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Abstract 

We use the standard two-good version of the life cycle/permanent income model in 
analyzing the intratemporal and intertemporal aspect of food and non-food 
expenditure in Japan.  The empirical dilemma in identifying and estimating the 
parameters governing the intertemporal elasticity of substitution (IES) is 
addressed.  In overcoming this empirical dilemma we employ the Cross-Euler 
equation approach proposed by Nishiyama (2005).  The IES parameters are 
estimated by exploiting the cointegration restriction implied by the Cross-Euler 
equation and also from the standard Euler equation using GMM.  Further, by 
comparing the IES estimates from the Cross-Euler equation to those from the 
standard Euler equation, we formally test the hypothesis whether food and 
non-food expenditure in Japan is affected by some factors that cause 
misspecification in the standard Euler equation approach, such as liquidity 
constraints or habit formation. 
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1. Introduction 
 

Previous empirical studies often estimated the intertemporal elasticity of 
substitution (IES) of Japanese consumer in the context of single goods and found 
the IES to be considerably high,2 implying that the consumers are willing to 
substitute current consumption for future consumption in response to small change 
in real interest rate.  If these high estimates of IES are indeed true, then we 
should be observing a significant decrease in the consumption growth rate during 
an expansionary monetary policy and significant increase during a contractionary 
monetary policy in Japan.  However, in reality, we do not observe this kind of 
phenomenon in Japan and, therefore, the counter-intuitively high estimates of IES 
from the previous literature remains to be a puzzle.  In this paper, we estimate 
and test intertemporal and intratemporal implications of a two-good model with 
food and non-food goods with a representative consumer, using Japanese data.   

The preference specification of the two-good model follows Atekeson and 
Ogaki (1996).  In this model, the intertemporal elasticity of substitution (IES) for 
total consumption expenditure increases as the level of wealth increases.  The 
intuition behind this is that the consumer is less willing to substitute the food 
consumption than the non-food consumption over time.  Thus, the IES for the food 
good is smaller than that for the non-food good.  The IES for the total consumption 
expenditure is a weighted average of the IES for the food and the IES for the 
non-food good, with the weights being the budget shares.  Because the budget 
share for the food is larger when the consumer is poor, the IES is small when the 
consumer is poor.  The IES increases as the wealth increases in this model.  Also, 
the model has various implications on how macroeconomic variables behave as the 
Japanese economy grows out of the destruction during the World War II.  For 
example, the model typically predicts that the saving rate in Japan was very low 
immediately after the World War II, and then started to increase as the economy 
grew (see, e.g., Ogaki, Ostry, and Reinhart (1996) for a description of the saving 
rate behavior of the model with wealth-increasing IES).  Thus it is important to 
investigate the extent to which the model is consistent with the Japanese data. 

As for the methodological strategy of this paper, we apply Nishiyama’s 
(2005) Cross-Euler Equation approach to test intertemporal and intratemporal 

                                                   
2 For instance, Hamori (1996) reports the IES of Japanese consumer to be well above 
10. 
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implications of the model.  This is a new approach to test Euler equation in 
two-good models.  In many applications of two-good models, researchers have 
faced a methodological problem in estimating intratemporal first order condition 
and Euler equations.  The Cross-Euler equation approach3 can be a solution to 
this methodological problem.   

The methodological problem in a two-good model with time separable 
preferences arises because the intratemporal first order condition holds without 
any forecasting error in the model.  In order to use the first order condition to 
estimate and test the model, it is necessary to add measurement errors or 
preference shocks to the model.  However, adding measurement errors or 
preference shocks causes problems for the Euler equation approach based on the 
Generalized Method of Moments (GMM) as pointed out by Garber and King (1983).  
Because of the nonlinearity of Euler equations, measurement errors or preference 
shocks make GMM estimators inconsistent.  Nishiyama (2005) solved this 
problem by focusing on first order conditions involving a good at time t and the 
other good at time t+1.  He calls such a first order condition a cross-Euler equation.  
A cross-Euler equation involves a forecasting error unlike the intratemporal first 
order condition.  Hence statistical methods can be applied to the cross-Euler 
equation without adding measurement errors nor preference shocks to the model.  
The first step in his approach is to derive a long-run restriction from a cross-Euler 
equation.  This long-run restriction implies a relationship between variables 
called cointegration.  The cointegration relationship allows one to use a regression 
to estimate preference parameters.  

Regarding the cointegration regression and the test of coingetration, 
Nishiyama (2005) used Park’s (1992) Canonical Cointegration Regression (CCR) 
estimator, and Park’s (1990) tests for the null hypothesis of cointegration in the 
CCR framework.  In this paper, we use Stock and Watson’s (1993) Dynamic 
Ordinary Least Squares (DOLS) estimator and Choi, Hu, and Ogaki’s (2005) 
Hausman-type test for the null hypothesis of cointegration.  If the parameterized 
endogeneity correction used in the DOLS is a good approximation, these methods 

                                                   
3 Further, Nishiyama (2005) showed that the cointegration relationship implied by 
the cross-Euler equation is robust to many factors such as liquidity constraints and 
time non-separability of preferences.  These factors are often pointed out as 
possible causes of empirical rejections of standard Euler equations.  Thus, by 
comparing estimates from cross-Euler equations and those from standard Euler 
equations, it is possible to formally test the hypothesis that liquidity constraints or 
non-separability of preferences casue the misspecification of the standard Euler 
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have better small sample properties than the nonparametric CCR methods. On the 
other hand, CCR is expected to perform better when the prameterized endogeneity 
correction is misspecified. Because of a relatively small sample we used in this 
paper, we prefer to use the DOLS estimator.  In the DOLS framework, only the 
Hausman-type cointegration test and Shin’s (1994) test are available at this point 
(it should be noted that the popular augmented Dickey-Fuller test should be 
applied to the static OLS residual rather than the DOLS residual.)  The 
Hausman-type test has better small sample properties than Shin’s test as shown in 
Choi, et. Al.(2005). 
 The rest of the paper is organized as follows.  In Section 2, we describe the 
two-goods version of life cycle/permanent income model (LCPIM) for food and 
non-food consumption.  In Section 3, we explain the Cross-Euler equation 
approach and derive the cointegrating restriction among the forcing variables.  In 
Section 4, we estimate the IES parameters exploiting the cointegration restriction 
implied by the Cross-Euler eqation.  We also estimate the IES parameters from 
the standard Euler equations using GMM.  In Section 5, we formally compare the 
IES estimates from the Cross-Euler to standard Euler equation.  Section 6 
summarizes this paper with a tentative conclusion. 
 
2. Modeling Food and Non-Food Consumption Behavior 
 
2.1. Setup of the Model 
 

This paper adopts the standard two-goods version of the life 
cycle/permanent income model following Atkeson and Ogaki (1996).  A 
representative agent is assumed to maximize his expected lifetime utility under his 
lifetime budget constraint. The dynamic optimization problem is formulated as 
follows, 
 

( )
0

1 1

max ( , )

. . (1 )

i
t t t
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F NF
t t t t t t t t

E U F NF
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where tF  stands for food expenditure at period t, tNF  for non-durable non-food 
expenditure, tW  for assets held by the agent, tY  for the stochastic labor income of 

the agent, tr  for the real interest rate from period t to t+1, F
tP  for the price of 

                                                                                                                                                     
equations.   
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food, and NF
tP  for the price of non-food, respectively.  β  stands for the agent's 

discount rate. 
We assume that period-by-period utility is time separable for this agent 

and also assume additive-separability between durable goods and non-durable 
goods.  As for the period-by-period utility function, we employ a standard addi-log 
function following Houthakker (1960):  
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Under this specification, the FOCs will then be as follows:  
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It should be noted that under this addi-log specification, 1/α  and 1/γ  can be 
interpreted as the intertemporal elasticity of substitution (IES) of food and 
non-food expenditure, respectively. 

