y) € A®).
(B) The quasi-linear domain FL is the maximal admissible domain for the equivalence of the
statements (i) and (iii) in Theorem 3(A) (i.e., if the equivalence holds on an admissible domain F*
such that Flc F*, then F* = FL) and for the equivalence of the statements (ii) and (iv) in Theorem
3(A). (C) There is no social ordering function satisfying the Pareto, symmetry and Arrovian

independence axioms on FL.

Theorem 3(A) clarifies the underlying principles characterizing the two aggregate consumer surplus
measures, X, \CVi and ZieNEV1 as the social welfare indices, and tell us that the measures have
solid normative foundations in the neoclassical market model, even when both the price vector and
the money distribution are variable. Theorem 3(B) implies that it is necessary to restrict the
domain to the quasi-linear one for each of the characterization results of Theorem 3(A) to hold, and
Theorem 3(C) implies that it is necessary to weaken the independence axiom for the
characterization result of Theorem 3(A) to hold. Hence the Theorem 3(B, C) together imply that
both of the two modifications: one is restriction of the domain and the other is weakening the
independence axiom are necessary to escape from the Arrovian impossibility.

The three axioms in the assertion (i) of Theorem 3(A) are mutually independent on FL, and
the three axioms in the assertion (ii) of Theorem 3(A) are mutually independent on FL. Since it
holds by Lemma 7(B) and Lemma 5(A, B) that a social ordering function W satisfies the CV-
independence axiom on FL if and only if W satisfies the EV-independence axiom on FL, it suffices
to prove that the three axioms in the assertion (ii) are mutually independent, which can be proved
by constructing the counter examples as for the independence of the axioms in Theorem 1(A).
Concretely, define the three social ordering functions, H1, H2 and H3 on FL by

(P, x)HYD (q,y) & X \EVip,x:f) < 5, _EViq,y: D,

(p,x) H2(D) (q,y) & II_\EVip,x:D) 2 II_EViq,y: ),

(P, x) HX(f) (q, y)  if x0= XJQ and x;=x; forall i,je N

P, xH®D(q,y) & {
(p, x) WEV(f) (q,y) otherwise

for all f=(p°% x°% x)e F- and all (p,x), (q,y)€A®. It holds that H? satisfies the Pareto and

symmetry axioms on FL, but H3 does not satisfy the EV-independence axiom on FL, which implies
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that the EV-independence axiom is independent of the other axioms. Similarly, we can prove the

independence of the Pareto and symmetry axioms, making use of H! and H2, respectively.

6. Characterization of the two social ordering functions, WCR and WER
This section derives the positive characterization results of the two social ordering functions, WCR
and WER, by restricting the domain to the homothetic domain in which all individual preference
orderings are homothetic. Formally, a profile fe F is homothetic if and only if for all ie N and
all (p, x), (q, y) eA(f)

di(p, x: ) ~, di(q, y; D) = 8-di(p,x;: ) ~ 8 di(q, y: D forall §>0.

Let FH be the set of homothetic profiles.18 The set FH has the following properties:

Lemma 8: (A) FH is an admissible domain. (B) For any f= (p° x° %)e F, the following
statements are mutually equivalent:

(i) feFH

(i) dip, dx:H=25d(p,x: forall ie N,all (p,x)e Af) and all §>0.

(iii) CRYp, x:f) = ERi(p,x:f) forall ie N and all (p, x) ¢ A(f).

(iv) The indirect preference ordering of x, on A(f) is represented by CRi(p,x: f) forall ie N,
ie., dip, x;: D x; di(q, b e CRi(p, x: f) > CR¥q, y: f) for all (p, x), (q,y) cA).

(C) Let F* be an admissible domain such that FEc F* and F* % FH. There exists a profile ge
F* on which WCR does not satisfy the Pareto axiom, and there exists a profile h e F* on which
WER does not satisfy the symmetry axiom. (D) For any profiles f= (p% x°, %), g=(q% y% =*) e

FH if % = x* then A(f)=A(g) and WCE() = WCE(g) on A(f).

Lemma 8 is proved in Appendix A. It follows from Lemma 8(A) that FH is determined by the

18 The homothetic domain is needed for normative evaluation methods in the different approaches: the
representative consumer theory as in Mas-Colell, et.al. (1995, Section 4) and Blackorby and Donaldson’s
(1987) cost-benefit rule. However, they show that some additional conditions are needed. In case of the
representative consumer theory, Mas-Colell, et.al. (1995, Exercise 3.G.12, Examples 4.D.2 and 4.D.1)
introduce the condition that all the consumers have the same homothetic preferences. In case of the cost-
benefit rule, Blackorby and Donaldson (1987, Theorem 6) introduce an additional interpersonal condition

called the fully homothetic condition. See also Slesnick (1998, Section 3.1) and the references.
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Cartesian product of the symmetric sets of individual characteristics satisfying the homotheticity
condition., Lemma 8B(i & ii) means that our homotheticity condition is equivalent to the standard
definition of the homotheticity in terms of preference orderings on the consumption set, and Lemma
8B(i < iii) means that the WCE social ordering function coincides with the WER social ordering

function on FH, Consequently, we have by Proposition 1 that the following proposition holds:

Proposition 3: For all fe FE and all (p, x), (q,y) € A(f) such that y is obtained from x by a

progressive transfer and p = q, it holds that (q,y) WER @ (p, x).

Proposition 3 means that WER(f) satisfies the Pigu-Dalton transfer principle under fixed price
vectors for all homothetic profiles fe FH. Moreover, it holds by Lemma 8B(i « iii) that the CR-
independence axiom is weaker than the Arrovian independence axiom. It holds by Lemma 7(B,D))
that the two social orderings WCE(f) and WER(f) are independent of the selections of the initial
states (p° x% on the homothetic profiles f = (p° x°, %) € Fl. In case of the Cobb-Douglas type
utility functions, which is a typical case of homothetic preferences, the two social ordering functions
is determined by the simple indices. For example, set the Cobb-Douglas type utility function Ui
by Udz,, 2y, 2, ) = 249 28D o - 2% for all ie N, where oy (i) is consumer i’s budget share of
k-good, i.e., oy (i) >0 for all k and 3,0, (i) =1. Letting r and z be any two vectors in P and X,
respectively, define a profile f by f= (r, z, %), where X e M" is defined by x x.y & Ui(x) 2 Ul(y)
for all ie N. The it holds that
@, x) WD (q,y) & (p,x) WER(D) (q, )
PN HieN }ﬁ/[ pvitl(i) 'pgz(i) ceees ptlxdn(i) Tl r‘fl(i) . rgzz(i) cone s rz{n(i)]
> HieN yi/[ q‘fz(i) . qu(i) RSN qaﬂ(i) 1 Iozll(i) . I'%z(i) cees s I“mn(i)]
P HieN Xi/ (it](i). pgz(i). v pf:{n(i) > HieNyi/cﬁl(i)' q3126). . qg{“(i)
o X ylogx -Xologp, 2 X (logy, ~ X0y log q for all (p, %), (q, y) € A(),

where o is the number defined by o, = X, oy (i) for all k.19

19 Since the number oy is derived by directly aggregating the individual budget share of the k-th good, o

is generally different from the aggregate budget share of the k-th good in the literature of consumer demand
analysis, which is defined by the budget share of the k-th good of the aggregate demand. See Blundell and
Stoker (2007, Section 2.1.1) for the aggregate budget share.
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The Lemmas 3(A), 4(A), 6 and 8B(i & iii) together imply that the two social ordering
functions, WCR and WER gatisfy the Pareto, symmetry, CR-independence and ER-independence
axioms on FH. The next theorem implies that there is no other social ordering function satisfying

the axioms on the domain:

