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Abstract

This paper proposes a semiparametric estimator of the long-memory parameter to fit a fractional
exponential (FEXP) model by a likelihood-based approach. We establish that our proposed esti-
mator is more fficient than the FEXP estimator proposed independently by Moulines and Soulier
(1999) and Hurvuch and Brodsky (2001), and has the same asymptotic variance as the fractionally
differenced autoregressive (FAR) estimator proposed by Bhansali et al. (2006) without pooling the
periodogram. The Monte Carlo studies suggest that our estimator outperforms the FEXP estima-
tor or is not inferior to the Gaussian semiparametric estimator (GSE) and will be also empirically
effective in non-Gaussian processes.

1 Introduction

In this paper, we consider a covariance stationary proe&ssz with spectral density of the following
form:

f() =11-eY ), Ae[-nn] 1)

where-1/2 < d < 1/2 andf*(2) is an even, non-negative, continuous and bounded function such that
f*(0) # 0. The memory parameter governs the behavior of the spectral density in a neighborhood

of the zero frequency, so that in the case<0d < 1/2, the proces$Xi}icz is said to be long-range
dependent, whereas the casg2 < d < 0 corresponds to the antipersistence where the spectral density

at zero frequency is zero but the process is invertibl€l) controls the short-memory behavior, and so

the casal = 0 corresponds to the short-range or weak dependence as usual. Such long-memory models
have recently been applied to many fields and the importance of that have rapidly increased (see, e.g.
Robinson (1994), Beran (1994) or Doukhan et al. (2003)).

If properly finite dimensional parameterization (1) is assumed, the parametersfgft) will be
estimated using the parametric model aprroach, such as Fox and Tagqu (1986), Dalhaus (1989), Giraitis
and Surgailis (1990) and Hosoya (1997) among others, which can be consisitent and asymptotically
efficient estimator. However, the estimator may be inconsistent if the parameterization is misspecified,
because the above argument is only provided that the parameterization is correctly specified. To avoid
this drawback and because the most interest is usually in the estimation of the memory patameter
require semiparametric estimationcfAmong such estimations, to only take into account the behavior
of f*(1) at a neighborhood of the zero frequency is callechl methodr narrowbandbecause the
frequencies used in estimation are restricted or trimmed to some extent around the zero frequency.
Narrowband semiparametric estimators include, for examplé; Bté estimator introduced by Geweke
and Poter-Hudak (1983) and later exhaustively investigated by Robinson (1995a) and Hurvich et al.



(1998), or theGaussian semiparametric estimaf@SE) proposed by #nsch (1987) and theoretically
established by Robinson (1995b). The optimal choice of the trimming number or bandwidth for local
methods is a rather complicated problem, so that it seems that the critical solutions to this problem are
not established, though some approaches, suptugsin methods (see, e.g. Hurvich and Deo (1999),
Henry (2001)) oradaptive estimatioifsee, e.g. Giraitis et al. (2000)), have been proposed. Another
semiparametric estimation gobal methodsusing the whole frequency range by assuming a regularity
condition onf*(2), and the term obroadbandcomes from such fact.

Broadband semiparametric estimators include two approaches, one of whidtadcti@an! expo-
nential (FEXP) approach and the other iractionally differenced autoregressi{EAR) approach. The
FEXP approach is to fit a FEXP model to the log-periodogram regression at all Fourier frequencies by
a least-squares procedure. The FEXP model is based on a Fourier series expansion of the logarithm of
the short-memory component as follows: under appropriate regularity condiiéhs= log f*(1), may
be expanded on the cosine basis,

() = Do), hi(d) = cos(). 2)
j=0

Then, logf () is given by logf (1) = dg(1) + 1*(1), whereg(1) = —2 log|1 — €4|. The class of which the
expansion of*(1) is a finite number of cosin bases called FEXP models by Beran (1993), generalizing
exponential models proposed by Bloomfield (1973). When a FEXP model is not regarded as a finite ex-
pansion a priori but a truncated expansion of the infinite expansion d{@nd order of the truncation

tends to infinity a®1 — oo, the FEXP approach is semiparametric. Such approach with the least-squares
fitting is discussed by Robinson (1994) and theoretically investigated independently by Moulines and
Soulier (1999) and Hurvich and Brodsky (2001). On the other hand, the FAR approach is to assume
that the true spectral density obeys FAR{) where the AR ordep tends to infinity asn — o, and so

the estimator ofl is obtained from fitting a FAR{, d) model by a Whittle likelihood procedure. Such
approach has been proposed by Bhansali et al. (2006) and they established the asymptotic properties
of the FAR estimator ofl. They also showed that the asymptotic variance of the estimatdiofl,

which implies that the FAR approach is mor@@ent than the FEXP approach, though the asymptotic
variance of the FEXP estimator shown by Moulines and Soulier (1999) is dependent on pooling number
J and theoretically tends to 1 only ds— .

The purpose of this paper is to propose a mdiieient broadband semiparametric estimator for the
FEXP model by a likelihood-based approach, calledlikedihood-based=EXP approach. Since the
distribution of the error terms in the log-periodogram regression obviously deviates from the normal
distribution, the least-squares fitting of a FEXP model is not necess#éiijeat as the above fact. In
the short-range dependence context, tfieiency of the log-periodogram regression can be improved
by themaximum likelihood estimatiaais in Fan and Kreutzberger (1998). This motivates us to apply
the maximum likelihood estimatiawo fitting a FEXP model in the long-range dependence context. We
establish that our estimator is consistent and asymptotically normal, and achieves the same asymptotic
variance as Bhansali et al. (2006) without pooling, which suggests that the likelihood-based FEXP
approach improves thefeiency of estimators and will give the asymptotical§igent estimator in
global methods.

The paper is organized as follows. Section 2 describes the estimation procedure. In Section3, we
state the assumptions and the asymptotic properties of our estimator. In Section 4, we provide a small
Monte Carlo simulation to support the finite sample performance of our estimator by comparing with the
other estimators (Robinson (1995b), Moulines and Soulier (1999) or Hurvich and Brodsky (2001)) and
show an application for financial time series. Section 5 describes the concluding remarks. In Section 6,
we provide the proofs of the main results given in Section 3.