Some remarks should follow for these FOCs.  As was pointed out by Ogaki 
and Park (1997), the specification of the intratemporal relationship eq. ( 3 ) turns 
out to be robust to several kinds of nuisance factors, such as liquidity constraint 
and/or habit formation in the utility function. However, the specification of Euler 
equations is very sensitive to the presence of liquidity constraint or habit formation. 
In other words, specification of the intratemporal relationship is robust, but the 
specification of Euler equations is not. Conversely, if by any method we can find 
evidence that the Euler equation is correctly specified, this will be strong evidence 
against the presence of liquidity constraint or habit formation.   

If the model is correct, then the intratemporal optimality condition ( 3 ) 
and Euler equations ( 4 ) and ( 5 ) will be correctly specified. Therefore, parameter 
estimates α  and γ  from eq. ( 3 ) and Euler equations ( 4 ) and ( 5 ) should be 
reasonably close. If the statistical test concludes that parameter estimates are 
significantly different from each other, then, by contrapositive logic, we can 
conclude that some of the assumptions we had made (i.e. addi-log type utility 
function, additive separability of durable and non-durable goods, non-existence of 
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liquidity constraints, non-existence of habit formation, etc.) are implausible. 
Conversely, if a statistical test does not reject the null hypothesis that parameter 
estimates are equal, it will support or, at least, leave some possibility open for the 
joint assumption of addi-log utility specification without the presence of habit 
formation or liquidity constraints.   

 
2.2. Complications in Estimating IES parameters 
 

The empirical task is to first obtain the IES parameter estimates from the 
intratemporal relationship and from Euler equations. However, as Nishiyama 
(2005) pointed out, when the utility function is of the addi-log type, there is an 
empirical complication in estimating parameters. 
 A complication arises from the deterministic relationship of the 
intratemporal FOC ( 3 ).  A natural way to estimate the IES parameters from the 
intratemporal relationship is to log-linearize eq. ( 3 ) as follows 

 ln . ln ln 0
F

t
t tNF

t

P const F NF
P

α γ+ + − =  ( 6 ) 

Provided that (log) relative price, (log) food expenditure, and (log) non-food 
expenditure all follow the difference stationary process, one may be tempted to 
exploit the cointegration restriction by adding the ad-hoc stationary error term on 
RHS of eq. ( 6 ).  But then, in order to maintain coherence of the error structure 
within the model, the ad-hoc error term should also be incorporated in the Euler 
equations ( 4 ) and ( 5 ).   Indeed, Nishiyama (2005) shows that, by introducing 
new kind of error term to the model, the conditional moment conditions implied by 
the Euler equations to be non-standard – i.e.,   
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As such, in the presence of ad-hoc error term, eq. ( 4 ) and ( 5 ) are no longer 
correctly specified and, therefore, the GMM estimation based on those misspecified 
conditional moment conditions yields inconsistent estimates of the IES parameters. 
 This is the point where one experiences an empirical difficulty in 
estimating the IES parameters.  In order to overcome this difficulty, Nishiyama 
(2005) proposed the Cross-Euler equation approach in estimating the IES 
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parameters.  By exploiting the cointegrating restriction implied by the cross-Euler 
equation, it becomes possible to estimate the IES parameters from both standard 
Euler and cross-Euler equation without altering the error structure of the model.   
 
3. The Cross-Euler Equation Approach 
 
3.1. Economic Interpretation of the Cross-Euler Equation 
 

In this section, we derive the Cross-Euler equations based on a 
time-separable utility function.  Since the time-horizon of a representative agent's 
optimization problem is infinite, we can reformulate the problem using Bellman 
equation as follows,  

 
{ }

( )
1,

1 1

( ) max ( , ) ( )

. . (1 )
t t

t t t t tF NF

F NF
t t t t t t t t

V W U F NF E V W

s t W r W P F P NF Y

β +

+ +

= +

= + − − +
.  

First, the FOCs with respect to tF  and tNF  will be  

 1
( , ) (1 ) '( )F t t
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 1
( , ) (1 ) '( )M t t

t t tNF
t

U F NF r E V W
P

β += + , ( 8 ) 

respectively.  Next, invoking the envelope theorem on the Bellman equation, we 
obtain the following relationship between the current and future shadow price of 
wealth;  

 1'( ) (1 ) '( )t t t tV W r E V Wβ += +  ( 9 ) 

Substituting eq. ( 9 ) for eq. ( 7 ) and eq.( 8 ), the FOCs for tF  and tNF  can be 
rearranged as 
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 Conventionally, the standard Euler equation can be derived by updating 
eq. ( 10 ) (or eq. ( 11 )) and substituting back to eq. ( 7 ) (or eq. ( 8 )) which was the 
case in the previous section. Instead, we derive the Cross-Euler equation by 
updating eq. ( 11 ) and substituting it for eq. ( 7 ). After some manipulation, the 
Cross-Euler equation can be shown to be  
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By the same token, another type of Cross-Euler equation can be derived by 
updating eq. ( 10 ) and substituting it for eq. ( 8 )as follows,  
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Now, let us attempt to make an economic sense of the Cross-Euler 
equation taking the case of eq. ( 13 ). First, notice that the term Θ  in eq. ( 13 ) 
stands for the cross-intertemporal marginal rate of substitution (CIMRS)4 between 
goods tNF  and 1tF + . In other words, the term Θ  represents the agent's perceived 
trade-off between current non-food goods and future food goods. Second, let us turn 
to the term Ω  in eq. ( 13 ).  The term Ω  stands for the opportunity cost of 
obtaining 1tF +  in terms of tNF .  The logic is as follows.  By selling one unit of 

tNF  at period t, the agent can obtain NF
tP  amount of numeraire goods -- i.e., tW  

in this context.  By saving all of these numeraire goods at period t, the agent can 

obtain (1 ) NF
t tr P+  of numeraire goods at period t+1.  By using all of these to 

buy 1tF + , the agent can buy 1(1 ) /NF F
t t tr P P++  units of 1tF + .  Thus, the opportunity 

cost of 1tF +  in terms of tNF  is 1(1 ) /NF F
t t tr P P++ .  Finally, if the agent is optimally 

trading tNF  to 1tF + , then the agent is equalizing the opportunity cost to CIMRS 
between 1tF +  and tNF , yielding the above Cross-Euler equation ( 16 ).  This is the 
economic intuition behind the Cross-Euler equation. 

                                                   
4 The concept of cross-intertemporal marginal rate of substitution (CIMRS) is a key 
ingredient of the cross-Euler equation and is defined as follows.  For more elaboration 
regarding the concept of CIMRS, see Nishiyama (2005). 

Definition: Let ),...,,...,,...,( 1
1

1
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K
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K xxxxV  be a utility function defined upon K 
goods with T periods and let x be a 1×KT  vector such that x= ),...,,...,,...,( 1

1
1
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K
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Then we call the following expression, 
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as the cross-intertemporal marginal rate of substitution (CIMRS) between goods i
tx 1+  

and j
tx , where ji ≠  and t = 1, …, T-1. 
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In order to understand the structure of Cross-Euler equation further, it is 
useful to decompose the terms Θ  and Ω .  Decomposing the Cross-Euler 
equation ( 16 ), we obtain the following relationship  
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It is possible to decompose CIMRS into IMRS component and MRS 
component.  Exploiting this property, the term Θ  can be decomposed to IMRS 
portion (denoted 1Θ  in the above equation) and MRS portion (denoted 2Θ  in the 
above equation).  Turning to the term Ω , which stands for the opportunity cost of 

1tF +  in terms of tNF , it is also possible to decompose it into two parts; the 
opportunity cost of 1tNF +  in terms of tNF  (denoted 1Ω  in eq. ( 14 )) and the 
opportunity cost of 1tF +  in terms of 1tNF +  (denoted 2Ω  in eq. ( 14 )).  Here, 
notice that IMRS 1Θ  and opportunity cost 1Ω  constitutes a standard Euler 
equation in the conventional context. Further, notice that MRS 2Θ  and 
opportunity cost 2Ω  constitutes an intratemporal FOC at period t+1. Thus, in this 
sense, the Cross-Euler can be interpreted as the composite optimal condition that 
embeds both intertemporal and intratemporal optimality conditions into one 
equation.  
  