Theorem 4: (A) The following four statements for a social ordering function W defined on the
homothetic domain FH are mutually equivalent:
(i) W satisfies the Pareto, symmetry and CR-independence axioms,
(ii) W satisfies the Pareto, symmetry and ER-independence axioms,
(iii) W coincides with WCE, i.e.,

(P, x) W) (q,y) & IL_nCRU(p, x:H2T]_\CRU(q,y:f) forallfe FH and all (p, x), (q, y) € AW,
(iv) W coincides with WER ije.,

@, ¥ WO (q,y) o II_\ER(p, x: D 21, yERq, y: ) for all f e F¥ and all (p, x), (g, y) € A(f).
(B) The homothetic domain FE is the maximal admissible domain for the equivalence of the
statements (i) and (iii) in Theorem 4(A) and for the equivalence of the statements (ii) and (iv) in
Theorem 4(A). (C) There is no social ordering function satisfying the Pareto, symmetry and

Arrovian independence axioms on FH,

Theorem 4(A) clarifies the underlying principles characterizing the two aggregate consumer surplus
measures, [L,nCR! and [I;.NER' as the social welfare indices, and tell us that the measures have
solid normative foundations in the neoclassical environment. Theorem 4(B) implies that it is
necessary to restrict the domain into the homothetic one for each of the characterization results of
Theorem 4(A) to hold, and Theorem 4(C) implies that it is necessary to weaken the independence
axiom for the characterization result of Theorem 4(A) to hold. Hence the Theorem 4(B, C) together
imply that both of the two modifications: one is restriction of the domain and the other is weakening
the independence axiom are necessary to escape from the Arrovian impossibility. Moreover, it
holds by Propositions 1 and 4 that [I,CR' and [L,ER! are equity-regarding social welfare indices on
the homothetic domain, but it holds by Propositions 1 and 3 that >;,CVi and X;EV! are not equity-
regarding on the quasi-linear domain. Comparing Theorems 3(A) and 4(A), it can be concluded
that the equity-regarding property comes from the CR-independence and ER-independence axioms.

The three axioms in the assertion (i) of Theorem 4(A) are mutually independent on FH and
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the three axioms in the assertion (ii) of Theorem 4(A) are mutually independent on FH, which can
be proved by constructing the counter examples as for the independence of the axioms in Theorem

3(A). Concretely, define the three social ordering functions, L!, L2 and L3 on FH by
(p, X) Ll(f) (q, y) < HieNER'i(p7 X f) < HiE NERl(qr Y3 f) ’
P, x) L% (qy) o I _ER@, x:D > I _ER(q,y:D,

®,x)L%D(q,y) if 0= xJ9 and x;=%; forall i,je N

P, x LDy o {
P Ly (p, x) WER(f) (q,y) otherwise
for all f=(p° x% %)e FH and all (p, x), (q,y) cA(f). It holds that L3 satisfies the Pareto and

symmetry axioms on FH but L3 does not satisfy the ER-independence axiom on FH, which implies
that the ER-independence axiom is independent of the other axioms. Similarly, we can prove the

independence of the Pareto and symmetry axioms, making use of L! and L2, respectively.

7. Proof of Theorems
This section proves Theorems 1, 3, 4 and 2 in this order. We need some concepts to prove Theorem
1. Let Log: X —»X and Exp:R"— X be the vector-valued functions defined by

Log(x) = (logx,, logxy, - , logx,) and Exp(x) = (&%, €%, , %) for all x = (xy, X5, , X)) € R?,
and denote

x*y = (XY, Xy Ygr > Xy ¥p) € X forall x =(x, Xp, =, %), ¥ = (¥, ¥pp V) € X

Proof of Theorem 1: First, we prove Theorem 1(B). (B) We can easily show that WG satisfies
the Pareto, symmetry and R-independence axioms. Conversely, suppose that a social ordering

function W satisfies the three axioms. We need the following lemma:

Lemma 9: (i) aW(w)b < (a*c)W(w+c) (bxe) for all w,a,b, ce X. (@ii) For any ordered pair a,

b € R®, it holds that Exp(a)W(e)Exp(b) < ZieN a2 Eieri ,where e =(1,1, ..., 1).

For given x0,x,y e X, define a and b in R® by a = Log(x/x% and b = Log(y/x%), where x/x0 is
defined in Section 2. We have by (4) and Lemma 9(ii, i) that
WOy & Ik 2oy © ok Mo 2 Tieny; M
e X logx/xD 2T, Nogy/x)) o X ya, 23 (b o x/x"Wie) y/x°

& ®/x%x% We+x0) (yxyx0 o xW(xOy,
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which implies that W coincides with WG. (A) We can easily show that WA satisfies the Pareto,
symmetry and A-independence axioms. Conversely, suppose that a social ordering function W on
X satisfies the three axioms. Define an extended social ordering function W* of W on R» by

WDy o (x+w) W%w) (y+w) for any x, x, y € R™
where w= w-e and w= max[max,\Ixl, max,_lyl, maxieNIx?I 1+ 1. We can prove easily
that W* satisfies the following conditions:

WOy o xWHx%y forany x0, x,ye X; (19)

W#* satisfies the Pareto, symmetry and A-independence axioms on R™ (20)
Define a social ordering function T on X by

xTx%y o Log(x) W*(Log(x%)) Log(y) forany x% x,ye X. (21)
Then it holds by (20) that T satisfies the Pareto, symmetry and R-independence axioms on X.
Thus it holds by Theorem 1(B) that T coincides with WG on X, and then it holds by (21) and (4)
that

xWHx%y < Exp(x) T(Exp(x?) Exp(y) Il 5 2 I e

&Y %22y forany x0x,yeX

Thus we have by (19) and (2) that xWx"y & xW*xOy & X _x 2 %_y¥; © xWAxOy for any x,

x, y € X, which implies that W coincides with WA, O

Proof of Theorem 3: (A) It holds by Lemma 7B(@i © iii) that
WCV=WEV on FL, (22)

which implies that the statements (iii) and (iv) are equivalent. Moreover, it holds by Lemma 7B(i
& iii) and Lemma 5(A, B) that W satisfies the CV-independence axiom on FL iff W satisfies the
EV-independence axiom on FL, which implies that the statements (i) and (ii) are equivalent. There
remains to show that the statements (i) and (iii) are equivalent. Suppose that the statement (iii)
holds. It holds by Lemma 4(A) and Lemma 6 that WCV satisfies the symmetry and CV-
independence axioms, and it holds by (22) and Lemma 3(A) that WCV satisfies the Pareto axiom oﬁ
FL, which implies that the statement (i) holds. Conversely, suppose that the statement (i) holds.

We need a lemma:

Lemma 10: If a social ordering function W satisfies the Pareto, symmetry and CV-independence

axioms on FL, then W coincides with WCV on FL,
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This lemma implies that the statement (iii) holds. (B) Suppose that the equivalence of (i) and (iii)
in Theorem 3(A) holds on some admissible domain F* such that FYc F* and that F“# F* It
holds by Lemma 7(C) that exists some g e F* on which WCV does not satisfy the Pareto axiom,
which contradicts the supposition. Similarly, we can prove the maximality of FL for the
characterization of WEV. (C) Suppose that there is a social ordering function W satisfying the
Pareto, symmetry and Arrovian independence axioms on FL. Since it holds by Lemma 5(B) and
Lemma 2(iii) that the Arrovian independence axiom is stronger than EV-independence axiom, it
holds by Theorem 3(B) that W = WEV, This is a contradiction, since WEV does not satisfy the

Arrovian independence axiom on FL. O

Proof of Theorem 4: (A) It holds by Lemma 8B(i & iii) that
WCR = WER on FH (23)

which implies that the statements (iii) and (iv) are equivalent. Moreover, it holds by Lemma 8B(i
& iii) and Lemma 5(C, D) that W satisfies the CR-independence axiom on FH iff W satisfies the
ER-independence axiom on FH, which implies that the statements (i) and (ii) are equivalent.
There remains to show that the statements (i) and (iii) are equivalent. Suppose that the statement
(iii) holds. It holds by Lemma 4(A) and Lemma 6 that WCR gatisfies the symmetry and CR-
independence axioms, and it holds by (23) and Lemma 3(A) that WCR satisfies the Pareto axiom on

FE, which implies that the statement (i) holds. ~ Conversely, suppose that the statement (i) holds.