2 Semiparametric estimation of the long-memory parameter

Suppose thafXi}iez is a stationary Gaussian process and its spectral def(sijyis given by (1). De-
notingK,, = [n/2], the periodogram dfX;} is given by

n
D X
t=1

wherewy = 2rk/n is thekth Fourier frequency.
The log-periodogram regression is based on the following identity:

| n(wk) )
f(wk)
= dg(wi) + I*(w) + &k, 3)

2
1
In(wk):% s k:ly""ZKn’

Yk = log f(wk) + Iog(

where Yk = logln(wk) andex = log(lnh(wk)/ f(wk)). In the short-range dependence context, it is well
known that the error terms; are asymptotically independent and distributed as%l;@@( where)(g is
distributed as a centrahi-squarewith 2 degrees of freedom (see, e.g. Brockwell and Davis, 1991, The-
orem 10.3.2). We could, therefore, approximately redagH <<k, asKn independently and identically
distributed Iogé)(g). As for the long-range dependence, it has been first showniimgéh (1986) and
later Hurvich and Beltrao (1993) and Robinson (1995a) that the normalized perioddg(a)gf (wk)

are asymptotically neither independent nor identically distributed, scethad longer have the above
properties. However, the following decompositionsgf which is derived from Theoremz2 in Moulines
and Soulier (1999), shows that the log-periodogram regression at all Fourier frequencies is relevant in
the long-range dependence context. Under a Gaussianfijef; and a global smoothness condition
on f* (corresponding to Assumption 2 in Section 3 below), there exists a cofistarb, such that for

all 1<k< Ky,

&k =Tk + Tk,
Irkl < Clog(1+ K)/k, w.p.1, 4)
lcov(, m)l < Clog?(l) k=24 124-2, (5)

with ny is distributed as Io%%), andE(nx) = (1) and Vargy) = ¥’(1), wherey(2) andy’(2) denotes
thedigamma functiomndtrigamma functionrespectively.

Denotegk = g(wk), hjk = hj(wk) andI;k = Z‘jx;pejhj’k. By the Fourier expansion (2), the regression
equation (3) is

p-1
Yy = dok + Z Oihjx + lTJ,k + ek = dok + 0'hp,k + IT),k + &,
=0

where@ = (6o, -- ,6p-1)", hpx = (hok,--- ,hp-1x)” and@hpy is the truncated Fourier expansion or
the FEXP of ordemp. Since our estimation is semiparametric, the truncated qradkspends om and
Iimn_wfo pn = o0, Which impIiesI’ELk is an asymptically neglligible term and we can write the rgression
equation as

Yy ~ dgk + H’hp’k + &k. (6)

This shows that the log-periodogram is approximated by the FEXP at all Forier frequancies, and
Moulines and Soulier (1999) and Hurvich and Brodsky (2001) have independently proposed the least-
squares estimation of the paramet®)’. The least-squares fitting is, however, regarded as assuming



that{ex}1<k<k, are indepedently and normally distributed with mean 0 and variaf(d¢ in view of the
maximum likelihood estimationvhich does not take into account the asymmetry of%@é{. Since

this fact may imply the ficeiency loss of the estimators in the FEXP approachmgnd distributed

as Iog%)(g), we will construct the likelihood based estimation of these parameter by pretending that
{ex}1<k<k, are indepedently andg-gammadistributed, which has the probability density function (see,
e.g. Kotz and Nadarajah, 2000, p.48)

fo(X) = exp{— exp(x) + X}.

Such approach has been introduced by Fan and Kreutzberger (1998) for spectral density estimation in
the short-range dependence context. For the spectral ddifgjtyn (1), the log-likelihood function
associated with the regression equation anddgegammadf is given by

K
1 n
Lo(d.0) = = > {Yk — dgk - 0'hpx — exp(Yi - dgc — e'hp,k)}. (7)
N k=1

The maximum likelihood estimatody, é;,)’ is obtained by maximizing the functiafiz(d, 8). Since the

form of £(d, ) is a non-linear but strictly concave function, the maximizationatd, 8) is easily
implemented. The zero vector or the least-squares estimators work well as the initial estimators for the
non-linear optimization.

3 Consistency and asymptotic distribution of the estimator

We now precisely state our assumptions below, which are required to derive the asymptotic properties
of the estimator in the previous section.

Assumption 1. The proces$X}icz is Gaussian.

Assumption 2. The spectral densit§ of the proces$X;}icz satisfies

f) = [1-e ), del-nnl,

where 0< d < 1/2, andf* is positive and dterentiable on{x, 7] \ {0} with

’df*(/l) _c
dai |~

VYAe[-n n]\{0},

for some finite constar® < .
Assumption 3.1*(1) has a convergent Fourier expansion,

(1) = ie,-h,-(a), A€ [-m 7],
i=0

with 3772 J*10j| < oo for some realr > 1.
Assumption 4a. Suppose thaftpn} is an increasing sequence of integers such thatJignp, = o
and D
n

lim — =0.
n—oco N

Assumption 4b. Suppose thattpy} is an increasing sequence of integers such thatligp, = «
and
212
jim P09 _ o i g
n—oo n n—oo p%af



Assumption 5. Let the parameter spa& be the set of pointsd( &) = (d, 6p, 01, - - -), satisfying
de[0,3]andD = {8 € R |V j, 0} < K j~} for some reab > 1 and finite constark < co. Suppose
that the true parameted, 8;) = (d°, 63,69, --) is in the interior of the se®.

Let us give some comments on Assumptions. Gaussianity of the time series, as in Robinson (1995a)
and Moulines and Soulier (1999), removes the complexity to evaluate the high order moment of non-
linear transformation of the periodogram. Assumptions 1 and 2 are also necessary to derive (4) and (5).
Assumption 5 is required to ensure compactness of the infinitely dimensional paramete®space

The consitency of our likelihood-based FEXP estimator of the long-memory paragnsteshown
by the following theorem and the proof is given in Section 6.

Theorem 1. Under Assumptions 1-3, 4a, 5, for the estimatgthat maximizes the log-likelihood
function (7),

~ p
dn — do asn — oo.

Next, we state the asymptotic normality of our likelihood-based FEXP estimator of the long-memory
parameted.

Theorem 2. Under Assumptions 1-3, 4b, 5,
1((in—do) % N0, 1) asn— oo,
Pn

The proof is given in Section 6. It should be noted that our estimator is asymptotically flioieng
than that of Moulines and Soulier (1999), though the asymptotic variance of these autbefélis
wherelJ is a pooling number, andy’(J) — 1 asJ — . Since our likelihood-based FEXP estimator
attains the asymptotic variance 1 without pooling, it is not necessary for our approach. Also, our estima-
tior achieves the same asymptotic variance as Bhansali et al. (2006), though they did not assume that the
process is Gaussian. Our likelihood-based FEXP approach may possibly be extended to non-Gaussian
case, by applying the same argument in Hurvich et al. (2002) which has established the asymptotic
theory of the FEXP approach for a linear process by using the method in Fay and Soulier (2001). How-
ever, in this paper, we do not pursue the theoretical extension but the empirical demonstrations for
non-Gaussian cases in the next section.

By the virtue of Theorem 2, we can construd statistic for the testing problem that

Hp:d=0 against H:d>0. (8)
Letg = (d, #) and define
- 0Ly(B) = 0°Ln(B)
Sn = s Qn =
B="351. B = 3ep |,

Then the standardizddM statistic for the one-sided testing problem is given by
s (B
tm = \/K_n—n’l(@ ,
[Qn(B)]11

whereS,1(B) is the first element 08,(8), and [2n(8)]11 is the (1 1)th element of2,(B) .
Corollary. Under the null hypothesidg,

d
ttm — N(O,1) asn— .