3.2. Cointegration Relationship Implied by the Cross-Euler Equation   
 

Next, under certain assumptions, we show that the Cross-Euler equation 
implies the cointegrating restriction among the forcing variables.  Further, we 
show that the Cross-Euler equation approach can overcome the empirical dilemma.  
In other words, the Cross-Euler equation approach allows us to estimate and 
compare the IES parameters to those from the standard Euler equations without 
altering the error structure of the model.  
 In what follows, we assume the following stochastic processes for each 
variable. 
Assumption 1:  Log food and non-food goods expenditure follow the I(1) process. 
Assumption 2:  Log price index for food and non-food goods follow the I(1) process 
and they are not cointegrated. 
Assumption 3:  Real interest rate follows the I(0) process. 

We parametrize the Cross-Euler equation ( 12 ) using Houthakker's (1960) 
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addi-log utility function; 
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In a similar fashion, we parametrize the another version of the Cross-Euler 
equation ( 13 ) as follows,  
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The forecast error from the Cross-Euler equation ( 15 ) can be defined as 
follows,  
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It is useful to notice where the stochasticity of 1te +  is arising. Rearranging the 
definition of the forecast error as in the second line of the above equation, we see 
that 1te +  is composed of non-stochastic portion and stochastic portion as of period t.  
As can be seen, the stochasticity of 1te +  arises from the discrepancy between the 
realized marginal utility of 1tNF +  and expected marginal utility of 1tNF + . This 
discrepancy is discounted to the present value and denominated by the marginal 
utility of tF , which is non-stochastic as of period t.  In this sense, the forecast error 
in the context of the Cross-Euler equation measures the magnitude of expectation 
error in future marginal utility from goods j in terms of current marginal utility 
from goods i.   
 From the definition of the forecast error, the Cross-Euler equation ( 15 ) 
can be rewritten as  

 1
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Taking logarithm on both sides of eq. ( 17 ) will yield  
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Under the assumption that growth rate of food and non-food expenditure, the real 
interest rate, and the growth rate of the price level of both food and non-food are 
stationary, Nishiyama (2005) showed that 1ln(1 )te ++  to be stationary. 

Exploiting the I(0) process of 1ln(1 )te ++ , we obtain the following 
cointegrating restriction among the forcing variables,  



 11 

 )0(~lnln)1(ln 1
1

INFF
P
P

r ttNF
t

F
t

t +
+

−+







+ γα  ( 18 ) 

By the same token, the Cross-Euler equation ( 16 ) implies the following 
cointegrating restriction,  
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Thus, we have derived the legitimate cointegrating restriction among the 
forcing variables based on the forecast error alone.  Further, since we have not 
introduced any ad-hoc error structure to the model, such as an optimization error, 
measurement error, preference shock, the specification of the standard Euler 
equation ( 4 ) and ( 5 ) remain intact.  In the sense that we now can compare the 
IES estimates from Cross-Euler equation to those from the standard Euler 
equations without altering the error structure of the model, our proposed approach 
successfully overcomes the empirical dilemma. 
 In addition, the log-linearized Cross-Euler equations can be shown to be 
robust against several nuisance factors (see Appendix).  In particular, even in the 
existence of liquidity constraints or a certain type of habit formation, cointegration 
relationships ( 18 ) and ( 19 ) yield super-consistent estimates for α  and γ , while 
Euler equations ( 4 ) and ( 5 ) are not guaranteed to yield consistent estimates.  On 
the other hand, in the absence of liquidity constraints or habit formation, both 
log-linearized Cross-Euler equations and standard Euler equations yield 
super-consistent and consistent estimates of α  and γ , respectively. This latter 
proposition, which basically states that the estimates of IES parameters from 
cointegration analysis and GMM to be close in the absence of liquidity constraints 
or habit formation, is particularly important since we can formally test this 
hypothesis using statistical methods such as Cooley and Ogaki's (1996) LR type 
test.   
 
4. Estimating IES Parameters from the Cross-Euler Equations 
 
4.1 Data Description 
 

The data used in this paper is based on the Family Income and 
Expenditure Survey (FIES) from 1982 to 2004.  In order to preserve enough 
number of observations, we focused on the expenditure behavior of both 
metropolitan and rural households excluding single-person households and 
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agricultural households.5   To smooth out the haphazard monthly movements, the 
expenditure data is transformed into quarterly data by summing monthly 
observations and the price data is transformed into to quarterly data by taking 
quarterly averages.  The seasonal factor in both expenditure and price data have 
been removed using X-12 ARIMA method.6  As a result of these adjustments, we 
have total of 90 observations (1982Q1 to 2004Q2) in estimating the IES 
parameters. 

Although it is possible to define food expenditure in various ways, we 
construct food expenditure data by excluding ‘alcoholic beverages’ from ‘all food’ in 
FIES expenditure category.  As Unayama (2003) reports, alcoholic beverages in 
Japan are well characterized as luxury goods rather than necessity goods.  While 
other food related goods are characterized as necessity goods, the characteristic of 
alcohol beverages stands in sharp contrast to other food related goods.  In order to 
retain the homogeneity among the food related goods so as to avoid the goods 
aggregation bias, we have deliberately excluded alcoholic beverages from the food 
category.  

In constructing the non-food expenditure data, we have combined 
expenditure categories ‘apparel’ and ‘other goods’ in FIES.  Again, Unayama 
(2003) found some empirical evidence that suggest ‘apparel’ and ‘other goods’ to be 
luxury goods.  Based on this finding, the goods aggregation bias from combing 
‘apparel’ and ‘other goods’ does not seem to be too problematic. 

The price indexes for food and non-food have been constructed by taking 
the weighted average within the same category.  The weight for each item 
corresponds to real expenditure share of each item within the category.  Then 
those price indexes are used to deflate the nominal expenditure of food and 
non-food in order to convert them into real expenditure.  Finally, the real 
expenditure for food and non-food are further adjusted to per-capita base.  The 
Figure 1 and Figure 2 show the time-series plots for each variable.   
 
4.2. Preliminary Analysis: Testing for Unit Root 
 
 As for a preliminary analysis before the cointegrating regression and 

                                                   
5  Family Expenditure and Income Survey started to include the single-person 
households and agricultural households in the survey starting from January 2000. 
6 The consumption tax, which was initially set at 3%, was introduced in April 1989 and 
subsequently raised to 5% in April 1997.  The effects of consumption tax on the prices 
of goods have been removed by including the level shifts in X-12 ARIMA method. 
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testing, we test the null of unit root non-stationarity against the alternative of 
(trend) stationarity for the variables included in the cointegrating regression.  In 
particular, we test the unit root non-stationarity of the following four variables:  
log food expenditure ( tFln ), log non-food expenditure ( tNFln ), opportunity cost of 
current food consumption against future non-food consumption 

( NF
t

F
tt PPr 1/*)1ln( ++ ), and opportunity cost of current non-food consumption against 

future food consumption ( F
t

NF
tt PPr 1/*)1ln( ++ ).  For the sake of visualization, the 

time series plot of the log food and non-food expenditure are provided in Figure 1, 
while the time series plot of the opportunity costs are provided in Figure 3.  In 
Figure 3, the legend `Opp1` stands for the opportunity cost of current food 
consumption against future non-food consumption and `Opp2` stands for the 
opportunity cost of current non-food consumption against future food consumption.   