We need a lemma.

Lemma 11: If a social ordering function W satisfies the Pareto, symmetry and CR-independence

axioms on FH, then W coincides with WCR on FH,

This lemma implies that the statement (iii) holds. (B) Suppose that the equivalence of (i) and (iii)
in Theorem 4(A) holds on some admissible domain F* such that Fic F* and FH 2 F*. It holds
by Lemma 8(C) that exists some g e F* on which WCR does not satisfy the Pareto axiom, which
contradicts the supposition. Similarly, we can prove the maximality of FH for the characterization
of WER  (C) Suppose that there is a social ordering function W satisfying the Pareto, symmetry
and Arrovian independence axioms on FE. Since it holds by Lemma 5(D) and Lemma 2(vi) that

the Arrovian independence axiom is stronger than ER-independence axiom, it holds by Theorem

4(B) that W = WER on FH. This is a contradiction, since WER does not satisfy the Arrovian
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independence axiom on FH, O

Proof of Theorem 2: All the assertions in Theorem 2 are direct consequences of Theorem 3(B) and

Theorem 4(B). a

Appendix A
Proof of Lemma 2: (i) It holds by (9) that x, — CVi(p, x: f) = pu!(p, di(p°, x% f): f) for any (p, x)
e A(f), which implies that di(p, x, — CVi(p, x: f): f) = di(p, pi(p, d'(p°, x2: ): f): f). Moreover, it holds
by (8) that di(p, pi(p, di(p®, x%: D): H: ) ~, d(p° x%: ). Hence, it holds by the condition (i) of the
admissibility of alternatives that di(p, x,— CVi(p, x: g): g) > e’. (ii) It holds by (10) and (8) that
di(p®, x0+EVi(p, x: f): f) = di(p®, ni(p°, di(p, x;: H: N: ) ~, di(p, x;: ) for any (p, x) e AD.
It holds by the condition (ii) of the admissibility of alternatives that di(p°, x?+EVi(p, x: g): g) > €°.
(iii) It holds by Lemma 2(ii) that d(p, x;: f) x; di(q, y;: f) < d'(p°, x?+ EVi(p, x: f): f) x, di(p®, x0+
EViq,y:0:f) & EVip,x:f)2EViq, y: ). (iv) It holds by (9) that x,/CR'(p, x: f) = pi(p, di(p®, x%:
f): f) for any (p, x) eA(f), which implies that di(p, X, /CR(p, x: N: f) = di(p, pi(p, di(p°, x3: ): ): ).
Moreover, it holds by (8) that di(p, ui(p, di(p®, x: f): f): f) ~, di(p® x?: f). Hence we have that
di(p®, x%: ) ~, di(p, x,/CRi(p, x: ): f). It holds by the condition (i) of the admissibility of alternatives
that di(p, X; /CRi(p, x: f): g) > €% ) It holds by (10) and (8) that
di(p°, ER!(p, x: ) x?: ) = di(p°, ui(p’, di(p, x;: D: D: ) ~, di(p, x;: H) for any (p, x) cAD).
It holds by the condition (ii) of the admissibility of alternatives that di(p°, ERY(p, x: f)x): g) > e©.
(vi) It holds by Lemma 2(v) that di(p, x;: ) x, di(q, y;: f) & d'(p°, ERi(p, x: f)=x?: f) x;, di(p°, ERi(q,

y: f)-x?: f) & ERip,x:f) > ERi(q, y: . a

Proof of Lemma 3: (A) Since it holds by Lemma 2(iii) that the indirect preference ordering of x;

on A(f) is represented by EVi(p, x: f) for all i e N, we have that
d(p, x: ) > dq,y;: ) forall ie N= EVi(p,x:f) >EVi(q,y: D) forall ie N
= (p,x) WE'(D) (q, y).
Since it holds by Lemma 2(vi) that the indirect preference ordering of x, on A(f) is represented by

ERi(p, x: f) for all i e N, we can prove that WER satisfies the Pareto axiom by almost the same

manner as the proof Lemma 3(A) in case of WEV,
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(B) The two social ordering functions, WC and WCE do not satisfy the Pareto axiom as shown by

Example 3 in Appendix C. a

Proof of Lemma 4: (A) Suppose that f= (p°, x°, X)e F. Fix any (p, x) e A(), and fix
any permutation 6 of N with 6ox# x. Since it holds by (9) that X, GNCVi(p, x:)=2% % —
TN, A% x0: 0: D) = T, %o — ZicniD, dip®, x3: 0): O = I, CVi(p, 8ox: f), we have that
(p, x) WICV(f) (p, 9°x). This means that WCV satisfies the symmetry axiom. Since it holds by
(11) that TT_CRi(p, x: §) = [Ty, / [, Wi, di(p°, x: D): D) = [T, Ko/ Ty W (P, d(p% x3: D: £) =
I1,_\CRi(p, 0ox: f), we have that (p, x) W,°X({) (p, 6ox). This means that WCR satisfies the
symmetry axiom. (B) The social ordering functions WEV and WER do not satisfy the symmetry

axiom as shown by Example 4 in Appendix C. a

Proof of Lemma 5: For any profiles f= (p°, x% %) and = (¢° y° =*) in F,let (pl, x!) and
(qt, y) be alternative in A(f) and A(f¥), respectively.
(A) Fix any i€ N and suppose that
di(p*, x}+8;: ) x; di(p®, x0: D)
& diql, yl+5;: ) x; di(q y%: £¥) forall § > — min(x}, y}). (A1)

1

We may assume that min(x}, y}) = x; without loss of generality. It holds by Lemma 2(i) that
dip®, x% ) ~, di(p, x, - CVi(p! x!: H: f). Then it holds by (A1) that di(q°, y? f*) ~} di(q!, y}- CVi(p!,
x!: f): f*), which implies CVi(p!, x!: f) = CVi(¢!, y': ).

Conversely, suppose that CVi(p!, x1: f) = CVi(q!, yk: ). Setting 8* = - CVi(p!,x: ) =
— CVi(q!, y!: £¥), we have by Lemma 2(i) that

ditp!, x1+8%: O ~ dip?, x¥: (A2)
and

di(q, yi+8.*: ) ~ di(q®, y?: ). (A3)
For a real number & - min(x, y}), suppose that di(p?, x}+8;: f) x, di(p?, x¥: ). Then it holds by
(A2) that 8 238*, and it holds by this and (A3) that di(q', y}+8: %) x; d'(q°, y?: /). Similarly we
can prove that di(p?, x}+8: ) x; di(p?, x0: f), whenever di(q}, y}+8: ) x; di(q°, y?: ).

(B) We can prove this assertion by almost the same manner as in the proof of the assertion (A).
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(C) Fixany ie N and suppose that
di(pl, x1-8.: D) %, dip?, x: H & di{q!, y!-5;: %) =] di(q®, y%: £¥) forall §, > 0. (A4)
It holds by Lemma 2(iv) that dip®, x?: f) ~. d¥(p, x,/ CRi(p?, x’: f) : f). Then it holds by (A4) that
diq®, y%: £) ~} di(q’, y}/ CRi(p!, x: f): f*), which implies CRi(p?, x: f) = CRi(q?, y: f*).
Conversely, suppose that CRi(p!, x': f) = CR¥(q}, y': £*). Setting 1/CR(p!, x: H =1 CR(q},
yl ) = 8.*, we have by Lemma 2(i) that
di(pl, x} 8% ) ~ dip?,x0: ) (A5)
and
di(q’, y}-8*: ) ~] di(q°, y?: f¥). (A6)
For a real number 8,> 0 suppose that di(p!, x}-8: f) x; di(p°, x: f). Then it holds by (A5) that &, >
8* , and it holds by this and (A6) that di(q*, y!-5;: ) 7 di(¢®, y?: f*). Similarly we can prove that
dip?, x1-6: D %, di(p%, x0:f), whenever di(ql, y}-8;: £*) x| di(q’, y2: £*).

