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Abstract

This paper demonstrates the concavity of the consumption function of in�nitely

living households under liquidity constraints who are not prudent � i.e. with a

quadratic utility. The concavity of the consumption function is closely related to

the 3-convexity of the value function.
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1 Introduction

Since the numerical illustration by Deaton (1991), researchers have been aware that

liquidity constraints generate a concavity in the consumption function. However, ana-

lytics of the concavity due to liquidity constraints has remained unknown until recently.

Carroll and Kimball (2001) made the �rst important attempt in setting an analytical

foundation and showed the concavity of the consumption function when the consumer�s

optimization has a �nite horizon. Technically, they exploit the convexity of marginal

value function in the terminal period and use the backward induction to show the con-

vexity of marginal value function in the current period. However, in the context of

in�nite horizon, this particular approach is not applicable since the terminal period�s

value function is not de�ned.

In this paper, we o¤er an analytical foundation of the concavity of the consumption

function in the context of in�nite horizon, when consumer�s utility is quadratic. Taking

a di¤erent approach to Carroll and Kimball (2001), we directly prove the 3-convexity

or Levinson�s Inequality (Levinson 1964) of the value function and show that the con-

sumption function is concave. The concept of 3-convexity is extremely convenient when

characterizing the value function, especially with the in�nite horizon. Thus, we regard

this 3-convexity approach as a complement, rather than a substitute, to Carroll and

Kimball�s (2001) backward induction approach in the �nite horizon setting.

Finally, it should be emphasized that under the model that we consider �i.e. con-

sumer�s utility is quadratic �, the concavity is not generated by prudence of the con-

sumer, but is solely generated by the presence of liquidity constraints1. By the virtue

of this set-up, we can solely focus on the analytical mechanism how liquidity constraints

generate the concavity in the consumption function. The rest of the paper is organized

1For the concavity of the consumption function generated by prudence, see Carroll and Kimball

(1996).
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as follows. Section 2 discuss the set-up of the model. Section 3 clari�es the concept of

3-convexity, shows the 3-convexity of the value function and proves the concavity of the

consumption function. Section 4 provides some concluding remarks.

2 The Model

We assume a very simple in�nite horizon dynamic optimization problem where con-

sumer�s utility is quadratic and time-separable. Further, consumer faces no uncertainty

in terms of rate-of-return on the net wealth and in terms of labor income. The only

source that makes the dynamic optimization problem non-standard is the existence of

liquidity constraints �the net wealth cannot be negative. Thus, consumer�s dynamic

optimization problem can be formulated as follows.

Vt(wt) = max
ct+i

1X
i=0

�iU(ct+i) (1)

s:t: wt+i+1 = R � (wt+i � ct+i) + y

wt+i+1 � 0

where ct stands for consumption, which is the control variable of the consumer, and

wt stands for the net wealth, which is the state variable of the optimization problem.

Period-by-period utility is de�ned as a quadratic function in consumption, i.e. U(ct) =

act� (b=2) c2t , where a and b are positive constant parameters. Discount rate �; interest

rate R, and labor income y, are assumed to be time-invariant2. Recursive nature of

2Uncertainty in rate-of-return or labor income can be easily introduced in the model set-up, but

will not alter the main implication. Indeed, since the very message of this paper is the concavity of

consumption function under deterministic environment, introduction of uncertainty will only obscure

the main point of this paper.
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this in�nite horizon problem allows us to reduce it into the following Bellman equation.

V (w) = max
c�w+y=R

�
ac� b

2
c2 + �V ( ~w)

�
(2)

s:t: ~w = R � (w � c) + y

It should be noted that since the optimization horizon is in�nite, the value functions in

the subsequent period will converge to a certain function V (�) as can be seen on both sides

of the Bellman eq. (2). Furthermore, this converged value function is a consequence of

recursive optimization under liquidity constraints from the future period and therefore

should be distinguished from the value function under liquidity unconstrained case3. In

other words, the value function under liquidity constraints will no longer be a quadratic

function even under quadratic utility, which is in sharp contrast to the case without

liquidity constraint whose value function is, of course, quadratic.