The test results are reported in Table 0.  For the tests setting the null as 
unit root non-stationarity, we have conducted Said and Dickey’s (1984) augmented 
Dickey-Fuller (ADF) test and Phillips and Perron’s (1988) PP test.  The test 
results for ADF test and PP test are reported on the left hand side of Table 0.  As 
can be seen from the table, the tests were not able to reject the null of unit root 
non-stationarity at the 5% significance level for all variables relevant to 
cointegrating regression.  As for confirmatory analysis, we have tested the null of 
(trend) stationarity using KPSS method proposed by Kwiatkowski et al. (1992).  
The test results are reported on the right hand side of Table 0.  The test rejects 
the stationarity of log food expenditure and `Opp1` -- conforming to the test results 
from ADF and PP tests --, but was not able to reject the stationarity of the log 
non-food expenditure and `Opp2`.  We have also tested the null of trend 
stationarity using KPSS test.  Here, the test rejects the trend stationarity for 3 
out of 4 variables.  Although, the hypothesis regarding the unit root 
non-stationarity regarding 4 variables are somewhat mixed, considering that ADF 
and PP tests were not able to reject the unit root hypothesis for all the cases and 
also based on the several rejections of (trend) stationarity from KPSS test, from 
this point forward, we regard four variables considered in the cointegration 
regression to be I(1) variables.   

 
4.3. Dynamic Regressions and the Hausman-type Cointegration Test 
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In this subsection, we use Stock and Watson’s (1993) DOLS estimator in 
estimating the IES parameters from the log-linearized Cross-Euler equations7.  
We test the null hypothesis of cointegration.with Choi, Hu, and Ogaki’s (2005) 
Hasusman-type Cointegration test in the DOLS framework.   

The DOLS estimator is well known, but the Hausman-type cointegration 
test is not.   Therefore, we mainly explain the idea of the Hausman-type 
cointegration test in this subsection. Consider the following dynamic regression 
where ty  is an I(1) variable, tx  is a 2-dimensional vector of I(1) variables, and k 
stands for the order of leads and lags. 

 t

k

j
jtiji

i
tt exxy +∆+= ∑∑

=
−

= 1
,,

2

1
)(' γβ  ( 20 ) 

The leads and lags of the first difference of the regressors are added in this 
regression in order to correct for the endogeneity problem.  Following Stock and 
Watson (1993), we assume that the endogeneity correction of adding leads and lags 
perfectly eliminates the endogeneity problem in that te  is strictly exogenous with 
respect to the regressors in ( 20 ) in this paper8. 

Now, if the error term te is I(0), then this is a dynamic cointegrating 
regression.  As shown by Stock and Watson (1993), the OLS estimator for this 
regression is super-consistent and asymptotically efficient under their regularity 
conditions. 

On the other hand, if the error term te is I(1), then regression ( 20 ) is a  
spurious regression and, the Dynamic OLS is inconsistent for the coefficient β as 
shown in Choi et al. (2005).  The Hausman-type cointegration test utilized these 
properties to discriminate between the situation in which te is I(0) and that in 
which te is I(1).  In order to understand the idea of this test, it is useful to start 
with an analysis of the DOLS estimator by the Gauss-Markov Theorem, using 
Ogaki and Choi’s (2001) framework.  For this purpose, we consider a special case 
in which te  is serially uncorrelated.  In this case, Ogaki and Choi’s conditional 
probability version of the Gauss-Markov Theorem applies9, and the OLS applied to 

                                                   
7 Nishiyama (2005) adopted Park’s (1992) Canonical Cointegration Regression (CCR) 
in estimating the IES parameters.  If the parametric form of the endogenerity 
correction is a good approximation, then the Dynamic OLS Regression is more efficient 
than the CCR. .   
8 To ease our exposition, we assumed that the endogeneity correction is complete. We 
can relax this assumption as shown by Saikkonen (1991) under some regularity 
conditions. 

9 We implicitly assume that the error has finite second moments and that the design 
matrix is of full column rank given the realization of the regressors. 
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( 20 ) is the Best Linear Unbiased Estimator (BLUE) given the realization of the 
regressors. 

  Now consider the case in which te  is a random walk.  Then all the 
assumptions of the condional probability version of the Gauss-Markov Theorem 
hold except for the spherical variance assumption.  In this case, the OLS applied 
to (3.1) is unbiased (since we are assuming strict exogeneity), but is not efficient.  
In this case, we can apply the Generalized Least Squares (GLS) to ( 20 ) to obtain 
the BLUE.  Applying GLS to (3.1) basically means that we apply OLS after taking 
the first difference of ( 20 ); 

 t
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jtiji
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)(' γβ  ( 21 ) 

Choi et al. (2005) call this estimator the GLS corrected estimator.   
In more general cases in which the error is serially uncorrelated, Choi et 

al. (2005) note that asymptotic theory shows that (a) the DOLS estimator is 
asymptically efficient if  te is I(0), (b) the GLS corrected estimator is consistent, 
but is not as efficient as the DOLS estimator if  te  is I(0), (c) the DOLS estimator 
is inconsistent if  te  is I(1), and (d) the GLS corrected estimator is consistent if  

te  is I(1). 
These observations naturally lead to the idea of testing for cointegration 

by comparing the DOLS estimates and the GLS corrected estimates for β. Let the 
Hasuman-type cointegration be defined by 

 ( ) ( )dolsdglsdolsdglsT VTH ββββ β
ˆˆˆ'ˆˆ 1 −−= − ,  

where T stands for the sample size, βdols  stands for DOLS estimator in level 
regression, βdgls stands for GLS corrected estimator in differenced regression, and 

Vβ stands for a consistent estimator for the asymptotic variance of ( )ββ −dglsT ˆ .  

Under the null hypothesis that error term is I(0), both estimators βdols and βdgls are 
consistent and, therefore, they should be ‘close’ to each other. The test statistic, HT, 
has an asymptotic chi-square distribution with 2 degrees of freedom.  On the other 
hand, under the alternative hypothesis that the error term is I(1), the level 
regression will be spurious and, therefore, only the differenced regression will be 
consistent.  Therefore, the estimates from these two estimators will be very 
different with a large probability.  The test statistic, HT, diverge in this case.  

 
4.4. Estimation Results 
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Having explained the dynamic regression and Hausman-type 

Cointegration test, we are now in the position to estimate the IES parameters from 
the log-linearized Cross-Euler equation.  The estimation results of the IES 
parameters are reported in Table 1.   

First, we have estimated the IES parameters α and γ from eq. ( 18 ) using 
the Dynamic OLS.  In order to check for the robustness of the estimate, we report 
the estimation results for several lag specifications.  As can be seen from the 
left-side panel of the Table 1, level regression estimates of α and γ have 
theoretically ‘correct’ signs.  The estimates for α ranges from 1.281 to 1.424, while 
γ ranges from 0.382 to 0.435.  We have also estimated the IES parameters α and γ 
from the differenced regression.  In a sharp contrast, the differenced regression 
estimates of α and γ turned out to be conspicuously smaller than those from the 
level regression.  The estimates for α ranged from 0.148 to 0.515, while the 
estimates for γ ranged from 0.013 to 0.343.  Although the difference between the 
estimates from level regression and differenced regression are evident, we formally 
conduct a statistical test using Hausman-type Cointegration test.  As can be seen 
from the test results reported in Table 1, for all the lag specifications, the 
Hausman-type test rejects the null hypothesis of cointegration.  Taking this test 
result for a face value, this implies that the log-linearized Cross-Euler eq. ( 18 ) is a 
spurious regression and, therefore, the estimates of α and γ from the level 
regression are likely to be inconsistent.  As such, for the purpose of recovering the 
structural parameters from eq. ( 18 ), it seems to be reasonable to rely on the 
estimates from the differenced regression. 