(D) We can prove this assertion by almost the same manner as in the proof of the assertion (C). O

Proof Lemma 7: (A) Set F'(p%) = { x, )._ e R, _xa0": (p° =% %) e F*'} and CHp?% =

i'ieN
Proj. Fi(p?) forall ie N. Then it holds by the definition that CXp? = C{p® = - = C(pY,
and that the set of all quasi-linear profiles FU satisfies

Fl= {f= (0% x", %) eF: &%, x),_ € CL M) x CF (@) x - x CL(p").
(B) (i ©ii) This assertion is well-known. See Chipman and Moore (1980, Section III). (i = iii) It
holds by the assertion (i = ii) above that for all ie N and all (p, x), (q,y) €A

d(p,x: 0 ~ d(q,y; D = d(p,x+8: D ~ d(q,y+8: 0 forall §>0. (A7)
Case 1( CVi(p, x: f) > 0): It holds by Lemma 2(i), (A7) and Lemma 2(ii) that

di(p®, x0+ CVi(p, x: ) : f) ~, di(p, x,: D) ~, AP’ x?+ EVi(p, x: H): ),
which implies that CVi(p, x: f) = EVi(p, x: ).
Case 2(CVi(p, x: f) < 0): It holds by Lemma 2(ii), (A7) and Lemma 2(i) that

di(p?, x+ EVi(p, x: ) —CVi(p,x: D : H) ~, di(p, x,— CVi(p, x: D) : H) ~, di(p®, x°: ),
which implies that CVi(p, x: f) = EVi(p, x: ).
Case 3(CVi(p, x: f) = 0): It holds by Lemma 2(j, ii) that di(p®, x?: f) ~, di(p, x: D) ~, di(p°, x?+EVi(p,
x: ): f), which implies that EVip,x:H=0.

(iii = vi) This assertion is a direct consequence of Lemma 2(iii). (iv = 1ii) This assertion is a
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direct consequence of Chipman and Moore (1980, Proposition P2), where the indirect utility function
(Chipman and Moore, 1980, Equation (32)) coincides with our CVi(p, x: f) under the normalization
of price vectors by p,=1
(C) Let F* be an admissible domain such that F*c F* and F*2FL. Fixany f=(p° x°, &)<
F*/FL. Since f¢ FY, it holds by Lemma 7B(i © iv) that there exist some je N and some (p, %), (q,
y) eA(f) such that

di(p, x;: ) % di(q, ;) and CVi(p,x: f) < CViq, y: ), or

d(p, x: ) - d(q, y;D and CVip,x:f) < CViq,y: .
Since d and CV! are continuous, and since (p, x), (q, y) €A(f), we can assume without loss of
generality that d'(p, X 1)) s d(q, ¥ f) and CVi(p, x: )< CViq,y:f). Set g=p° y’° %% ¢ F by
¥ = x(J’ and z%= x; for all ie N, and set x* = x-e, y* = yre, where e =(1, ..., 1). Since F* is
admissible, it holds that g e F* and d'(p, x*: g) > d'(q, y*: g) for all i< N, and that ¥,_ CV(p,
x*: gy <X, NCVi(q, y*: g). This means that WCV does not satisfy the Pareto axiom on g.

Next, we prove that there exists some profile h € F* on which WEV does not satisfy the
symmetry axiom. Fix any f=(p° x° %) ¢ F*/F' again. Since f= (p° x° %) ¢F L it holds by
Lemﬁa 7B(i < iii) that CVi(p, x: f) # EVi(p, x: ) for some je N and some (p, x) eA(f). Setting b
= pi(p, di(p®, x‘J? :D:H)>0,A=CVi(p,x: ) and &= EVi(p, x: ), it hold by (p, x) cA(D), (8) and
Lemma 2(i, ii) that

A28, e <« di(p°, x}): ) ~ di(p, b: f) > e°
and e? <« di(p°, X +8: f) ~; di(p, x: 0= d(p, b+A: ) > e, (A8)

We need a claim:

i
- %

Claim 1: There exists a quasi-linear profile g* = (p°, y°, %) FY such that y‘i = yg =

1]
i

~

x% =--=x* and (p,b-e)cA(g".

Define a profile he F by h=(p°, z, %0), where

1
Y

— 0 . ._- 0 . -—u
z; = X; if i=j x5 ; if i=j

=y) otherwise,

It
44

¥ otherwise.

Since F* is admissible and FLc F* it holds by Claim 1 that h € F*. Moreover, it holds by (A8)

and Claim 1 that (p, b-e) eA(h). Setting a = EW(p, b: h) for all i#}j, it holds by Lemma 2(ii) and
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g* e FL that
e’ <« di(p®, z.+a: h) ~¢ di(p, b: h) > e°
and e’ < di(p°, z+a+i: h) ~0di(p, b+A:h) > 0 for all i=j. (A9)
Set x* by
xf =b+h  if i=j
=b otherwise.
Then it holds by (A8) and (A9) that (p, x*) € A(h) and
EVi(p, x*: h) = pi(p?, di(p, b+A: h): h) — pi(p®, di(p°, x3: h): h)
= P (p®, di(p°, xg.’+8: h):h)— xJ9 = xg.’+8— xg.’ =8,
EVi(p, x*: h) = pi(p°, di(p, b: h): h) — pi(p®, di(p’, z;: h): h)
= u(p% di(p° z;+a:h):h)—z =z +a—z=a forall i#j.
Fix any i* #j, and define a permutation 6 on N by 6() =i* 6(*) =j and 6(i) =i forall ie
NAi*,3}. Wehave by (A8) and (A9) that (p, 8ox*) « A(h) and
EVi(p, 0ox*: h) = w(p°, di(p, b: h): h) — pi(p°, dip°, x‘J?: h): h) = pi(p®, di(p®, x?: h): h) — x(j’
= x;.’ - xg =0,
EV¥(p, 6ox*: h) = p*(p°, d¥(p, b+A: h): h) — z, = p*(p°, d"(p, z,+a+A:h): h) -z,
= z+at+h—z, = a+h.
Thus it holds by (A8) that ZieNEVi(p, x*: h) — ZieNEVi(p, Oocx*: h) =8 — A # 0, and that
@, xWEV(h)(p, 6ox*) or (p, 8x*)WE'(h)(p,x*), which means that WEV does not satisfy the
symmetry axiom on A.
(D) For two profiles f=(p° x° %), g=(q’ y% =% e FL, suppose that > =%* Fixany ie N and
any (p,X), (q,y) € Af) " A(g). It holds by (8) that
di(p, pi(p, di(p®, x;: N: H: ) ~, di(q, pi(q, di(p®, x; D): £): D) and
di(p, ni(p, di(q°, y; g): 8): &) ~, di(q, ui(q, d(q’, y;: 2): g): ). (A10)
Since % = z*, we may assume without loss of generality that d'(p, wip, dip°, x;: ) D: ) x, di(p,
wi(p, d(q’, y;: g): g): g), which implies that pi(p, di(p°, x; D: ) = pi(p, d¥q’, y;: g): g). It holds by
Lemma 7B(i & ii), p; = q;= 1 and (A10) that
W (p, di(p®, x;: H: O — pi(p, d¥(q°, y;: g): g) = uilq, dip’, x;: D: ) — pi(q, d(Q° y;: 8): @),

which implies
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CVip, x: ) - CVi(q, y: f) = [ x' — pi(p, di(p®, x%: D: H 1 - [y —pni(q, di(p®, x%: H: O ]
=[x — pi(p, di(q’, y;: 2): 8) 1- [ ¥ — 1iq, di(d’, y;: 8): g)) = CVi(p, x: g) - CVi(q, y: g).
Hence we have that
P, WV (q,y) & % CVip, x: D23, CViq,y;: D
o I NCVip, x: H-CVilq,y: D120 & T,_[ CVip, x: g) - CViq, y; )20

o ZENCVi(p, X: g)2 ZGNCVi(q, ;8 e (p,x%) W) (q, y) O

Proof Lemma 8: (A) Set FY(p”) = { x*, %), _, € R _xa)": (p°, x°, %) e F'} and C(p?) =

i'ieN
Proj . F(p?) for all i € N. Then it holds by the definition that CH (p% = CE (p%) = - = CE(p?),
and that the set of all homothetic profiles FH satisfies