The proof is given in Section 6. Corollary enables us to test the statistical hypothesis for the long-
range dependence, which will be extended to the testitigaofional unit rootsin a frequency domain,
such as Lobato and Robinson (1998).



Remark. Theorem 1, 2 and Corollary are only established in the cases of the long-range depen-
dence, O< d < 1/2 and the short-range dependente; 0, while Moulines and Soulier (1999) have
established the asymptotic theory of the FEXP estimatorig@ < d < 1/2. However, we can prove
these theorems for the antipersisteneg/2 < d < 0, in the same way, by considering the parameter
space € [-3, 0] instead ofd € [0, 3].

4 Empirical studies

This section investigates the finite sample behavior of our estimator and compares that with the existing
semiparametric estimators of Robinson (1995b) and Moulines and Soulier (1999) in a Monte-Carlo
simulation, and moreover we show a simple application for real data analysis. Note that the proposed
estimator in this paper is denoteddig.e.

4.1 Simulation

We now introduce two other semiparametric estimators for comparison purposes. One is the FEXP
estimator based on the least-squares fitting of a FEXP model, as referred in Section 2, and the estimator
of d is given by

Kn 2
dise=arg min Yi — do — @' hpyc b
LSE g doon! eplkZ:;{ k — 00k p,k}
The other is a Gaussian semiparametric estimator (GSE) and the estimadtsrdefined by Robinson
(1995b) as

1¢ 2d <
i : - 2d _«
dese= argde(_rlr/uzpl/z) [Iog{ k; wy In(wk)} kél log wk],

wheremis a bandwidth or trimming parameter for local methods. Robinson (1995b) suggesissthat
can be identified with the mostfzient semiparametric estimator @fn local methods, and sissgis
the benchmark in local methods for comparison purposes. Itis noted that since pooling is also irrelevant
for dgs ethat is based on the Whittle likelihood, pooling is not considered in the simulation below.

The design of data generating process (DGP) for our Monte-Carlo simulation is based on, such as
Diebold and Rudebusch (1991), the Choleski decomposition of the autocovariance funétamion-
ally integrated noisgdefined as

(1-B)% = &,

where B is the backward shift operator. By using the above, we generate two cases of a
ARFIMA(1, 0.3,1) procesg X}z as follows:

(1-¢B)(1 - B)**X; = (1 + 6B)st,

where{g) are designed to be independestandard normahnd (i) Uniform |- /3, v/3]. The uniform
distribution is selected as a typical example of non-Gaussian distribution to examine wdhgthes
empirically robust in the comparison withs g, as in Velasco (2000). The values fgf, ) are(0.4,0)
and(0.2,0.6). The length of the series |6 = 501 and 1000 independent replications of each time series
are generated. We consider the following cases for the truncated pedet the bandwidth parameter
masp=1,---,6 andm= [T%] with6 = 0.3,--- ,0.8, respectively.



Tables 1 and 2 report the results of our Monte Carlo simulation in Gaussian caseBidwgeg&td.dev
andMSEdenote the bias, the standard deviation and the mean squared error of the estimators, calculated
across replications, respectively. AlsRizeandPowerare each calculated as the empirical size when
d = 0 and the power whed = 0.3 at the nominal 5% significant level for one-sidel statistic and
t-statistic corresponding to (8). Our estimathy g is the least bias in comparison with the two other
estimators in all the cases when bghndé are chosen at the minimum of bias. Similarly, in the view
of MSE, dy_e is less thard s g in all the cases and less thdgs e for (¢, 6) = (0.4, 0.0), whereasigs e
has lessMISEfor (¢, 6) = (0.2,0.6), when the optimap andés are chosen, respectively. As fBizeand
Power, the same tendency as the above is indicated and it is obvious that our onéfdideatistic with
duLe is more powerful than that dfstatistic withd,sg.

Thus, our estimatody g is clearly more desirable thath sg, as established by the asymptotic
properties in Section 3, and moreover the performancﬂmgé is not inferior toéGSEat the optimalp
andés. However, it should be noted that the optinpedr § based on the minimum of MSE is not always
appropriate with respect iasor Size which implies that the optimal choice gfor ¢ are critical for
these semiparametric estimators but a considerably complicated problem.

Tables 3 and 4 indicate that replacing Gaussian innovations with non-Gaussian ones that are uni-
formly distributed does not essentiallffect the performance of the estimators. Although there is no
theoretical results of the likelihood-based FEXP estimation with non-Gaussian innovations, these results

Table 1. ¢,0) = (0.4,0.0) with Gaussiarinnovations.

aMLE
p Bias Std.dev MSE Size Power
1 0.32379 0.04143 0.10655 1.000 1.000
2 0.08839 0.06450 0.01197 0.380 1.000
3 0.02384 0.08397 0.00762 0.078 0.983
4 -0.00032 0.10202 0.01041 0.033 0.899
5 -0.00864 0.11936 0.01432 0.035 0.800
6 -0.01748 0.13642 0.01892 0.033 0.699
aLS E
p Bias Std.dev MSE Size Power
1 0.29438 0.04522 0.08871 1.000 1.000
2 0.09439 0.07823 0.01503 0.339 0.997
3 0.03534 0.10169 0.01159 0.090 0.948
4 0.01723 0.12463 0.01583 0.055 0.806
5 0.01112 0.14610 0.02147 0.049 0.685
6 0.00468 0.16746 0.02807 0.046 0.587
dese
0 Bias Std.dev MSE Size Power
0.3 -0.05391 0.39440 0.15846 0.005 0.043
0.4 -0.02549 0.21025 0.04486 0.009 0.272
0.5 0.00258 0.13550 0.01837 0.027 0.659
0.6 0.03250 0.08997 0.00915 0.073 0.956
0.7 0.09594 0.06556 0.01350 0.394 1.000
0.8 0.19827 0.04726 0.04154 0.992 1.000




suggest that our approach will be aldteetive in non-Gaussian cases and give a robust estimator.

The question about the optimal choice of the truncated gpdsas been solved, in view ohodel
selection for the FEXP approach by Moulines and Soulier (2000) based on Malloyvtsriterion and
Hurvich (2001) based on Mallow®&, criterion. These criterion, however, were constructedifaar-
regression modeland cannot apply for our likelihood-based FEXP approach. Instead, we empirically
propose a data-driven selectionpibased orkaike Information CriteriorfAlIC, Akaike (1973)), which
is the model selection criterion constructed from libglikelihood Our proposed method is to choose
SO as to minimize

AIC(p) = —2{KnLn(d. 8) - (p + 1)},

where £(d, 6) is the estimated log-likelihood function (7), over the set of all examined valueg. for
We do not pursue the theoretical validity of this criterion in our context but show the numerical results
by the simulation below.