Second, by the same token, we have estimated the IES parameters α and γ 
from eq. ( 19 ) and the estimation results are reported on the right-side panel of 
Table 1.  As can be seen from the table, both level and differenced regression yield 
theoretically ‘correct’ signs for α and γ.  Turning to estimation results from the 
level regression, the estimates for α ranges from 0.167 to 0.519, while the estimates 
for γ ranges from 0.163 to 0.298.  Next, turning to the estimation results from the 
differenced regression, the estimates for α ranges from 0.215 to 0.446, while the 
estimates for γ ranges from 0.1 to 0.337.  Giving a cursory look at the estimation 
results, there seems to be no discernible difference between the estimates from the 
level regression and differenced regression.  Again, to formally back this 
observation, we conduct the Hausman-type Cointegration test.  Conforming to our 
guess, the Hausman-type test did not reject the null hypothesis of cointegration for 
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all lag specifications, supporting the cointegration relationship of eq. ( 19 ).  
Provided this test result, for the sake of recovering the structural parameters from 
eq. ( 19 ), it seems to be reasonable to rely on the level regression, which is known 
to be more efficient than the differenced regression.  Thus, thanks to the 
Hausman-type Cointegration test, we now have some guidance in which type of 
regression to rely on.  In other words, for the Cross-Euler eq. ( 18 ), it seems to be 
reasonable to rely on the differenced regression, while for the Cross-Euler eq. ( 19 ), 
it seems to be better to rely on the level regression.   

Now, the big puzzle remains.  If indeed the permanent income /life-cycle 
model described in Section 2 is correct, we should be expecting both log-linearized 
Cross-Euler equation to be cointegrated.  Likewise, if some assumptions 
pertaining to the cointegration restriction are violated, then it is natural for us to 
expect both log-linearized Cross-Euler equation to be spurious.  However, the test 
results from the Hausman-type Cointegration test were perplexing.  That is, for 
the log-linearized Cross-Euler eq. ( 18 ), the test rejected the null of cointegration, 
implying the regression to be spurious, while for the log-linearized Cross-Euler eq. 
( 19 ), the test did not reject the null of cointegration.  How should we interpreting 
this contradicting results? 

It is indeed difficult to find a clear-cut answer to the above question.  
Although this deep puzzle remains, however, based on the observations that 1) 
differenced regression estimates for α and γ from both Cross-Euler equation are 
relatively similar, and 2) that the level regression from the Cross-Euler eq. ( 19 ) 
yields estimates that are close to the differenced regression estimates10, in this 
paper, we simply regard the log-linearized Cross-Euler ( 18 ) to be spurious and 
disregard their estimates based on the level regression.   
 
5. Estimating IES parameters from the Euler Equations 
 

In this section, we conduct Hansen's (1982) GMM on eq. ( 4 ) and ( 5 ).  
Before reporting the GMM estimation results, we discuss the choice of 
instrumental variables (IV). 
  
5.1. Choice of Instruments and Lag Order 
  

                                                   
10 This “closeness” is statistically confirmed by the Hausman-type Cointegration test 
which is reported on the right-panel of Table 1.   
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As was pointed out by Hall (1993) and Ogaki (1993), it is well known that 
the estimate of GMM is very sensitive to the choice of instrumental variables.  To 
test for the robustness of the estimates vis-a-vis the choice of instruments, we 
estimated the parameters under several types of instruments with varying time 
lags.  The family of instrumental variables was chosen following the convention in 
applied GMM literature.  The following table summarizes the choice of 
instrumental variables. 
 

 

 Another issue in conducting GMM estimation is to choose the lag order of 
the error term when estimating the variance-covariance matrix of GMM 
disturbance terms.  According to the rational expectation hypothesis, the forecast 
error will be serially uncorrelated.  Since our model is based on the representative 
agent with rational expectation, economic theory suggests a lag order of zero.  
Nevertheless, taking into account the time aggregation problem which was pointed 
out by Grossman et al. (1987) and Heaton (1995) among others, we choose a lag 
order of one in estimating the variance-covariance matrix of GMM disturbance 
terms following Hansen and Heaton (1996).  Also, to be consistent with time 
aggregation issues, we have lagged instrumental variables for at least two periods 
when conducting GMM estimations. 
 
5.2. Estimation Results 
 
 GMM estimation was conducted using a family of conventional 

IV Type Euler Equation ( 4 ) Euler Equation ( 5 ) 
IV0 Const., F-lag, PF-lag Const., NF-lag, PNF-lag 
IV1 Const., F-lag, Int-lag Const., NF-lag, Int-lag 
IV2 Const., F-lag, NF-lag Const., F-lag, NF-lag 
IV3 Const., PF-lag, PNF-lag Const., PNF-lag, PF-lag 
IV4 Const., F-lag, PF-lag, Int-lag Const., NF-lag, PNF-lag, Int-lag 
IV5 Const., F-lag, NF-lag, PF-lag, PNF-lag Const., F-lag, NF-lag, PF-lag, PNF-lag 
IV6 Const., F-lag, NF-lag, PF-lag, 

PNF-lag, Int-lag 
Const., F-lag, NF-lag, PF-lag, PNF-lag, 
Int-lag 

Note: Following the convention in applied GMM literature, the instrumental variables 

have been constructed by lagging the forcing variables.  Namely, constant (const.), 

lagged food consumption growth rate (F-lag), lagged non-food consumption growth rate 

(NF-lag), lagged price change in food (PF-lag) and non-food (PNF-lag), and lagged real 

interest rate (Int-lag). 
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instruments.  GMM estimation results of food Euler eq. ( 4 ) are summarized in 
Table 2.  Similarly, GMM estimation results of non-food Euler eq. ( 5 ) are 
summarized in Table 3.  Hansen’s J-statistics for each GMM estimation are also 
reported. 
 Let us first turn to Table 2.  As can be seen from the table, the estimates 
of α  are close to zero for the most cases with occasional negative estimates.  Also, 
for the estimates which were relatively apart from zero, there had been a tendency 
for those estimates to be accompanied by relatively high standard errors.  
Literally interpreting this estimation result, this implies that the representative 
agent is nearly risk-neutral with regard to the food consumption.  Also, as for the 
intertemporal substitution of the food consumption, low estimates of α  implies 
high IES.  Even worth, the negative estimates of α implies the representative 
agent to increase current consumption by intertemporally substituting future 
consumption in response to a rise in real interest rate.  In other words, the 
negative estimates of IES implies that the income effect from the rise of real 
interest rate dominate the substitution effect, which is quite unlikely to happen in 
practice.  Finally, as for the specification check of the Euler equation, we now turn 
to Hansen’s J-statistics.  The test rejected the specification of the Euler equation 
for 12 out of 21 cases.  Considering this frequent rejections by the Hansen’s J-test, 
this can be considered as empirical evidence against the specification of the Euler 
equation for the food consumption.  
 Next, let us turn to Table 3.  The estimates of γ  are close to zero with 
some negative estimates.  Interpreting this result, this implies that the 
representative agent to be risk-neutral with regard to the non-food expenditure.  
Also, as for the intertemporal substitution of the non-food consumption, low 
estimates of γ implies high IES.  Again, literally interpreting, high IES for 
non-food expenditure means that the representative agent is willing to substitute 
current non-food consumption for future non-food consumption in response to a 
miniscule change in the real interest rate.  Turning to J-test results, we found 14 
rejections out of 21 cases which can be considered as evidence against the 
specification of the non-food consumption.   

From our conventional wisdom, risk-neutral preference or extremely high 
value of IES (or even negative IES) is counter-intuitive and therefore it is hard to 
accept this GMM estimation result for face value.  In addition, taking into account 
the strong evidence against the specification of the Euler equations for both food 
and non-food consumption from Hansen J-test, there seems to be little ground to 
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believe that the GMM estimates for α and γ are consistent.  However, at the same 
time, we should be aware of the possibility of size distortion since we have only 
used 90 sample periods in estimating the IES parameters.  Due to the small 
sample size, it may well be the case that the J-test over-rejected the specification of 
the Euler equation.  In order to verify the specification of the Euler equation 
further, we use likelihood ratio type test in the next section. 
 