Fl= (£=@%x" 2)eF: (), x),_ c CEPY)x CH(p")x - x CH(p%).
(B) (i &ii) This assertion is well-known. See Chipman and Moore (1980, Page 939) and Chipman
(1974, Theorem 2). (i = iii) It holds by the assertion (i = ii) above that for all i e N and all
(P, x), (q, y) €Al

di(p, x: D ~, di{(q,y;: D = di(p,5x: ) ~, di(q, dy,: ) forall 5> 0.
Forall ie N and all (p, x) € A(f), it holds by this and Lemma 2(iv) that d(p, x;: f) ~, di(p°, x?-
CRi(p, x: f) : ), and it holds Lemma 2(iv) that di(p, x;: f) ~, di(p° x*- ERY(p, x: ): ). Hence we have
that di(p®, x?-CRi(p, x: f): f) ~, di(p°, x?-ER{(p, x: f): f), which implies that CRi(p, x: f) = ER(p, x: ).
(iii = iv) This assertion is a direct consequence of Lemma 2(vi). (iv = ii) This assertion is a
direct consequence of Chipman and Moore (1980, Proposition H2), where the indirect utility

function (Chipman and Moore, 1980, Equation (23)) coincides with our CR(p, x: f).

(C) Let F* be an admissible domain such that F c F* and F* =z FY. Fix any f=p%x% %) e
F*/FH. Since f¢FH, it holds by Lemma 8B(i & iv) that there exist some je N and some (p, x),
(q, y) €A(f) such that

di(p, x: ) x; di(q, y;: ) and CRi(p, x: f) < CR(q, y: D), or

d(p, x: 0> di(q, y:f) and CRi(p, x: f) < CRY(q, y: D).
Since & and CR! are continuous, and since (p, X), (q, y) €A(f), we can assume without loss of
generality that d'(p, X! ) s d(q, ¥i f) and CRi(p, x:f) <CR(q,y: . Set g=P°y°, 2% F by

Y= x‘J’ and z9= x; forall ie N, and set x* =x7e,y*=y,-e. Since F* is admissible, it holds that
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g < F* and di(p, x*: g) >, d'(q, y*: ) forall ie N, and that [1,_ CR'(p, x*: @) <IL_,CR(q, y*: g).
This means that WO does not satisfy the Pareto axiom on g.

Next, we prove that there exists some h e F* on which WER does not satisfy the symmetry
axiom. Fixany f=(p° x° 2)e F/FH again. Since f=(p% x’, X) ¢ FH, it holds by Lemma 8B(i
& iii) that CRi(p, x: f) = ER¥(p, x: f) for some je N and some (p, x) cA(f). Setting b = ui(p, d(p°,
xJ‘?: f):)>0,A=CRi(p, x: f) and &= ERip, x: ), it holds by (p, x) cA(f), (8) and Lemma 2(iv, v) that

L2358, e <« dip?, x3: ) ~, di(p, b: f)> e°
and e« di(p°, x3:8: f) ~; d(p, x:f)= di(p, b'A: ) > &0, (A11)
Setting a utility function U on Y by U(y) = [L2, y,, define a binary relation =* on Y by
y, =¥y, © Uly;)2U(y,) forany y,,y,<c Y. Set a= (L%, P/ pk)ljm, and set a profile he F by

h =’ z, %0), where

z=x) if i=j V=%, if i=]
=a'b otherwise =z otherwise.
Then it holds that

e < di(p, 1: h) ~? di(p°, a: h) > e, e® < di(p, b: h) ~! di(p’, ab: h) > ® and
e’ < di(p,b-A:h) ~? di(p’, bA-a:h)> e’ forall i=j. (A12)
Since F* is admissible and FLc F*, it holds by (A11) and (A12) that h e F*. Set x* by
Xt =bA  if i=]
=b otherwise.
Then it holds by (A11) and (A12) that (p, x*) € A(h) and
ERi(p, x*: h) = pi(p°, di(p, b -A: h): h) /i (p°, di(p®, x% h): h) = wi(p®, d(p°, x?-8:h): h)/x)
=( x}’ -8)/xJ9 =3,
ERi(p, x*: h) = pi(p®, di(p, b: h): h) / pi(p®, di(p®, a-b: h): h) = ui(p?, di(p°, a-b: h) : h)/(a-b)
= (ab)/(ab)=1 forall i= j.
Fix any i* # j, and define a permutation 6 on N by 0() =i* 6(i*) =j and 6(1) =i forall ie
N/i*, j}. Since U is homothetic, we have by (A11) and (A12) that (p, 8ox*) € A(h) and
ERi(p, 6ox*: h) = pi(p°, di(p, b: h): h) /x;? = pi(pY, di(p?, fo’: h):h) /x‘J? = xjf’/xj‘? =1,
ER(p, 6ox*: h) = p"(p°, d*(p, b-A: h): h) / pi*(p®, d*(p° b - a: h): h)

= (p% d*(p% b-A-a:h):h)/(b-a)=(bA-a)/(b-a)=A.
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Thus it holds by (All) that [IL_yERi(p, x*: h)/IL,_yER(p, 8ox*: h) = 8/ # 1, and that
(p, x*) WgR (h) (p, Box*) or (p, Box*) WSER (h) (p, x*), which means that WER does not satisfy the
symmetry axiom on A.
(D) For any profiles f=(p%x° ), 2=(q° y%, =¥ e FH, suppose that X =x*. Itholdsby f,ge
FH that A() =A(g). Fixany ie N and any (p, x), (q,y) €A(f). It holds by (8) that

di(p, ni(p, di(p°, x; 0): ) : ) ~, di(q, pi(q, di(p® x:H: H:H and

d(p, w'(p, d(q’, y; 2): 8) : g) ~; dq, wi(q, 4@’ y;: 8): 2): 8) - (A13)
It holds by Lemma 8B(i < ii) and (A13) that

i (p, di(p°, x.: O): D/ pi(p, dU(q’, y;: 8): &) = pilq, di(p®, x;: H: H/ pi(q, diQ’, y;: g): ),
which implies that

CRi(p, x: f)/ CRi(q, y: ©) = [ x/u!(p, d'(p®, x3: H: D 1/[ y/ui(q, dip®, x2: £): ) ]

=[x ji(p, d'(q’, y;: 8): &) VL y¥u'(q, dX(q°, y;: &): g)] = CR'(p, x: g)/CR¥(q, y: &)-