Table 5 reports the rate q@f in the same DGP, length of series and replications as the above with
Gaussian innovations and the examined valueg afep = 1,---,10. In the cased(, 6) = (0.4,0.0),
although the optimgbis p = 3 orp = 4 from Table 1, Table 5 indicates that about half of the replications
selectp = 2, which suggests that the selectedased orAIC(p) will be somewhat biased downward in
this case. As for the case,p) = (0.2,0.6), the selecteg is a little dispersive but gather aroupd= 3

Table 2. ¢,0) = (0.2, 0.6) with Gaussiarinnovations.

aMLE

p Bias Std.dev MSE Size Power
1 0.52428 0.05024 0.27740 1.000 1.000
2 -0.10474 0.06445 0.01513 0.000 0.933
3 0.05477 0.08429 0.01010 0.145 0.993
4 -0.03638 0.10212 0.01175 0.013 0.835
5 0.00134 0.11943 0.01427 0.042 0.823
6 -0.02552 0.13650 0.01928 0.026 0.679
aLS E

p Bias Std.dev MSE Size Power
1 0.48299 0.04553 0.23535 1.000 1.000
2 -0.10060 0.07877 0.01633 0.000 0.811
3 0.06504 0.10177 0.01459 0.152 0.967
4 -0.01796 0.12474 0.01588 0.018 0.731
5 0.02061 0.14625 0.02181 0.056 0.713
6 -0.00316 0.16772 0.02814 0.042 0.577
des E

0 Bias Std.dev MSE Size Power
0.3 -0.05477 0.39472 0.15880 0.006 0.042
0.4 -0.02787 0.21027 0.04499 0.009 0.271
0.5 -0.00392 0.13547 0.01837 0.023 0.644
0.6 0.01456 0.08988 0.00829 0.049 0.947
0.7 0.05950 0.06522 0.00779 0.217 0.999
0.8 0.18166 0.04746 0.03525 0.971 1.000




or p = 4 and, in fact, around 80 percent of the replications is within 3, 4 and 5, vBiassand MSE
of duy e are comparatively less than that of the otperFrom these results, the choice pbased on
AIC(p) will be empirically considered as useful for the optimal selection, though pwam be slightly
smaller than the optimal in some cases.

4.2 Application

This section shows the simple application of semiparametric estimation of the long-range dependence
to financial time series, which is the long-range dependence in volatility. We now introduce the return
series{r{} from a financial asset at tinteas follows:

re = log(pt) — log(pt-1),

wherep is the price for a financial asset at timélo investigate the long-range dependence in volatility,
the most simple approach is to semiparametrically estimate the long-memory pardnbgtersing
squared return seri¢g’}. We study such point with our likelihood-based FEXP and the FEXP approach
for the returns from stock and foreign exchange rates, respectively.

The data studied is daily series of Dow Jones Industrial average (DJI) obtainegdiaa finance
for stock market and of EufDollar rate for exchange rates obtained fr8ank of Japanrespectively.

Table 3. ¢, 6) = (0.4, 0.0) with Uniform innovations.

aMLE
p Bias Std.dev MSE Size Power
1 0.32434 0.04248 0.10700 1.000 1.000
2 0.08929 0.06629 0.01237 0.391 1.000
3 0.02346 0.08636 0.00801 0.071 0.981
4 -0.00124 0.10303 0.01062 0.044 0.895
5 -0.00973 0.11746 0.01389 0.033 0.800
6 -0.01407 0.13556 0.01858 0.029 0.703
aLSE
p Bias Std.dev MSE Size Power
1 0.29452 0.04772 0.08902 1.000 1.000
2 0.09083 0.08046 0.01473 0.306 0.998
3 0.03309 0.10836 0.01284 0.092 0.936
4 0.01177 0.13005 0.01705 0.060 0.796
5 0.00509 0.15038 0.02264 0.053 0.684
6 0.00392 0.17237 0.02973 0.044 0.568
aGS E
o Bias Std.dev MSE Size Power
0.3 -0.05317 0.40499 0.16684 0.002 0.047
0.4 -0.02573 0.22048 0.04928 0.015 0.312
0.5 0.00228 0.14167 0.02008 0.027 0.652
0.6 0.03140 0.09237 0.00952 0.068 0.952
0.7 0.09539 0.06751 0.01366 0.384 1.000
0.8 0.19977 0.04874 0.04228 0.989 1.000




Table 6 reports the semiparametric estimatord afd the values in the parenthesis below are one-sided
LM-statistic and-statistic for testing the hypothesis of (8), respectively. We also present the each es-
timators of the return serigs for comparison purposexﬂMLE andLM-statistic tend to take the larger
values thard s andt-statistic, which implies that our approach is more powerful. The long-range

Table 4. ¢, 06) = (0.2,0.6) with Uniforminnovations.

aMLE
p Bias Std.dev MSE Size Power
1 0.52539 0.05130 0.27867 1.000 1.000
2 -0.10350 0.06543 0.01500 0.046 0.998
3 0.05407 0.08697 0.01049 0.043 0.965
4 -0.03694 0.10282 0.01194 0.033 0.883
5 0.00003 0.11757 0.01382 0.030 0.797
6 -0.02221 0.13548 0.01885 0.027 0.700
d\LS E
p Bias Std.dev MSE Size Power
1 0.48265 0.04802 0.23526 1.000 1.000
2 -0.10352 0.08041 0.01718 0.000 0.796
3 0.06203 0.10852 0.01562 0.142 0.957
4 -0.02304 0.13012 0.01746 0.030 0.711
5 0.01443 0.15060 0.02289 0.058 0.701
6 -0.00375 0.17183 0.02954 0.037 0.559
aes E
0 Bias Std.dev MSE Size Power
0.3 -0.05399 0.40493 0.16689 0.002 0.047
0.4 -0.02809 0.22045 0.04939 0.015 0.309
0.5 -0.00423 0.14160 0.02007 0.027 0.636
0.6 0.01340 0.09224 0.00869 0.052 0.939
0.7 0.05901 0.06698 0.00797 0.212 1.000
0.8 0.18306 0.04884 0.03590 0.973 1.000

Table 5. Rates of selectgnwith Gaussiarinnovations in 1000 replications.

p (#,0) = (0.4,0.0) (4,0) = (0.2,0.6)
1 2 0
2 507 21
3 269 342
4 94 344
5 41 121
6 26 63
7 15 29
8 18 37
9 16 23
10 12 20
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Table 6. Estimators of the long-memory parameter in return and squared return series.

DJI average (£900) duLe dise
re -0.0697 -0.11077
(-2.7338) (-3.0330)
rt2 0.48005 0.423883
(7.0329) (4.6328)
EurgDollar rate (E=817) dmLe dise
re 0.01349 0.05671
(0.47397) (1.4705)
r2 0.23781 0.154632
(5.1394) (2.6555)

dependence is detected only in the squared series, which suggests that the volatility of both series has
the long-range dependence. Note that it is necessary for estimation of the long-memory parameter
in volatility to consider a more elaborate model such dsng-memory stochastic volatilitt. MSV)

or afractionally integrated exponential generalized autoregressive conditional heteroskedd§tiEity
GARCH) model, and more specifically see, e.g. Deo and Hurvich (2003), Hurvich et al. (2005) and the
references therein.