5.3.1. Further Specification Test 
 

In the previous subsection, we have solely relied on Hansen J-test as for 
the specification check of the Euler equations.  In this subsection, for the sake of 
additional specification check, we conduct the likelihood ratio type test proposed by 
Cooley and Ogaki (1996).  The idea of the likelihood ratio type test is as follows.   

If the model is correct under the assumption that there is no liquidity 
constraint or habit formation, log-linearized Cross-Euler equations will be correctly 
specified with cointegrating restriction.  At the same time, standard Euler 
equations will also be correctly specified.  Consequently, under the null hypothesis 
that the model is correctly specified, parameter estimates of α  and γ  from 
cointegration regression and GMM estimation should be statistically close.  Under 
the test, the null hypothesis will be  

 EulerCrossGMMEulerCrossEulerH −− == γγαα  and :0 .  

The rejection of the null implies that there exists at least one assumption that is 
violated.  Unfortunately, the rejection of the null does not provide us much 
information about which assumption has been violated.  On the other hand, the 
non-rejection of the null supports or, at least, leaves some possibility open for the 
plausibility of the joint hypothesis such that 1) the representative agent's utility 
function is of addi-log type, 2) the agent does not face liquidity constraints, and 3) 
the agent does not form habit.   
 
5.3.2. Test Results 
 

Here, we report the results of Cooley and Ogaki's (1996) LR-type test.  In 
conducting the test, the same instruments from GMM estimation were used for 
both restricted and unrestricted GMM.  We basically tested two types of null 
hypothesis.  The first null hypothesis is αEuler=αCross-Euler and results are reported in 
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Table 4.  The second null hypothesis is γEuler=γCross-Euler and results are reported in 
Table 5. 

First, let us see the results under the null of αEuler=αCross-Euler.  Turning to 
Table 4, which reports the LR-type test results based on the DOLS estimate11 from 
eq. ( 19 ), we found 9 rejections out of 21 cases.  Considering this frequent rejection 
of the null hypothesis, the LR-type test does not seem to be supporting the 
specification of the Euler equation for food consumption.  This test result is 
consistent with the test result from Hansen J-test.   

Next, we turn to results under the null of γEuler=γCross-Euler.  Examining 
Table 5, which reports the test results based on the DOLS estimate,12 again, from 
eq. ( 19 ), we found 8 rejections out of 21 cases.  Again, conforming to the result 
from Hansen J-test, the LR-type test frequently rejected the null hypothesis of 
γEuler=γCross-Euler, giving little support for the specification of the Euler equation for 
non-food consumption.    

Thus, even for the alternative specification test utilizing LR-type test, we 
found an evidence against the specification for both food and non-food Euler 
equations.  Based on the test results from Hansen J-test and LR-type test, there 
seems to be no strong ground in believing that the Euler equations are correctly 
specified.  Since the Euler equations are unlikely to be correctly specified, 
consequently, the IES estimates from GMM estimation are unlikely to be 
consistent as well.   
 
6. Concluding Remarks 
 
 In this paper, we adopted the Cross-Euler equation approach in estimating 
the IES following Nishiyama (2005).  In particular, based on the two-goods (food 
and non-food consumption) version of the LCPIM, we exploited the cointegrating 
restriction implied by the Cross-Euler equation in estimating the IES of the 
                                                   
11 The estimate for αCross-Euler is based on the DOLS estimation of the log-linearized 
Cross-Euler eq. ( 19 ) with the lag order of four.  The reason why we have relied solely 
on the Cross-Euler eq. ( 19 ) is because the regression of the log-linearized Cross-Euler 
eq. ( 18 ) is deemed spurious.  Regarding the lag order of the DOLS estimation, we 
have noticed an influence possibly from the endogeneity problem.  As can be seen from 
the Table 1 right-hand side panel, the DOLS estimate for α increases as the lag order 
increases from zero to four.  Since the endogeneity bias can be mitigated by including 
higher order of lags, we have decided to pick lag order of four in this particular 
exercise.   
12 For the same reason, the estimate for γCross-Euler is based on the DOLS estimation of 
the log-linearized Cross-Euler eq. ( 19 ) with the lag order of four. 
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representative consumer.   
 We used Stock and Watson’s (1993) dynamic OLS in estimating the 
cointegrating regression.  From the level regression estimates, the IES for food 
consumption was around 0.76 (i.e., estimates of α was around 1.3) from one 
Cross-Euler specification and was around 3.33 (i.e., estimates of α was around 0.3) 
from another Cross-Euler specification.  As for the IES for non-food consumption, 
the estimates were around 2.5 for one Cross-Euler specification and were around 5 
for another specification.  Thus, we encountered significantly different sets of IES 
estimates depending upon the specification of the Cross-Euler equations.  In order 
to discern which set of estimates are more reliable, we conducted Hausman-type 
Cointegration test proposed by Choi et al. (2005).  According to the test results, it 
turned out that one of the Cross-Euler equation specifications to be spurious and 
the other to be cointegrated.  Simply disregarding the estimation results from a 
spurious regression, the sensible estimates of IES seems to be around 3.33 for food 
consumption and around 5 for non-food consumption.  Although these IES 
estimates are not as large as the previous estimates of the IES, however, they still 
remain to be oddly high.   
 For the sake of comparison, we also estimated the IES for food and 
non-food consumption based on the standard Euler equation using GMM 
estimation method, which has been a popular method in the preceding studies.  
Conforming to the preceding studies, the IES estimates for both food and non-food 
consumption turned out to be conspicuously high (i.e., CRRA coefficients to be close 
to zero).  Further, Hansen J-test and Cooley and Ogaki’s LR-type test frequently 
rejected the specification of the Euler equations.   
 Taking into account the possible miss-specification of the standard Euler 
equation based on the test results from J-test and LR-type test, it is likely that 
GMM estimation for IES parameters to be inconsistent.  Given this test result, 
instead of relying on those GMM estimation results, one may be naturally tempted 
to count on the IES estimation results from the cointegration regression.  
Considering the robustness of the log-linearized Cross-Euler equation against the 
existence of liquidity constraint or habit formation, there seems to be a good reason 
to count on the IES estimates from the cointegration regression.  However, at the 
same time, one should bear in mind the fact that one of the specification of the 
Cross-Euler equation turned out to be spurious in this paper.  If indeed the 
assumptions pertaining to LCPIM model adopted in this paper were all plausible, 
then we should be expecting both specifications of the Cross-Euler equation to be 
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cointegrated.  The mixed evidence from Hausman-type Cointegration test is 
perplexing and may be implying that some of the assumptions we made in this 
paper to be violated.  For this reason, the IES estimates from the cointegration 
regression reported in this paper should be interpreted with caution. 
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Appendix: Robustness of the Cointegration Relationship implied 
by the Cross-Euler Equation  
  

Unlike the standard Euler equation which specifies the intertemporal 
optimality condition in terms of the growth rate of the forcing variables, the 
log-linearized Cross-Euler equation specifies the intertemporal optimality 
condition in terms of level.  By the virtue of long-run equilibrium relationship in 
terms of level, the cointegration regression on ( 18 ) and ( 19 ) can be shown to be 
robust against certain types of nuisant factors -- i.e., the cointegration regression 
yields a super-consistent estimates for the IES parameters.  In this appendix, 
based on Nishiyama (2005), we show the robustness of cointegration relationship 
against two types of nuisant factors discussed in the consumption literature: 
liquidity constraints and habit formation. 
  