Hence we have that

(p, x) WCR(f) (q,y) & II_\CRi(p, x: H 2T._,CRi(q, y: O

& Iyl CR(p, x: N /CVi(q,y;: D121 & I\l CRI(p,x;: g)/CR(q,y:8) 121

1€

& Ty CR(p, x: 2) 2], CRY(q, 5;: 8) & (@, %) WR@) (q, y). O

Proof of Lemma 9: (i) Fix any w, a, b,c e X. Since a/w = (a*c)/(w*c) and b/w = (b*c)/w*e),
we have by the R-independence axiom that aW{(w)b @ (ax¢)W(w+*c) (b*¢). (ii) Define a binary
relation H on R® by

aHb o Exp(a) W(e) Exp(b) forall a,be R™ (Al4)
Since W(e) is complete and transitive on X, it holds by (A14) that H is a complete and transitive

binary relation on R™ The symmetric and asymmetric parts of H are denoted by H; and Hg,

respectively. Moreover, H has the following properties:

Claim 2: (i) If a;>b, forall ie N, then aHgb. (ii) For any ac R" and any i,je N withi=#j,
let b be the vector in R” defined by b; = bj = (a +aj)/2 and b, =a, forall ke NAij. Then it
holds that aH/b. (iii) For any a!,a®? ¢ R", and any i,je N with i#j, if al + a} =d + a? , and if
al =al? forall ke NAi,j), then a'Hja®. (iv) For any aeR”, it holds that aH;a, where a =

(Z.nlai)/n e R™. (V) X, N8> Zienbi = aHSb. (vi) X, 8= Zieri:> aHb.

1=
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We have by Claim 2(v, vi) that ¥, ya,> X, b; = aHb. If ¥ _ya <X _yb;, it holds by Claim 2(v)
that bHga. Taking the contraposition of this, it holds that aHb = ¥, ya; >3, _\b;. Thus we have

that ¥._ya 2% _\b. & aHb, and we have by (A14) that ¥,_ya, >3, _\b; < Exp(a) W(e) Exp(b). O

Proof of Lemma 10: Fix any profile f=(p° x° %% e FL, and fix any (p, x), (q, ¥) € A(f). Define
a and b in R® by
a;=CVi(p,x: f) and b; =CVi(q,y: f) forall ie N. (A15)
Define a profile g = (p°, w, &), where
w, = 2-max [ max,_,lal, max;_yIb;l, maxieNéi) ] and %, = z‘{ for all ie N. (Al16)
Since w,>x) forall ie N, and since all x,=x{ are quasi-linear with respect to the #1 good, it
holds by fe F and Lemma 7B(i = ii) that di(p®, w;: g) > e? forall ie N and ge FL. Similarly
we can prove that (p° w+a), (p° w+b) e A(g). Hence we have by (A15) and (A16) that
CVi(p°®, w+a: g) = CVi(p,x: ) and CVip’, w+b:g)=CViq,y: D forall ie N.
Since W satisfies the CV-independence axiom, it holds by this and Lemma 5(A) that
(P, w+a) W(g) (p°, w+b) & (p, x) WD) (q, ¥). (A17)
Since g e FU and (p° w+a), (p°, w+b) € A(f), it holds that
P’ 7+w, %) € F. and P°, z+w) e A(P°, p+w, ) forall p,zeX.
Hence we can define a social ordering function V on X by
zZV(p) 2% o (p°, zl+w) W', n+o, 2) p°, Z2+w) forall 5, 2!, 2 e X. (A18)
Then the social ordering function V on X satisfies the Pareto, symmetry and A-independence
axioms in Theorem 1(A), as shown by the following arguments: (Pareto): For any x,y, n € X,
suppose that x, >y, forall ie N. Since W satisfies the Pareto axiom, it holds that Pp°, x+w)
Ws(po, +w, ) (p°, y+w), which implies xV())y. (Symmetry): Since W satisfies the symmetry
axiom, it holds by (A16) and (A17) that
(po, X+W) WI(pO, Hw, ) (po, Oex+w) and xV(5) Box
for any 77, xe X and any permutation 6 of N. (A-Independence): Suppose that x! — ' = y! —7?
and x?—np'=y?- 72 It holds by (9) that
CVi(po, xtw: po, n1+a), )= x“1 - 7]} = y} - lf = CVi(pO, y1+a) : po, 172+a), %) and

CVi(p®, x%*+w: p° nl+w, z) = )?1 - 7}} =¥ -1 = CVip?, y?*+w : p°, n’+w, ) forall ie N.

1 1
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Since W satisfies the CV-independence axiom, it holds by Lemma 5(A) that
@®°, x'+0) Wp°, nl+w, 2) @°, X2+w) < °, yl+w) W', P+, ) ©°, y+o),
which implies that x! V(p!) x2 = y! V(%) y2. Thus V satisfies all the axioms in Theorem 1(A),
and it holds by Theorem 1(A) that V coincides with the arithmetic mean social ordering function
WA, Hence we have by (A18) that
Yien% 2 Lenz & 2V 2
o P, z'+ w) W(p°, n+w, %) ®°, Z22+ w) for all 1, zl, Z2e X (A19)

Setting 7 = w, z!

=w+a,z2= w+b in (A19), we have that X, ya 23, b, © (p° w+ra+w) W(p°,
w+w, %) (p°, w+b+w). Since CVi(p’, w+atw: p°, w+w, X) = a = CVip’, w+a: p°, w, =) and
CVi(pO, w+b+w: po, w+tw, T) = bi = CVi(pO, w+b: po, w, %) for all i € N, we have by this and Lemma
5(A) that

DIRE D N P°, w+a+w) Wp°, wtw, 2) (p°, w+b+w) & (p°, w+a) Wp°, w, ) (p°, w+b).
Moreover, we have by this, (A15) and (A17) that

T N CVip,x: D25 CViq,y: D &’ wra) Wp', 0, %) 0°, 0+h) & (p,xWdH(g,y). O

Proof of Lemma 11: Fix any profile f=(@’, x° =% ¢ FY, and fix any (p, x), (q,y) € A(f). Define
a and b in R" by

a,= CR(p, x: f) and b, = CR(q, y:f) forall ie N. (A20)
Define a profile g = (p°, w, =) by

w;=x; and x; =%} forall ie N. (A21)
It holds by fe FH that di(p®, w; g) > €° forall ie N and that ge F®. Similarly we can prove
AD c A(g) and (p° w*a), (p°, w*b) e A(g). Hence we have by (11) and (15) that

CRY(p®, w+a: g) = CRi(p, x: f) and CRY(p®, w+b: g)=CR{q,y:f) forall ie N.
Since W satisfies the CR-independence axiom, it holds by Lemma 5(C) that

(p°, w*a) W(g) (p°, wb) < (p, x) W) (q, y). (A22)
Since (p° z) € A(p%,n, %) forall 7, ze X by fe F®, we can define a social ordering function V
on X by

2V 22 o % z) W', 1, 2) (p°, 22 forall 5, 2!, 2 ¢ X. (A23)
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The social ordering function V on X satisfies the Pareto, symmetry and R-independence axioms in
Theorem 3, as shown by the following arguments: (Pareto) For any x,y, 7 € X, suppose that x, >

y, forall ie N. Since W satisfies the Pareto axiom, it holds that ®°, x) Ws(po, 1, %) %, y),

which implies xV() y. (Symmetry): Let p* be a distribution in X. Since W satisfies the
symmetry axiom, it holds by (A21) that (po, X) WI(pO, ¥ %) (po, 0ox) and xV(*) Box for any x
e X and any permutation 8 of N. (R-Independence): Suppose that x¥/ ' =y'/n? and x2/p' =
y2/n2. It holds by (11) that

cvip’, x:p’pl, x)=x /1 =y, /7 =CVip’, y: p’, 7, %) and

cvip’, =% p’ nh ) =2/} = /1 =CV(p®, y*: p°, 7, %) forall ieN.
Since W satisfies the CR-independence axiom, it holds by Lemma 5(C) that