5 Concluding remarks

In this paper, we have proposed the broadband semiparametric estimator of the long-memory parameter
of a long-range dependent time series using the likelihood-based FEXP approach and established the
asymptotic properties of the estimator. We have also shown that the likelihood-based FEXP approach
gives the more ficient semiparametric estimator than that of the FEXP approach, which achieves the
same asymptotic variance as Bhansali et al. (2006) without pooling the preriodogram.

The simulation studies have supported the validity of the theoretical results of our estimator and
shown thatAIC(p) is effective for the data-driven selection of the truncated ongleMoreover the
likelihood-based FEXP approach is not only useful and preferable in Gaussian case but also empirically
robust in non-Gaussian case, though there is no theoretical results of our estimator in non-Gaussian
processes.

The asymptotic theory of our estimator in Theorem 1 and 2 depends on the assumption that the
processes are Gaussian. We have not pursued the non-Gaussian extension in this paper, so that an
important task remained open is to prove without the Gaussian assumption. The theoretical validity of
the model selection based &ihC(p)for the likelihood-based FEXP approach have not been established,
which is also left to the future study.

6 Appendix
This section proves Theorem 1, 2 and Corollary, where Lemmas employed in the proofs are given in

Section 6.2. Throughout this sectiad,C*,C1,Co,-- -, are a positive generic constant term, but not
always the same one in each context.
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6.1 Proofs of Theorem 1, 2 and Corollary

Proof of Theorem 1. To prove Theorem 1, we shall follow Lemma 2 in Walker (1964) adapted to the
infinitely dimensional compact parameter space.
Throughout the proofs, let the parameter spdee a metric space with the metric defined as

I, )1 = 1dl + > 161,
j=0

which is induced byi-norm. It follows from Assumption 5 that the metric spa@equipped with ;-
norm istotally boundedandcomplete Therefore, it is compact (see, e.g. Kolmogorov and Fomin, 1970,
p.100).

Let (do.6p) = (d%63.69,-- ,03_1,---) be the true parameter values, and,&) =
(d, 00,61, ,6p-1,0,0,---) be any admissible values of the truncated orpeBy equation (6), the
log-likelihood function (7) rewrite,

K
1 & ’ %
Ln(d,0) = K_n kzz;l{(do - d)gk + (00,p - ap) hp,k + I(O),p,k + 1k + Ik

- exr((do —d)gk + (Bop — 0p)’hp,k + |>(k0),p,k + 1k + rk)}. (9)

wheref , = (63,69, - 90 1) 0p = (60,61, ,6p-1) andly = 52, Gh,k
We must first show that these terms satisfy the followmg propert|ea -asco,
£a(d,60) > Lo(d.6),

where
Lm(d,e)=% f ﬂ{(do d)g(a) + 1igy() — 1" () - exr:((do—d)gu)ﬂ(mu)—I*u))w(l)}ou,

with [ )(/l) =25 oeoh (1). By Lemma 3 and the square integrabilitygfft), the expectation af’(d, 8)
is evaluated as

Kn

E(£00.0) = 1 > (0~ Dk G~ 09 N iy + 001
k_

— exp((do — d)gk + (Bo.p — 0p) hpx + |;0),p,k)}

+Kinkznlo(log(i+ k))_%ngo{(%"(c;k)) }O(Iog(i+ k))

~ ke Z{(do = d)g + (B ~ 0p) px+ O(p™) + u(1)
N k=1

2 2
+ exp((do - d)gk + (B0 - op)/hp,kJr)} " O( IOgn(n)) - O(n*)- O(Iogn(n))
1 &
" Kn Z{(do — d)gk + (Bo,p — 0p) hpik
nica

- exi{(do - g+ (- 05 ) + U1+ O(p ) + 0('09 2 o

12



whereldp — d| < u < 1/2, becauséd| < 1/2 andd has the same sign &g, so that O< 1 - 2u < 1.
The second equality of the expectation follows from Jirgsin(x)/x = 1, Assumption 3 that yields

I*

O.pk = O(p™) , and Taylor's expansion of e¢P(p~®)). In addition to the previous Lemma, by
Lemma 2, 4, 5 and Cauchy-Schwarz inequality, the variancg, @, 6) is evaluated as

Kn

2
Var( £y(d. 6)) = { Z(nk— E(nk))} ' E{Kl > (- E(rk»}

k=1

K
1 . , .

log(1+Kk)

2
” ))} + Cross terms

x (exp(nk) _ E(exp@k»)(l + 0(

< o(n) tis O(Iog“(n))

K_%

ot & 5ol | ol ol

k=
(1 log*(n) 1 log®(n)\ _ (log*(n)
= O(ﬁ) + O( 2 + 0 m + O oy =0 =4 | (11)
The second equality follows from the integrability of §ix) for v > —1 on(0, 7/2) (see, e.g. Gradshteyn

and Ryzhik, 1965, p.369). By the condition@ofnd Assumption 4a, (10) and (11) yielti(d,8) —
L(d, ), asn — co.
Next, let di,0;) # (do,6;). Substituting these parameter for (9), respectively,nas- oo,

Ln(do, B0) =5 £o(do, Bo), Where Lo (do, 8o) = w(1) — 1, andLn(dy, 1) — Loo(d1, 61), where

Loo(d1, 61) = % f n{(do d)g(A) + 1g)(A) = 135(2) — exp((do — dn)a() + 1{gy(A) = 1735() + lﬁ(l)}dﬂ

Since{hg(1), h1(12),---} is an orthogonal system ih?, the identifiability condition of the parameter
(d, @) is satisfied, which yields

Lo(do, 6o) — Loo(d1, 07) = % f {eXF((do — di)g(d) + 1y (D) — 17y(D)

~ ((do = A)g) + Tig () — 15,(D) - }
> 0.
It follows that, for any positive consta@](do, 6p), (d1, 81)] less thanL.(do, 6p) — L (d1, 01),
lim P{Ln(da. 1) ~ Ln(co. 60) < ~G[(dh. fo). (c. 61)]} = 1

For anys > 0, there exist$ln s such that, for anyd;, 8;) and @, 8,) that satisfieg (d1, 8;) — (dz, 65) lI<
d,

|-£n(d1, 01) - £n(d2, 02)| < Hn,(S’
whereH, s is defined as

1 &
Hns i= —
n,o Kn kZ;{

dl)gk‘ + ’(02,p - 91,p)'hp,k‘
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+ In(wk)’exr(—dzgk - Hé’php’k) - exr(—dlgk - ai’ph p,k)‘},
and has the following two properties:
lim E(Hns) =0, (12)

because, by Lemma 3 and Taylor’s expansion,

E(Hns) = {|(d2 — d1)9k| |(92 p—01p) hpk’}
LS

X exr(dogk + Oa’php,k)‘exp(—dzgk - O’Z,php,k) - exr(—dlgk - Oi’php,k)'