A.1.  Robustness against Liquidity Constraints 
  

Among the various types of liquidity constraints, we adopt the simplest 
form -- i.e., a borrowing constraint that requires the net worth of the agent to be 
always non-negative.  Specifically, following Zeldes (1989), we impose the 

constraint such that 0F NF
t t t t tW P F P NF− − ≥  to the agent's dynamic optimization 

problem. Then, the Bellman equation can be reformulated as follows  
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where Lagrangian multiplier tm  takes a positive value when the liquidity 
constraint is binding and becomes zero when the constraint is not binding. 
 As a preliminary step in showing the robustness of a cointegration 
relationship, we first show that the Lagrangian multiplier is stationary.  The 
Euler equations for food and non-food goods can be shown to be  
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respectively.  Now, following the treatment by Zeldes (1989), we normalize the 
Lagrangian multiplier into two types:  
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As can be seen, F
tm  stands for the Lagrange multiplier denominated by the 

present-valued marginal utility derived from 1tF + , and NF
tm  stands for another 

normalization in terms of 1tNF + .  Here, it should be noted that F
tm  and NF

tm  are 

both non-negative and inside the information set available at period t, since the 
denominators used for the normalization are positive and non-stochastic as of 
period t. 
 Using the new normalization of the Lagrangian multiplier and with 
addi-log utility function, the Euler equation for food and non-food goods can be 
conveniently rearranged as  
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. (A. 3) 

where 1
F
tε +  and 1

NF
tε +  represent the forecast errors arising from the discrepancy 

between the expected and realized marginal utility.  By assuming that the forecast 

errors are stationary over time, the Lagrangian multipliers F
tm  and NF

tm  can be 

shown to be stationary as well.  
 Given the stationarity of the Lagrangian multipliers, we next demonstrate 
the robustness of the cointegration relationship. The specification of the 
Cross-Euler equation in the presence of liquidity constraint can be shown to be  
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For convenience, let us take the case of eq. (A. 4) to show the robustness of the 
cointegration relationship against the liquidity constraint.  Dividing both side of 
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eq. (A. 4) by 1 1 1(1 ) ( , ) / NF
t t NF t t tr E U F NF Pβ + + + +    and rearranging the equation yields 

the following relationship  

 1 1
1

1
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F
NFt NF t t

tt tNF
t F t t

P U F NFr e
P U F NF

β m+ +
+

+

+ + = +    

 

where NF
tm  stands for the new normalization of the Lagrangian multiplier defined 

above, and 1te +
  stands for the forecast error.  Taking the logarithm on both sides 

and by the assumption of addi-log utility function, it follows that  

 11
1

ln(1 ) ln ln ln(1 ) ln(1 )
F

NFt
tt t t tNF

t

Pr NF F e
P

γ α m++
+

+ − + = + − +  (A. 6) 

Now, since the forecast error follows the I(0) stochastic process and the normalized 
Lagrangian multiplier follows the I(0) process as well, the RHS of eq. (A. 6) will be 
I(0).   As a consequence of this stationarity restriction, the LHS of eq. (A. 6) will 
also be I(0), which is exactly the cointegration relationship shown in eq.( 18 ).  
Thus, under the addi-log utility function, the cointegration relationship ( 18 ) turns 
out to be robust against liquidity constraints and, therefore, allows us to estimate 
the IES parameters super-consistently even in the presence of liquidity constraints.  
A similar argument holds for the cointegration relationship ( 19 ). 
 The intuition behind the robustness of the cointegration relationship is as 
follows.  The Lagrangian multiplier term, which is an unobservable variable, 
enters the regression as an error term in addition to the forecast error.  However, 
since the Lagrangian multiplier term is stationary over time, its presence does not 
affect the cointegration relationship among I(1) variables -- i.e., 1ln tNF + , ln tF , and 

the opportunity cost 1ln(1 ) /F NF
t t tr P P++ .  Putting it another way, the perturbation 

resulting from the Lagrangian multiplier term is of I(0) stochastic order which 
distorts the growth rate of optimal consumption (which is the case for the standard 
Euler equation), but remains relatively innocuous vis-a-vis the level of the optimal 
consumption (which is the case for the log-linearized Cross-Euler equation).  

Of course, in the small sample, there is an endogeneity problem in 

estimating the cointegrating relationship, since the Lagrangian multiplier NF
tm  

and future consumption 1tNF +  are obviously correlated.  However, this 
endogeneity problem could be handled by an estimation method such as Phillips 
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and Hansen's (1991) FM-OLS or Park's (1992) CCR.  Further, since the estimators 

in cointegrating regression will be super-consistent, i.e. 1( )PO T −  consistent, the 

endogeneity problem will not matter asymptotically.  Thus, despite the 
endogeneity problem stemming from the presence of liquidity constraints, we can 
still obtain consistent estimates for α  and γ  from the cointegration relationship 
( 18 ) and ( 19 ). 
  
A.2.  Robustness against Habit Formation 
  

Next, we show the robustness of the cointegration relationship ( 18 ) and 
( 19 ) in the presence of habit formation in the agent's preference.  Among the 
various types of habit formation, we follow the specification used by Amano and 

Wirjanto (1996).   Assuming that ln tF , ln tNF , and ln( / )NF F
t tP P  follows the I(1) 

process and that the agent has habit forming preference as follows  

 ( )* *

0
,t t i t i

i
E U F NF

∞

+ +
=

 
  
∑   

where * *( , )t i t iU F NF+ +  takes the addi-log type utility function and habit formation 

variable defined as *

0
t j t j

j
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∞

−
=

≡∑  and *

0
t j t j

j
NF NFδ

∞

−
=

≡∑ , Amano and Wirjanto 

(1996) shows the stochastic relationship among the intratemporal relative price, 
current food and non-food goods as follows,  
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Taking the logarithm on both sides of the above stochastic relationship, the 
intratemporal relative price, food and non-food goods reveal the following 
cointegration relationship, 

 )0(~lnln)ln(ln. INFFPPconst tt
F

t
NF

t γα +−−+   

Now, by adding 1ln tNFγ +  and 1ln NF
tP+  on both sides and subtracting ln tNFγ , 

ln NF
tP , and ln(1 )tr+  from both sides, we obtain the following relationship  
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By assumption, the growth rate of tNF , NF
tP  and the real interest rate is 

stationary and, therefore, the RHS of the above relationship is I(0).  By the 
stationarity restriction on the RHS, consequently, the LHS will follow the I(0) 
process which is exactly the cointegration relationship we derived in eq. ( 18 ).  
Thus, cointegration relationship ( 18 ) turns out to be robust even in the presence of 
habit formation in the agent's preference.  A similar argument holds for 
cointegration relationship ( 19 ). 
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Figure 1 : Log Food and Non-Food Expenditure
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Figure 2 : Real interest rate , Food and Non-Food Price Index
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Figure 3: Opportunity Costs
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Table 0

cst. cst.&trend cst. cst.&trend cst. cst.&trend

Note:
Lag order used for ADF test was chosen based on Schwartz Information Criteria.
* denotes the rejection of null hypothesis at 5% level.
** denotes the rejection of null hypothesis at 1% level.

