
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

TOHOKU ECONOMICS RESEARCH GROUP 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Discussion Paper No. 239 

Broadband semiparametric estimation of the 
long-memory parameter by the likelihood-based 

FEXP approach 

Masaki Narukawa 
and 

Yasumasa Matsuda 

November 2008 

GRADUATE SCHOOL OF ECONOMICS AND
 MANAGEMENT TOHOKU UNIVERSITY

KAWAUCHI, AOBA-KU, SENDAI,
980-8576 JAPAN

 

 



Broadband semiparametric estimation of the long-memory
parameter by the likelihood-based FEXP approach

Masaki Narukawa
and

Yasumasa Matsuda

Tohoku University

Abstract

This paper proposes a semiparametric estimator of the long-memory parameter to fit a fractional
exponential (FEXP) model by a likelihood-based approach. We establish that our proposed esti-
mator is more efficient than the FEXP estimator proposed independently by Moulines and Soulier
(1999) and Hurvuch and Brodsky (2001), and has the same asymptotic variance as the fractionally
differenced autoregressive (FAR) estimator proposed by Bhansali et al. (2006) without pooling the
periodogram. The Monte Carlo studies suggest that our estimator outperforms the FEXP estima-
tor or is not inferior to the Gaussian semiparametric estimator (GSE) and will be also empirically
effective in non-Gaussian processes.

1 Introduction

In this paper, we consider a covariance stationary process{Xt}t∈Z with spectral density of the following
form:

f (λ) = |1− eiλ|−2d f ∗(λ), λ ∈ [−π, π]. (1)

where−1/2 < d < 1/2 and f ∗(λ) is an even, non-negative, continuous and bounded function such that
f ∗(0) , 0. The memory parameterd governs the behavior of the spectral density in a neighborhood
of the zero frequency, so that in the case 0< d < 1/2, the process{Xt}t∈Z is said to be long-range
dependent, whereas the case−1/2 < d < 0 corresponds to the antipersistence where the spectral density
at zero frequency is zero but the process is invertible.f ∗(λ) controls the short-memory behavior, and so
the cased = 0 corresponds to the short-range or weak dependence as usual. Such long-memory models
have recently been applied to many fields and the importance of that have rapidly increased (see, e.g.
Robinson (1994), Beran (1994) or Doukhan et al. (2003)).

If properly finite dimensional parameterization off ∗(λ) is assumed, the parameters off (λ) will be
estimated using the parametric model aprroach, such as Fox and Taqqu (1986), Dalhaus (1989), Giraitis
and Surgailis (1990) and Hosoya (1997) among others, which can be consisitent and asymptotically
efficient estimator. However, the estimator may be inconsistent if the parameterization is misspecified,
because the above argument is only provided that the parameterization is correctly specified. To avoid
this drawback and because the most interest is usually in the estimation of the memory parameterd, we
require semiparametric estimation ofd. Among such estimations, to only take into account the behavior
of f ∗(λ) at a neighborhood of the zero frequency is calledlocal methodsor narrowbandbecause the
frequencies used in estimation are restricted or trimmed to some extent around the zero frequency.
Narrowband semiparametric estimators include, for example, theGPH estimator introduced by Geweke
and Poter-Hudak (1983) and later exhaustively investigated by Robinson (1995a) and Hurvich et al.
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(1998), or theGaussian semiparametric estimator(GSE) proposed by K̈unsch (1987) and theoretically
established by Robinson (1995b). The optimal choice of the trimming number or bandwidth for local
methods is a rather complicated problem, so that it seems that the critical solutions to this problem are
not established, though some approaches, such asplug-in methods (see, e.g. Hurvich and Deo (1999),
Henry (2001)) oradaptive estimation(see, e.g. Giraitis et al. (2000)), have been proposed. Another
semiparametric estimation isglobal methods, using the whole frequency range by assuming a regularity
condition onf ∗(λ), and the term ofbroadbandcomes from such fact.