1 1 fa
< K_n ;|d2 - d1||gk| + K_n é’egp - 01,p| |hp,k|

Kn
- % Z|(d1 - d2)9k| eXF((do —d")ok + (6op — 92,p)'hp,k)

Kn

K

~ 61.0) hpx| exp{(do — di)gi + (B0 — 6) i)
k=1

Kn
< |di — do| - C1 +]d1 — dy| - % Z exp{(do — d*)ak)|ak] + [|62 - 02|| = Z exp((do — d*)gk)
N =1
< ’dl - d2| -C1+ H01 - 02“ -Cy,

whered* or 0’5 lie betweend; andd, or 61, and @, p, respectively. The second inequality follows
from the square integrability af(1) and the last one follows from the integrability of ) and
sin’(x) log(sin(x)) for v > =1 on (0, /2) , respectively (see, e.g. Gradshteyn and Ryzhik, 1965, p.369
and p.588). And the other property is given by

r!im Var(Hps) = 0, (13)

because, by the same argument of (11),

n i

Kn 2
Var(Hp,s) < %E {Z exp((do — d1)gk + (Bo,p — 01.p) N )(€XPeK) - E(exp@;k)))}

Kn

2
C ’
+ K—z E {Z exp{(do — d2)ak + (Bo.p — 02.0) N )(€XPErK) - E(exp(nk)))} + Cross term
n i

-o[50)

n2—4u

Now, (12) and (13) correspond to (16) and (17) in Walker (1964), respectively, which implies that there
existss > 0 such that

nlmo P{Hn"S < G[(do, 6p), (d1, 01)]} =

14



Then, since the parameter sp&e compact irR™ by Assumption 5, Theorem 1 follows from Lemma
2 in Walker (1964). O

Proof of Theorem 2. DenotingB = (d, 6o, 61, - - - ,0p-1), by the mean value theorem,
_ 0Ln(Bo) | PLn(B) 5
wherep* lies betweerBo andf, with fo = (d°, 63,69, - - L60_) andBn = (dn, 6o, b1, ,0p-1). We
obtain
Kn P _ 0-1/p*
F(ﬂ” = Bo) = Q7 (B")An(Bo).
with

2 %
An(Bo) = \/gazg[(f(’), ) = -2,

Now, by Theorem 1 and Lemma 6,

|09(n)) (14)

058 An(Bo) = T3 HPIA(Bo) + Oof P + 20

where

_ S ok [ ok '
o= g 25 ()

k=1

with hp(1) = (ho(4),---,hp-1(1))" . To prove Theorem 2, we only need the first element of
Q-1(B*)An(Bo) because that corresponds to the long-memory parardeteet y,(p) denotes the first
row of I';1(p), then by the equation (14)

\/g(dn ) = 7 (@A) + Ogf 7 + ZEE ) (15)

It should be noted that Assumption 4b amd> 1 ensures thaDp(-) in equation (14) and (15) are
asymptotically negligible, respectively.
DefineZy as a zero-mean process tlat= exp@k) — 1. It follows from £,(d, 8) and Lemma 3 that

Kn
7a(P)An(Bo) = % Z{GXP('E,k 1+ 1) = l}ya(p) (hikk)
1 Kn . /
- ZeXpapk)zkyn(p)( & )+ o oot -1ro (%

Y e G (hgkk)

\/_
— L+ O(p ) Z Zarn(P) (hgk ) o) e Z 73(P) ( . )

VPKn £
o Ze (n)o(log(1+k)) 'n(p)(hgpi)
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= (1+0(pP)Y1+ Y2+ (2+0(p™))Ts,

say. The second equality follows from Taylor’s expansion of , ( Now we derive the asymptotic
property of these three terms. Using the fact that the vegi;oh’g’k)’ is deterministic sequence, Lemma
7(i) and Cauchy-Schwarz inequality,

K 1 Ok
To= |0 .0O(p?) . — ’
2= 20 Kn;ly”(p)(hp,k)

SEIREERE)

so that Assumption 4b ensures thgt = o(1) whenp tends to infinity. By Lemma 1(ii), 7(ii) and
lhjxl < 1, the expectation df3 is evaluated as

e )

_ 1 log(1+ K)
- \/p_ -O(plog(n)) - kZ; (—k )

_ o( p/?log® (n))’

(T3) =

nl/2
and moreover, by Lemma 5(iv),
Kn

)

k=1 K

_ &] {o(plog(n))}zE {i(exp(nk) - E(exp(nk))) O(w)}2

) O(pl%z(n)). k=1

Thus, under Assumption 4b, we haye = op(1).
Next, to derive the asymptotic property 6f, letting&px be a normalized process that

Epk = i(7’;1(f~))rn(F)))’n(F)))_l/z{y;](F)) (hikk)}’

VKn

T, rewrites

3 1, 1/2 Kn
Ty = W(n(p)rn(p)yn(p)) k;gp,kzk.

The definition of¢p showsZkK:"l .fg’k =1 and, by Lemma 1(ii) and 7(ii),

1 1 pt/Zlog(n)
e el = —= -~ Ofploa) = o P2 ).
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so that, under Assumption 4b,

lim max
n—oo 1<k<K |§pk|

Suppose that there exists a non-decreasing sequence of intggels, such that lim_,., v, = o0 and

.V . nlog(n
lim n = 0’ lim M
n—oo N n—oo VI’]

Then, by Lemma 1(ii) and 7(ii),

prk < Z{ P log?(r) }_l{O(pzlogz(n))}=0(V—n”),

and, by Cauchy-Schwarz inequality,

=0.

|€p.kl logW nlog(v , -1/2, , 1/2 nlog(v
£pHl1090h) _ VMIogW) (o iy (ohye(e) (e (D)yn(p) " = YOI,
Vn Vn Vn
k=vh+1
It follows from the condition of/, that
Vh
im D & =0. (16)
K
1 I
im ) Kpullogn) _ o (17)
n_wok_vn+1 Vn

(16) and (17) correspond to (4.3) and (4.4) in Soulier (2001), respectivelyZaisda function with
Var(Z¢) = 1 andHermite rankat least 1 becaude(Zy) = 0, which yields

Kn
> épii % N@©, 1) asn— oo,
k=1

by applying Theorem 4.1 in Soulier (2001). It is easily seen from Lemma 7(i) that

FHPEaEa() = == asn— e,

WO( V2

Therefore, we have
d
T, — N(O, %) asn—ooo. O

Proof of Corollary. Under the null hypothesis, by Theorem 1, Lemma 6 and Assumptioty gb,
rewrites

tiw = VKa| Q4 2B BSa(B)],, = V[T (PR 1(|O)Sn(ﬁ)] + op(1)
- [V O E) ], (77 @) VKiSi(B) + 0x(D)
wherel'(p) andy(p) correspond td(p) andy(p), respectively. It is easily seen that
[P efEie) ] =1

and \/K_nsn([?) corresponds tQngl &pkZk, So that the proof of Corollary immediately follows from that
of Theorem 2. O
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6.2 Lemmas

Lemmal.
() Let g’lgk = Z‘f;ml 2hj«/j, forall 1 < k < K,. Under Assumption 2,

_AKn
p(2k — 1)

3
gp,k <

(i) Under Assumption 2,

max lokl = O(log(n)).