@’ x) W', 7, 2 0%, x) o @°,yH W', 2% 2% 0%, ¥

and x'V(pH)x? & y' V(2 y2

Thus V satisfies all the axioms in Theorem 1(B), and it holds by Theorem 1(B) that V coincides
with the geometric mean social ordering function W¢. Hence we have by (A23) that

Mienzt 2 Mien2z? & 2 Vap 2

o @%zZH WS, g, 2) (% 2%) forall g, 2,22 X. (A24)

Setting 7 = w, z! = w*a and z% = w+*b in (A24), we have by (A21) that

Ly 21 b & HieNxf'ai 2 HGNX(; b, & (p', wra) Wp’, w, X) (p°, w+b),
and it holds by this, (A20) and (A22) that

[1,. CRi(p, x: f) 2 [1;_ CRi(q, y: ) & (p°, w*a) W(g) (p°, w*b) & (p,x) WD) (q,y). O

Appendix B
Proof of Claim 1: Set U(x) =[]l x . Define a binary relation x on RT, by

xzxy e I8 x 2 [I%y, forany x,ye R}.

i
Denote the demand function of = by D(p, x:x). Since x is homothetic, it holds that
D(p, b: ) > ° and D(p, b: x) ~ D(p°, z*: =) > e® for some z* > 0.
For each £> 0, set Ux) = Hifl (%;+£), and define a binary relation =* on {ze R™ z > (—¢)-e} by
xxfy o l'Iilfl(xi +e)2[L2 (y,+¢) forany x,ye{ze R™z>(-¢g) e}

Denote the demand function of =% by D(p, x: x%). Since U(x) converges uniformly to U(x) on
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any compacta in R}, as € — 0, there exists some £>0 such that

D(p, b: 2% > €% and D(p, b: x&) ~& D(p°, z&: z%) > e® for some z&> 0.
Fix an >0 and z®> 0 satisfying the above condition. Setting the real number A* = U¥D(p, b:
x%), define a real-valued function V(x) on RY* by V(x) =c_ for all xe R, where c_ is the real
number determined by U%(x;—c,, Xy, ,X )= A* Moreover, define a binary relation x* on R}

by xz*ye Vx)2V(y) forany x,y< [Rf’, and define a profile g* = (p°, y°, =*) e F by y°1 = yg =

e = y:’] =z% and % =x*. Then it holds that g* = (p° y°, =*) e FY, di(p, b: g*) > &°

and di(p, b: g*) ~* d'(p°, y%: g*) > €° for all ie N, which implies that (p, b-e) eA(g*). O

Proof of Claim 2: (i) Suppose that a,>b, forall ie N. Since e* > e for all ie N, it holds by
the Pareto axiom that Exp(a) W(e) Exp(b). Hence we have by (Al4) that aHgb. (ii) For
notational simplicity, we assume i=1 and j=2. Fixany ae R®, and let b be the vector in R”
defined by

b, =b, =(1/2) a;+ (1/2) a, and b =a forall ke {3,4,,n}.
Then we will prove that aH;b in the followings. Define two alternatives z, z* € X by

z= Exp((1/4)a — (1/4)b) and z*= Exp(-(1/4)a +(1/4)b)
and define two alternatives x,y € X by

x = Exp((8/4)a + (1/4)b) and y =Exp(-(1/4)a + (5/4)b).

Then it holds that

x/z=Exp((1/2)a + (1/2)b) and y/z=Exp(-(1/2)a+ (3/2)b), (B1)
and that

x/z* = Exp(a) and y/z* = Exp(b). (B2)

Define ¢ € R™ by

¢ = Log(x/z) (B3)
Then it holds that
c=(1/2)a + (1/2)b. (B4)

In fact, ¢; =(1/2) a;+ (1/2)b, = (3/4)a,+ (1/4)a,, ¢, = (1/2) ay+ (1/2)b, = (1/4)a, + (3/4)a, and ¢, = a, for
all ke {3,4,-,n}. Let 0 be a permutation defined by 6(1) =2,6(2) =1, 6(1) =i for ie
{3,4, - ,n}. Then it holds by (B1) and (B4) that

foc = —(1/2)a+ (3/2)b = Log(y/z) . (B5)
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In fact, (Bo€), = ¢, = (1/4)a,;+(3/4)a, = — (1/2)a,+(3/2)[a,;+a,)/2 = — (1/2)a; +(3/2)b,, (B°c), = ¢, =
(3/d)a; +(V4d)a, = — (U2)ay+ (3/2)[a, +a,)2 =~ (1/2)a,+(3/2)b, and (Bec), =c¢ =a =hb, forall ke
{3,4,,n}. Hence it holds (B3), (B5) that 6o Log(x/z) = Log(y/z), which implies that 0¢ (x/z) =
(y/z). Since W satisfies the symmetry axiom, we have that (x/z)W,(z*/z) (y/z). Hence we have by
Lemma 9(i) that xW(z*) y and (x/z*) Wi(e) (y/z*). It holds by (B2) that Exp(a) W(e) Exp(b).
Thus we have by (A14) that aHb. (iii) Define a vector b e R™ by b, = bj =(a + a}) /2 and b, = al
for all k e NAi,j}. Then it holds by Claim 2(ii) that a'Hb. Since b, = b, = (a + ag.)/2 =(d + a%)/Z
and b, =al =a? forall ke N/A1i,jJ, it holds by Claim 2(ii) that a?Hb. Thus we have by a'Hb
and a?Hb that a'Ha®. (iv) Fixany ae R™ Setting p=(Z,_ya,) /n, define a finite sequence of
vectors by
al= (1, a;+a,— U, aq ", a)

a’= (L1, a e ta - 20, 8, , 8,)

ak': (u'a M, s |, a1+a2+a3+ak+1 - kl»l, ak+2 s 7Ty a-n)

a™l= (u,p,u a,+ay+az+a —(m-DW = (1, p, -, W) = a.
Then we have by Claim 2(iii) that aHI alHI azHI HI a’“‘2HI a, which implies aHI a. (v) Fix any
a,beR’ Set a = [(Z, na) /nle e R™ and b= (X nb; Vnle e R™. Then we have by Claim 2(iv)
that a Ha and l_)HIb. Since X, _ya; > X, _yb;, we have by Claim 2(i) that 5HSI_). Thus we have
that aHgb. (vi) Fixany a,be R™ Let ¢ e R" be the vector defined by

¢ = (Zienadmn = (X by/n forall ie N.
Hence we have by Claim 2(iv) that ¢Hja and cH;b, which implies aH;b. O

Appendix C

Example 1: Suppose that there are just two consumers, and the set of consumers is denoted by N
={1, 2}. There are m (m = 2) types of consumption goods and the consumption setis Y= [R’f for
all consumers. Denote m* =m —1. Setting the two utility functions U' and U? by Ul(zl, Zg, "

Vm® and U2(zl, Zg, " 2y =2yt W Zg+ v+ v z,)/m* , define a profile f= (po, xo, z)

2.) =12, (2, 27_)
by p°= (1, 1/m*, -, 1/m*), x"= (10, 10) and z, and x, on Y by zx,w & Ulz) > Uiw) forall i
e Nand all z, weY. Then it holds that f< F and

d¥q, g/m*, .- g/m*), x: f) = (x/2, x/2q, -, x/2q) for all q,x> 0.
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Setting p = (1, /m*, -+, 1/m*), q = (1, 3/m*, -, 3/m*), x = (20, 20) and y = (30, 30), it holds that
(P, %), (q, y) € AWD), CVi(p, x: D) = X, — ut(p, dip®, x(i: f):)=10 and CV¥q,y: D= Vi— ul(q, d*p°,
x}: f) : f) = 80 — (10V3) > 12, which implies that CV'(p, x: f) < CV(q, y: f). Moreover, it holds that
UNdXp, x,: H) = 100 > U'(dYq, y,: ) = 75. This means that CV'(;, - f) does not represent x, on
A(f). In case of the consumer 2, it holds that
a%(1, g/m*, -, ¢/m*), x: H) = (x — 1/4q, /4%, -, V4q®) forall q> 0, x > 1/4q.