Taking the �rst-order condition of eq. (2) with respect to consumption will yield the

following equation.

c(w) =
a

b
� �
b
RV 0( ~w) (3)

The function c(w) on the left-hand side characterizes the optimal consumption as a

function of the current net wealth. Further, by invoking the envelope theorem (or

Benveniste-Scheinkman formula) on eq. (2), we can derive the following relation between

the current shadow price of the net wealth �i.e. the marginal value function evaluated

at the current net wealth �and the future shadow price.

V 0(w) = �RV 0( ~w) (4)

3We assume the regularity condition on discount rate to ensure the Contraction Mapping Theorem

to hold. For more rigorous treatment on this issue, see for Stokey and Lucas (1989). Also, for the

existence of converged value function under the case where control variables are constrained, see for

instance Chmielewski and Manousiouthakis (1996).
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Combining eq. (3) and eq. (4), we obtain the following key equation.

c(w) =
a

b
� 1
b
V 0(w) (5)

The virtue of eq. (5) is that it relates the current optimal consumption to the current

shadow price of the net wealth rather than the future shadow price of the net wealth as

in eq. (3). This key relationship enables us to infer the characteristics of the optimal

consumption function by investigating the nature of the marginal value function. Or

putting it another way, it su¢ ces to characterize the marginal value function in order

to characterize the optimal consumption function4.

Some remarks are in order. If the value function is three times di¤erentiable, then 3-

convexity of the value function is equivalent to positiveness of the third derivative of the

value function �i.e., V 000(�) � 0. However, as pointed out by Carroll and Kimball (2001),

the marginal value function in eq. (5) is �kinked�under the deterministic environment

with liquidity constraints that V 000(�) is not well de�ned. Thus, it is not appropriate to

rely on third order di¤erentiability of V (�) in proving the concavity of the consumption

function, especially in our case of consideration. Fortunately, the concept of 3-convexity

is more general in its applicability. As long as the value function is once di¤erentiable,

3-convexity implies the convexity of marginal value function even if the marginal value

function is kinked and this implication does not require the function to be 2 or 3 times

di¤erentiable. It is this property of 3-convexity that makes it relatively easy to show

the concavity of the consumption function in the presence of liquidity constraints. The

following section clari�es the concept of 3-convexity and then shows that the value

function is 3-convex.
4 It should be noted that when the value function is quadratic (as in the case when preference is

quadratic and without liquidity constraints), the optimal consumption function will be linear. This can

be easily seen from eq. (5).
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3 Main Results

We �rst de�ne the notion of 3-convexity.

De�nition 1 (3-convexity) A function f : [a; b] ! < is said to be 3-convex on [a; b]

if for 8x1; x2 2 [a; b] such that x1 6= x2

f

�
x1 + x2
2

�
�
�
1

2
f(x1) +

1

2
f(x2)

�
| {z }

A

� f(x2)�
�
1

2
f

�
x1 + x2
2

�
+
1

2
f

�
3x2 � x1

2

��
| {z }

B

:

(6)

The inequality (6) is a special case of Levinson�s inequality (Levinson 1964) which

can be regarded as a higher-order Jensen�s inequality. As Jensen�s inequality is closely

related with the notion of convexity, so is Levinson�s inequality with 3-convexity. The

intuition of the inequality (6) can be vividly captured by Figure 1. The left-hand side

of the inequality (i.e. denoted A) represents the di¤erence between the value of function

evaluated at the mid-point of x1 and x2 to the mid-point of the chord from x1 and x2.

It is possible to interpret A as a magnitude of concavity of a function in the domain

[x1; x2]. The right-hand side of the inequality (i.e. denoted B) can be interpreted in the

similar fashion with a di¤erence that domain is now [x1+x22 ; 3x2�x12 ]. Thus, intuitively

speaking, the function will be 3-convex if the magnitude of concavity decreases as x

increases5.

Next, we state the lemma that links 3-convexity of the function to convexity of the

marginal function. The following lemma is a special case of the more general theorem

that links n-convexity to convexity of (n�k)th derivative of a function. Rigorous proof

of the theorem is well beyond the scope of this paper and will be omitted.

Lemma 1 If a function f : < ! < is 3-convex on [a; b], then the �rst derivative f 0 :

< ! < exists and is convex on [a; b].
5Or, in the continuous analouge, f 00(x) is increasing in x
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Proof. See Peµcaríc et al. (1992, pp.16).