Proof of Lemma 1(i)It is well known thatg(1) = Z‘j";l 2hj(1)/] and the proof immediately follows
from that of equation (17) in Moulines and Soulier (2000).
Proof of Lemma 1(ii)Settingp = K, in Lemmal(i), forall 1 < k < K,

. 4
Gkl < 7

Then,
K ) K
A 2hjx 2hix| 2. 4
ngI = — 4+ — 1 < -+ —,
and we have

Kn 5 Kn 1
K lad = ), T +4=0 Z}]’
j=1 =1
which leads td.emmal(jii) by approximation of sums by integrals.o
Lemma2. Under Assumption 1 and 2, for any sequences of rgals

Kn Kn
2, ledlailicovim, m)l = O(¢?log’(n)),
k=1 1=k+1
whereyp, = max<k<k, l¢kl. Note that this lemma is the same a$§3n Moulines and Soulier (1999).
Proof of Lemma 2(5) and approximation of sums by integrals yield

Kn  Knp Kn  Kn
D7 ledlpilicovimem)l < C 3" " ¢ log?(ly k241242
k=1 I=k+1 k=1 1=k+1

Kn 2
_ log=(K)
2 1,-2d|
< Z i K O( 12d )
k=1
= O(¢?log®(n)),

because integration by parts yields

Kn n
> log?(1) 12972 < f log?(x) x29-2dx

1=k+1 k1
n

= L 2d-1 1542 _ fn 2 2/d-2
= [2|d| — 1x log=(x) » 0 k+1log (x) x dx
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_ O( Iogz(k))

Kl-2d )’

with2d|-1<0. O
Lemma3. Under Assumption 1 and 2, for all 4 k < K,

explk) =1+ O(W), w.p.1l.

Proof of Lemma 3By Lemma 1-3 in Moulines and Soulier (1999),is given by

rk =log(1+ ¢1) +log(1+ ¢2) +log(1+ &3),
where
Cslog(1+ k)

I{1] < 2] < 143 < ” ,

w.p.1, for all 1< k < K,,. Taking exponential on both sides, which yields

explx) = (1+ 1)+ )1+ {3)

Cilog(1+Kk) Colog(1+K)
k ’ k ’

< (1 G012 0) , Cologd k), Cologli )
* 3
< (1+ W) _ 1+O(Iog(i+ k)) +O(Iog(1k+ k)),

because log(¥ k)/k < 1forke N. O
Lemmad4. Under Assumption 1 and 2, there exists a consfink oo, such that for all 1< k <
I S Kn,
|cov(exp), expm))|< C* log?(l) k24 1242,

Proof of Lemma 4.Using the same argument as the proof of Theorem 2 in Moulines and Soulier
(1999), we can defingg asnk = log(W Wk) — log(2), whereW is a standard 2-dimensional Gaussian
vector. Then,

1
exp) — E(expl)) = W&Wk 1
Define a functionp : R> — R as
#(X) = %x’x -1, XeR?
and which implies that for all X k < K,

E(¢(W)) = E(expn) — E(exp@i))) = 0,
E(¢*(Wk)) = Var(exp@)) = 1.

Sinceg(:) is an even function anB(¢(Wx)) = 0, theHermite rankof ¢(-) is 2.
Next, by applying Corollary 2.1 in Soulier (2001) or Theorem 4 in Moulines and Soulier (1999),
there exists a consta@t such that

F{[100)

whereX; = (X 1, Xi2)’" is a standard 2-dimensional Gaussian vectormaisdHermite rankof a function
¢(), and

2

< [[(E@x)”

i=1

= max ECK i X i,)|-
P 1si¢i'sz,1sj,j’32| ( i "J')|
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It follows from E(¢?(Wk)) = 1 and Lemma 4 in Moulines and Soulier (1999) that

2
C* l_[(E(¢2(XI)))1/2p2 < C*(Iog(l)k_ldllldl_l)z’
i=1

forall 1<k<l<K, O
Lemmab. Under Assumption 1 and 2, for any non-decreasing sequence of integer&p,

2
=0 (wp).

i E [Zm - E(n)
k=1

W 2
(i) E (Z(rk— E(rk))] = O(log*(wn)).
k=1

2

(i) E (g(exp(nk) - E(exp0) || = Ot
(iv) E(i(exp@k) - E(exp(nk)))O(IOQ(i-'_ K )]2 —0(1).
Proof of Lemma 5(i)By Le_mma 2,
E [2(% - E(flk))]2 Z E(m - E(m))” + 22 |§1 E(m — E(m))(m — E(m))
< Z Var(ny) + 22 Iﬁlﬂcov(nk m))|

= O(Wn) + O(log*(wy)). O
Proof of Lemma 5(ii)lt follows from (4),

Wh 2 Wn  Wp
E[Z(rk - E(rk))J Z E(re—E())*+2 ) > E(re—E@)(1n - E())

k=1 k=1 1=k+1

e, Z|og (1+K) + G fz(log(1+k))(log(ll+l))

k=1 I=1
= 0(1) + O(log*(wr)) - O(log(wn)) = O(log*(wh)),

becausé’ log?(1 + k)/k? is convergent series. O
Proof of Lemma 5(iii) It follows from Lemma 2 and 4 that

E(Z(exmnk) - E(exp(nk»)J ZVar(exp@k» +2)° > couexpe). expan))
k=1 k=11=k+1
< W, +C* Zn Zn IOgZ(I) k—2|d| |2|d\—2
k=1 1=k+1

= O(wn) + O(log®(wp)). O
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Proof of Lemma 5(iv)By Lemma 4,

E [é(expwk) - E(eXp@k)))O(W)JZ
= kwganar(eXDWk)){o(w)}z

+22 zn: CO\’(eXp(ﬁk) exp )) (|09(1+ k)) (Iog(|1+ |))

k=1 I=k+1

. o Iog a+k)
<C ;T

because, by Cauchy-Schwarz inequality twice,

i”: i C*log?(l) k=2d |2|d|_2o(|09(1+ k))o(log(1+ I))

k=1 I=k+1 K !

g 100(1+ K) 0@+ D\ ()
<Zk O(T) Zo(l—z) > log ()