Null of Unit Root Null of Stationary
ADF test PP test KPSS test

-2.257 -2.310

-1.383 -0.783

0.242**

0.301**

-2.257

-1.201

-2.032

-0.872

-1.149 -3.038

0.702*

0.315

1.086** 0.077

-2.703 -2.682 -2.612 -2.589 0.160 0.167*
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Table 1

Hausman-Test Hausman-Test
α γ α γ α γ α γ

Lag 0 1.314 0.382 0.333 0.013 0.167 0.163 0.329 0.1
(0.184) (0.03) (0.005) (0.001) (0.068) (0.011) (0.008) (0.003)

Lag1 1.381 0.414 0.313 0.248 0.23 0.191 0.297 0.288
(0.252) (0.038) (0.042) (0.006) (0.069) (0.010) (0.019) (0.009)

Lag2 1.424 0.435 0.515 0.343 0.351 0.239 0.386 0.289
(0.349) (0.049) (0.072) (0.016) (0.064) (0.009) (0.054) (0.021)

Lag3 1.384 0.427 0.343 0.275 0.48 0.289 0.215 0.29
(0.483) (0.062) (0.075) (0.011) (0.083) (0.011) (0.101) (0.027)

Lag4 1.281 0.413 0.148 0.168 0.519 0.298 0.446 0.337
(0.556) (0.060) (0.135) (0.018) (0.128) (0.015) (0.112) (0.025)

Note:
Number in brackets represents the estimated standard error.
* denotes the rejection of null hypothesis at 5% level.
** denotes the rejection of null hypothesis at 1% level.

9.46**

3.13

0.22

0.02

0.69

0.04

189.82**

26.54**

11.37**

13.44**

DOLS (level) GLS-corrected (difference)
Cross-Euler Equation Ver.1 Cross-Euler Equation Ver.2

DOLS (level) GLS-corrected (difference)



Table 2
GMM Result:
Food Euler eq.(2.4)

IV Type Lag β α J statistics D.F.
(-2) 0.978 -0.538 1.501 1

(0.003) (0.175) [0.220]
(-3) 0.979 0.665 2.262 1

(0.003) (0.210) [0.132]
(-4) 0.979 1.847 0.831 1

(0.003) (0.543) [0.361]
(-2) 0.979 -0.044 20.219** 1

(0.003) (0.191) [0.000]
(-3) 0.981 0.681 12.763** 1

(0.003) (0.226) [0.000]
(-4) 0.979 2.342 5.319* 1

(0.003) (0.493) [0.021]
(-2) 0.978 -0.310 0.246 1

(0.003) (0.288) [0.619]
(-3) 0.979 0.536 1.068 1

(0.003) (0.257) [0.301]
(-4) 0.978 0.084 2.702 1

(0.003) (0.189) [0.100]
(-2) 0.978 -0.972 5.638* 1

(0.004) (0.742) [0.017]
(-3) 0.970 -2.769 4.131* 1

(0.008) (1.114) [0.042]
(-4) 0.972 3.857 0.680 1

(0.007) (1.078) [0.409]
(-2) 0.979 -0.141 20.809** 2

(0.003) (0.146) [0.000]
(-3) 0.981 0.667 12.711** 2

(0.003) (0.210) [0.001]
(-4) 0.979 2.304 5.603 2

(0.003) (0.489) [0.060]
(-2) 0.980 -0.375 6.170 3

(0.003) (0.272) [0.103]
(-3) 0.982 0.413 11.986** 3

(0.003) (0.222) [0.007]
(-4) 0.978 0.124 11.899** 3

(0.003) (0.172) [0.007]
(-2) 0.981 0.314 18.068** 4

(0.003) (0.188) [0.001]
(-3) 0.983 0.473 15.820** 4

(0.003) (0.218) [0.003]
(-4) 0.982 0.127 18.447** 4

(0.002) (0.168) [0.001]
Note:
Number in brackets represents the estimated standard error.
Number in square brackets represents the p-value.
* denotes the rejection of null hypothesis at 5% level.
** denotes the rejection of null hypothesis at 1% level.
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Table 3
GMM Result:
Non-food Euler eq. (2.5)

IV Type Lag β γ J statistics D.F.
(-2) 0.952 2.994 4.482* 1

(0.010) (0.718) [0.034]
(-3) 0.981 0.433 4.523* 1

(0.002) (0.208) [0.033]
(-4) 0.979 -0.171 6.588* 1

(0.002) (0.199) [0.010]
(-2) 0.973 1.069 6.128* 1

(0.003) (0.225) [0.013]
(-3) 0.978 0.762 5.994* 1

(0.002) (0.148) [0.014]
(-4) 0.979 0.413 23.447** 1

(0.002) (0.144) [0.000]
(-2) 0.971 -1.918 0.247 1

(0.011) (1.284) [0.619]
(-3) 0.979 0.386 0.261 1

(0.002) (0.273) [0.609]
(-4) 0.979 -0.562 0.255 1

(0.003) (0.383) [0.613]
(-2) 0.972 1.533 0.000 1

(0.003) (0.363) [0.981]
(-3) 0.982 0.132 6.664** 1

(0.002) (0.435) [0.009]
(-4) 0.977 0.362 8.092** 1

(0.002) (0.080) [0.004]
(-2) 0.972 1.075 9.225** 2

(0.003) (0.220) [0.009]
(-3) 0.979 0.696 7.679* 2

(0.002) (0.140) [0.021]
(-4) 0.979 0.399 23.835** 2

(0.002) (0.143) [0.000]
(-2) 0.972 1.331 2.532 3

(0.003) (0.310) [0.469]
(-3) 0.982 0.371 8.363* 3

(0.002) (0.227) [0.039]
(-4) 0.979 0.345 11.295* 3

(0.002) (0.062) [0.010]
(-2) 0.974 1.039 4.000 4

(0.003) (0.200) [0.405]
(-3) 0.980 0.619 11.777* 4

(0.002) (0.155) [0.019]
(-4) 0.980 0.343 16.715 4

(0.002) (0.062) [0.149]
Note:
Number in brackets represents the estimated standard error.
Number in square brackets represents the p-value.
* denotes the rejection of null hypothesis at 5% level.
** denotes the rejection of null hypothesis at 1% level.
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Table 4 Table 5
LR-type Test Result: LR-type Test Result:

IV Type Lag Restricted Unrestricted QLR IV Type Lag Restricted Unrestricted QLR
IV0 (-2) 15.034 1.501 13.533** IV0 (-2) 2.513 4.482 -1.969

(-3) 13.244 2.262 10.982** (-3) 4.056 4.523 -0.467
(-4) 17.380 0.831 16.549** (-4) 5.734 6.588 -0.854

IV1 (-2) 15.034 20.219 -5.185 IV1 (-2) 15.446 6.128 9.318**
(-3) 13.244 12.763 0.481 (-3) 15.087 5.994 9.093**
(-4) 17.380 5.319 12.061** (-4) 15.489 23.447 -7.958

IV2 (-2) 5.118 0.246 4.872* IV2 (-2) 1.172 0.247 0.925
(-3) 0.549 1.068 -0.519 (-3) 0.278 0.261 0.017
(-4) 5.618 2.702 2.916 (-4) 3.773 0.255 3.518

IV3 (-2) 7.843 5.638 2.205 IV3 (-2) 14.076 0.000 14.076**
(-3) 9.090 4.131 4.959* (-3) 6.115 6.664 -0.549
(-4) 5.950 0.680 5.27* (-4) 7.278 8.092 -0.814

IV4 (-2) 15.044 20.809 -5.765 IV4 (-2) 16.817 9.225 7.592**
(-3) 13.654 12.711 0.943 (-3) 15.239 7.679 7.56**
(-4) 18.437 5.603 12.834** (-4) 16.398 23.835 -7.437

IV5 (-2) 12.209 6.170 6.039* IV5 (-2) 15.649 2.532 13.117**
(-3) 9.244 11.986 -2.742 (-3) 7.548 8.363 -0.815
(-4) 12.365 11.899 0.466 (-4) 10.953 11.295 -0.342

IV6 (-2) 15.667 18.068 -2.401 IV6 (-2) 18.321 4.000 14.321**
(-3) 13.883 15.820 -1.937 (-3) 16.454 11.777 4.677*
(-4) 18.456 18.447 0.009 (-4) 17.585 16.715 0.870

Note: Note:
* denotes the rejection of null hypothesis at 5% level. * denotes the rejection of null hypothesis at 5% level.
** denotes the rejection of null hypothesis at 1% level. ** denotes the rejection of null hypothesis at 1% level.
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