Setting r = (1, 5/m*, -, 5/m*) and w = (20.3, 20.3), it holds that (r, w) e A(f), d¥(p, Xy )= (20 -
1/4, 1/4, -, 1/4), d%(x, w,: )= (20.3 — 0.05, 0.01, -+, 0.01), CR*(p, x: f) = x%/x) = 2> CR*r, w: f) =
w2/p(r, d%(p?, x°2: f): D =1.99, and that U%(d3(r, w,: f)) = 20.35 > UX(d2(p, x,: f)) = 20.25. This

means that CR%(, : f) does not represent x, on A(f).

Example 2: Let N ={1, 2, -, n} be the set of all consumers, and let Y = RT be the consumption
set. Forall i e N,let U be the utility function defined by
Ultzy, g, -, 2,) = 27— (X% 22 (m-1)  if i=1,
= - 21_2_ Z(Zj’i’z zj‘1 Y(m—1) otherwise.
Define X e M” by zx,w < Ui(z) > U{w) for all ie N and all z, w €Y, and define a profile fe F
by f=(p,x, =) where p=(1,5/(m—1), -, 5/(m-1)) and x= (100, 103, 103, ---, 103). Setting q
=1, /m-1), -, 1/(m-1)),y = (101, 102, 103, -+, 103), it holds that
X NP, diq, x,: £: D) — . nip, di(q, y;: D: D
= [ul(p, dX(q, 100: H: ) + u2(p, d%(q, 103: H): H 1 - [ui(p, dX(q, 101: H): ) + u(p, d%(q, 102: H: ]
= (157,4228+422.5623) — (158.8212+418.2086) = 2.943-- >0,
3. nogui(p, di(q, x,: f): ) — X, _logui(p, di(q, y;: H: D
= [ log pX(p, di(q, 100: f): f) + log p2(p, d%(q, 103: £): H ]
—[log ul(p, d(q, 101: f): ) + log p%(p, d%q, 102: f): ) ]
= (5.0589+6.0463) — (5.0678+6.0360) = 0.001- > 0.
Hence we have by (10) and (12) that (q, x) WESV ® (q,y) and (q, x) WESR () (q,y). Since y is
obtained from x by a progressive transfer under the fixed price vector q, we have that the two
social orderings WEV(f) and WER(f) do not satisfy the Pigu-Dalton transfer principle for the

alternatives.
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On the other hand, setting x* = (1083, 100, 103, ---, 103) and y* = (102, 101, 103, ---, 103), it
holds that
T i, dig, x%: D: ) — X, wi(p, di(q, y%: £ D
= [ul(p, dXq, 103: f): ) + n2(p, d¥q, 100: H): ) 1— [ul(p, di(q, 102: D: ) + p%(p, dXq, 101: H: H]
=(161.613+409.504) — (160.218+413.856) =~ 2.957 < 0,
. logui(p, diq, x%: H: H -3 log pi(p, di(q, y%: ): )
= [ log pX(p, dX(q, 103: ): f) + log p2(p, d%q, 100: £): H) 1
—[log pi(p, di(q, 102: f): f) + log n2(p, d¥q, 101: H: O ]
= (5.0852+6.01495) — (5.07654+6.02552) = — 0.0019-- < 0.
Hence we have by (10) and (12) that (q, y*) WESV(f) (q, x*) and (q, y*) WESR(f) (q, x*). Since y* is
obtained from x* by a progressive transfer under the fixed price vector q, we have that the two

social orderings WEV(f) and WEE(f) satisfy the Pigu-Dalton transfer principle for the alternatives.

Example 3: Let N={1,2, -, n}be the set of all consumers, and let Y = R} be the consumption
set. Denote m*=m—1. Let U! be the utility function of the preference ordering x, introduced
in Example 1. Define = e M" by x; =%, forall ie N, and define a profile f= P’ x,x)eF
where p°=(1, 1/m*, -+, 1/m*) and x°= (10, ---, 10). Moreover, set p = (1, /m*, -, 1/m*), g = (1,
3/m*, -, 3/m*), x = (20, -+, 20) and y = (30,~, 30). Then it holds that U¥(di(p, x;: )) = 100 >
UldY(q, y,: £) =75 and CV(q,y:f)>12>CV(p,x: ) =10. This means that d'(p, x;: ) > d'(q, y;:
f) forall ie N and (q,y) W%V(f) (p, x). Thus social ordering function WSV does not satisfy the
Pareto axiom. Let U? be the utility function of the preference ordering %, introduced in Example
1. Define x* e M"” by z* =%, for all ieN, define a profile g = (p° x°, =*) e F. Moreover, set r
= (1, 5/m*, -, 5/m*) and w =(20.3, -, 20.3). Then it holds that Ul(di(r, w; g)) = 20.35 > Ul(d(p, x,
:g)=20.25 and CRi(p, x:)=2> CRi(r, w:£)=1.99 for all ie N. This means that di(r, w,: g) >
dip, x: ) forall ie N and (p,x) WE(® (r, w). Thus social ordering function WC® does not

satisfy the Pareto axiom.

Example 4: Let N ={1, 2, -, n} be the set of all consumers, and let Y =RT be the consumption
set. Denote m*=m—1. Let U! and U2 be the utility functions of the preference orderings x;

and %, introduced in Example 1, respectively. Define X* e M™ by x}=x, and x*=x, forall i
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> 2, and define a profile f= (p° x° %*) ¢ F, where p°= (1, I/m*, -, /m*) and x°= (10, -, 10).
Set p = (1, 2/m*, -+, 2/m*), x = (20, 30, 30, -, 30) and y = (30, 20, 30, -, 30). Let 6 be the
permutation of N such that 6(1)=2,0(2)=1,03G) =i for all i>3. Then it holds that 8ex = y.
Then it holds that d1(p®, x%: f) = (5, 5, -+, 5), dX(p, x;: f) = (10, 5, -, 5), di(p, y, : )= (15, 7.5, -, 7.5),
EVi(p, x: f) = p}(p°, di(p, x,: ) : ) —x% = 14.14 — 10 = 4.14, and that
EVi(p,y: f) = p}(p°, dX(p, y;: ©) : H —x] = 11.23.
Moreover, it holds that d2(p°, x%: )= (10 — 1/4, 1/4, -, 1/4), d%(p, x,: f) = (30 — 1/8, 1/16, -, 1/16),
d%(p, y,: )= (20— 1/8, 1/18, -, 1/16), EVZ(p, x: f) = p%(p°, d%(p, x,: f) : ) ~ x5 = 19.875, and that
EV2(p,y: D = p%p°, d%p, y,: H) : ) —x} = 9.875.
Hence we have that EVi(p, x: ) + EV2(p, x: f) = 24.015 > EVi(p, y: ) +EVZ(p, y: f) = 21.105, which
implies (p, x) WESV ® (p, y) and (p, x) WEg (0 (p, 8ox). This means that the social ordering
function WEV does not satisfy the symmetry axiom. Moreover, it holds that ERY(p, x: f) = pX(p?,
dip, x;: D): ) /x§ = 1.414, ER*(p, x: ) = p%(p°, d%(p, x,: £): ) / x§ = 2.9875, ERY(p, y: ) = p(p°, d'(p,
yyi DD /7x§ =2123, ER%(p, y: ) = p2(p°, d%(p, y,: D): H/x}, = 1.9875. Hence we have that ER(p, x:
f)-ER(p, x: f) = 4.2243 > ERY(p, y: N)"ER(p, y: ) = 4.2194, which implies (p, x) WEE (f) (p, y), and

the social ordering function WER does not satisfy the symmetry axiom.
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