=1 I=k+1

h (log?(1 +K) h (log(1+1) 2 _
(o)) [Sofeme )] (5 pore
Y (log2(1 + K)) ) Y2
(gt S
k=1 1=1

where} log*(l) 144-3 with |d| < 1/2 is convergent series. O
Lemma6. Under Assumption 1-3,

() = To(p)+ Op 7 + 400 .

where

 PLa(Bo) RER AT
Qn(ﬁO) - 6ﬂaﬁ/ ’ Fn(p) - K_I’l ;‘(hp,k) (hp,k) ’

with hp(2) = (ho(A). -+ . hp-1 (D))’
Proof of Lemma 6By Lemma 3 and Taylor's expansion of ei%(),

Qn(Bo) = ! i{exp(l KT I’k)} (hpk) (hikk)l

”k1

=1+ O(p‘“))Ki i exp{n) (hgk )(hilfk),

oyt S S22 o]

h
nkl p.k
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Now using the fact that by Lemma 1(ii),

log?(n) log(n) ... log(n)
! log(n) 1 e 1
O\ 9| _
) =57 a9
log(n) 1 e 1

the expectation of the second term is given by

log*(n)  log3(n) log®(n)
2 : .
Kn ’ log® log? log®
i Z O(|09(1+ k))( Ok )( Ok ) o _Ogn(”) 0gn(") ogn(n)
Kn &4 k hpi/ \Npk : : L
log*(n)  log(n) log?(n)
= . >

We therefore have
log*(n)

E(0) = 1+ 0 MEe(p) + O 22 1ty

wherelp,; is a column vector off§ + 1) ones.
Next, the variance a2,(Bo) is decomposed into the two terms as follows:

Var(Qn(Ba)) = (1+ O(p™)) % {:Zn(exp@k) expid) — E(explrd) exp(rk)))( k)(hifk) }2
1 Kn o 2
<o - o) )2

=—ng2 o) {1 )(hgpkk)l}z
i 2y ovtesim- o) %) () )

” k=1 I=k+1
=: 204 + 40,

say. The inequality follows from Lemma 3 and logflk)/k < 1 for k € N. By (18) and the same
argument over the proof of Lemma 7(i) below,

log?(n) log(m) ... log(n)
1 log(n) 1 ... 1 1 fa ’
®==.0| o . X_Z(hgk)(hgk)
n : : R Kn & \Npk/ \Npk
log(n) 1 1
log’(0)  log(n) log(n)
n n e n
log(n) 1 1
— O n n Tt n
og) 1 1
n n n
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0(1)+ O(%LW) o(ke) 1. o(laD) | L ofka)

n p- n
o(d) 1 0 0
x| 1+0(29) 0 1 0
. | . . .
L+o(™®) o 0 1
log’(n) , log(m)log(p) log’(n)  log(n) log*(n) _ log(n) log%(n) , log(n)
n n n? n n n (p-1)n n_
log(n) , log(p) log(n) 41 log(n) , 1 logn) , 1
-0 n n n n n n (p-1)n n
|()‘l() |2(') |(). ' |()‘
RCC R I N
By the same way of (18),
log*(n) + plog?(n) log®(n) + plog(n) ... log3(n)+ plog(n)
{( Ok ) ( Ok )}2 o log®(n) + plog(n) log? () +p ... log?(n) + p
log®(n) + plog(n) log?(n) + p log?(n) + p

so that, by Lemma 2 and 4,

log*(n) + plog?(n) log®(n) + plog(n)

log*(n) + plog(n)
3 2
®, = O(Iog3(n)) o log (n)+‘ plog(n) log (rl) +p

log(n) + p

n2

log®(n) + plog(n) Iogz(ﬁ) +p

log’(n log®(n)  log®(n log*(n
92()+Pr?2() 92()+p 92()

log(n) + p

log®(n log*(n
92()+p 92()

n n n n
Iog%(ﬂ) 4 Plog’()  log°(n) , plog® log°(n) , plog®
-0 n2 n2 n2 n2 te n2 n2

log(n) | plog’(n)  log°(n) . plog®
n2 n2 n2 n2

log®(n) , plog®
n? n2

Therefore, the variance 61,(8) is evaluated as

log?(n ,
Var(Qn(ﬂo))zo( gn( ))1p+11p+1. 0
Lemma.

(i) Let[I7Y(p)]11 denote the (11)th element im;%(p). Under Assumption 3J;%(p)]11 is evalu-
ated as

n2

1] P 1 plog?(n) log*(n)
[Fn (p)]11_§+0(g)+0( +0 - .
(i) Letyn(p) denote the first row of;1(p). Under Assumption 3yn(p) is evaluated as

yol® = [0 (1 0(%90) 14 0(o8) 3y o) o 1y o))
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Proof of Lemma 7(i).Since{hg(1), h1(1), - - - } is an orthogonal system io? and, by construction,
Ok = O2k,—k+1 andhjx = hjok,-k+1, Tn(p) is given by

1Kin %?—(f o7 . > gehok - . 325 gk hp-1k
1| & Ziet Nok Ok 1 0
flp =31 ™ . .
& e hp 1k O 0 . 1
_ 1 (711 7;)1)
2\yp lpp)’

say, wherd  is the (p x p) identity matrix. Then inverse of a partitioned matrix yields

[Fal(p)]ll =2(yu- 7;01791)_1

Now by Lemma 1(i) and approximation of sums by integralg,is evaluated as

2K, (2K 2
1 O | 2cos{wk) 4
nlSK_Z{Z i +2k—1}

N k=1 \i=1
1 (& 2 cos{wk) & 2 cos{wk)
=a;(2 )32
% 2cos(a)) a4
2t st L4 )

4 %Kn 2Ky 2Ky 4 2Ky

2,
Ki Z Z co(iwk) + — Z Z > cosfax) cosfew)
:12Kn =1 2Kn i=1 1=1 k=1
>[5

1 2Kr1
" Kn
_ 42*(112 (Iogz(n)) o(%) _ §n2+o(logz(n)).

M
n

By the same argument,

j=0 k=1
1% 4 }2 p_l{ e 2K”Zcos(a)k)cos(ja)k) K"4COSka)}2
<{=N 1 4 41 Acosfe
g2 (2 (log(n) &1 plog (n)
o5} 2 {5 ol )} -4 o(P)

2
= gﬂ-z — f + O(i) + O(M)

p 2
Consequently we have

[r4 ), = g + o(é) + o( p'or?zz(”)) N o('ogz(”)).

n
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Proof of Lemma 7(ii)By inverse of a partitioned matrix,

yn(p) = ([Fﬁl(p)]ll _[Fﬁl(p)]ll'}’/pllﬁ,lp), ,

wherey; andl, , are the same notation as the proof of Lemma 7(i), respectively. It is easily seen from

the proof of Lemma 7(i) that
iz (0(5) 1v05am) 1ofem) .k ofsm) o
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