We are now in the position to state the key theorem of this paper.

Theorem 1 Let V (w) be the value function stated in (2). Then for any w 2 [0;1),

V (w) is 3-convex.

Proof. Let w1 and w2 be some arbitrary number in [0;1) such that w1 < w2. Then

it su¢ ces to show the following inequality.

V

�
w1 + w2

2

�
�
�
1

2
V (w1) +

1

2
V (w2)

�
� V (w2)�

�
1

2
V

�
w1 + w2

2

�
+
1

2
V

�
3w2 � w1

2

��
which is equivalent in showing that

3V

�
w1 + w2

2

�
+ V

�
3w2 � w1

2

�
� V (w1)� 3V (w2) � 0: (7)

Let sequence fc1;t+jg1j=0 and fc2;t+jg1j=0 be the optimal consumption path given state

w1 and w2, respectively. Now, de�ne �ct+j = 1
2c1;t+j +

1
2c2;t+j and ĉt+j =

3
2c2;t+j �

1
2c1;t+j : Further, de�ne �w = 1

2w1+
1
2w2 and ŵ =

3
2w2�

1
2w1. Then from Chmielewski

and Manousiouthakis (1996), the sequence f�ct+jg1j=0 (or fĉt+jg1j=0) is feasible, but not

necessarily equal to the optimal consumption path given the state �w (or ŵ). Therefore,

V ( �w) �
P1
j=0 �

jU(�ct+j) and V (ŵ) �
P1
j=0 �

jU(ĉt+j). Then from the inequality (7),

it follows that

3V ( �w) + V (ŵ)� V (w1)� 3V (w2) (8)

� 3
1X
j=0

�jU(�ct+j) +
1X
j=0

�jU(ĉt+j)�
1X
j=0

�jU(c1;t+j)� 3
1X
j=0

�jU(c2;t+j):
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Rearranging the right-hand side of the inequality (8) and from the de�nition of the

utility function, it follows that

RHS =

1X
j=0

�j
�
3(a�ct+j �

b

2
�c2t+j) + (aĉt+j �

b

2
ĉ2t+j)

�

�
1X
j=0

�j
�
(ac1;t+j �

b

2
c21;t+j) + 3(ac2;t+j �

b

2
c22;t+j)

�

=
1X
j=0

�j
�
a(c1;t+j + 3c2;t+j)�

b

2
(c21;t+j + 3c

2
2;t+j)

�

�
1X
j=0

�j
�
a(c1;t+j + 3c2;t+j)�

b

2
(c21;t+j + 3c

2
2;t+j)

�
= 0:

Thus, 3V ( �w) + V (ŵ)� V (w1)� 3V (w2) � 0. This proves the theorem.

The concavity of the optimal consumption function follows naturally from Lemma 1

and Theorem 1.

Theorem 2 Let c(w) be the optimal consumption function of the dynamic optimization

problem (2). Then for any w in [0;1), c(w) is concave.

Proof. Let w1 and w2 be some arbitrary number in [0;1) such that w1 < w2. Then

it su¢ ces to show,

c(�w1 + (1� �)w2) � �c(w1) + (1� �)c (w2)

where 0 < � < 1. From eq. (5), this is equivalent in showing that

V 0(�w1 + (1� �)w2) � �V 0(w1) + (1� �)V 0 (w2) .

Now from Theorem 1, V (w) is 3-convex, which in turn implies that V 0(w) is convex

from Lemma 1. This proves the theorem.
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4 Concluding Remark

This paper showed, in the context of in�nite horizon, how the presence of liquidity

constraints generate a concavity in the consumption function, even when consumer is

not prudent �i.e. preference is quadratic. In showing the concavity of the consumption

function, we directly proved the 3-convexity (also known as Levinson�s inequality (1964))

of the value function. This direct approach utilizing 3-convexity of the value function is

convenient in characterizing the consumption function, especially in the in�nite horizon

context and can thought to be a complement, rather than a substitute, to Carroll and

Kimball�s (2001) backward induction approach for the �nite horizon.
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Figure 1:  Illustration of 3-convexity 