Broadband semiparametric estimators include two approaches, one of which is afractioanl expo-
nential(FEXP) approach and the other is afractionally differenced autoregressive(FAR) approach. The
FEXP approach is to fit a FEXP model to the log-periodogram regression at all Fourier frequencies by
a least-squares procedure. The FEXP model is based on a Fourier series expansion of the logarithm of
the short-memory component as follows: under appropriate regularity condition,l∗(λ) = log f ∗(λ), may
be expanded on the cosine basis,

l∗(λ) =
∞∑
j=0

θ jh j(λ), h j(λ) = cos(jλ). (2)

Then, logf (λ) is given by logf (λ) = dg(λ)+ l∗(λ), whereg(λ) = −2 log|1− eiλ|. The class of which the
expansion ofl∗(λ) is a finite number of cosin bases called FEXP models by Beran (1993), generalizing
exponential models proposed by Bloomfield (1973). When a FEXP model is not regarded as a finite ex-
pansion a priori but a truncated expansion of the infinite expansion of logf (λ) and order of the truncation
tends to infinity asn→ ∞, the FEXP approach is semiparametric. Such approach with the least-squares
fitting is discussed by Robinson (1994) and theoretically investigated independently by Moulines and
Soulier (1999) and Hurvich and Brodsky (2001). On the other hand, the FAR approach is to assume
that the true spectral density obeys FAR(p,d) where the AR orderp tends to infinity asn→ ∞, and so
the estimator ofd is obtained from fitting a FAR(p, d) model by a Whittle likelihood procedure. Such
approach has been proposed by Bhansali et al. (2006) and they established the asymptotic properties
of the FAR estimator ofd. They also showed that the asymptotic variance of the estimator ofd is 1,
which implies that the FAR approach is more efficient than the FEXP approach, though the asymptotic
variance of the FEXP estimator shown by Moulines and Soulier (1999) is dependent on pooling number
J and theoretically tends to 1 only asJ→ ∞.

The purpose of this paper is to propose a more efficient broadband semiparametric estimator for the
FEXP model by a likelihood-based approach, called thelikelihood-basedFEXP approach. Since the
distribution of the error terms in the log-periodogram regression obviously deviates from the normal
distribution, the least-squares fitting of a FEXP model is not necessarily efficient as the above fact. In
the short-range dependence context, the efficiency of the log-periodogram regression can be improved
by themaximum likelihood estimationas in Fan and Kreutzberger (1998). This motivates us to apply
themaximum likelihood estimationto fitting a FEXP model in the long-range dependence context. We
establish that our estimator is consistent and asymptotically normal, and achieves the same asymptotic
variance as Bhansali et al. (2006) without pooling, which suggests that the likelihood-based FEXP
approach improves the efficiency of estimators and will give the asymptotically efficient estimator in
global methods.

The paper is organized as follows. Section 2 describes the estimation procedure. In Section3, we
state the assumptions and the asymptotic properties of our estimator. In Section 4, we provide a small
Monte Carlo simulation to support the finite sample performance of our estimator by comparing with the
other estimators (Robinson (1995b), Moulines and Soulier (1999) or Hurvich and Brodsky (2001)) and
show an application for financial time series. Section 5 describes the concluding remarks. In Section 6,
we provide the proofs of the main results given in Section 3.
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2 Semiparametric estimation of the long-memory parameter

Suppose that{Xt}t∈Z is a stationary Gaussian process and its spectral densityf (λ) is given by (1). De-
notingKn = [n/2], the periodogram of{Xt} is given by

In(ωk) =
1

2πn

∣∣∣∣∣∣∣
n∑

t=1

Xte
itωk

∣∣∣∣∣∣∣
2

, k = 1, · · · , 2Kn,

whereωk = 2πk/n is thekth Fourier frequency.
The log-periodogram regression is based on the following identity:

Yk = log f (ωk) + log

(
In(ωk)
f (ωk)

)
= dg(ωk) + l∗(ωk) + εk, (3)

whereYk = log In(ωk) andεk = log
(
In(ωk)/ f (ωk)

)
. In the short-range dependence context, it is well

known that the error termsεk are asymptotically independent and distributed as log(1
2χ

2
2), whereχ2

2 is
distributed as a centralchi-squarewith 2 degrees of freedom (see, e.g. Brockwell and Davis, 1991, The-
orem 10.3.2). We could, therefore, approximately regard{εk}1≤k≤Kn asKn independently and identically
distributed log(12χ

2
2). As for the long-range dependence, it has been first shown by Künsch (1986) and

later Hurvich and Beltrao (1993) and Robinson (1995a) that the normalized periodogramsIn(ωk)/ f (ωk)
are asymptotically neither independent nor identically distributed, so thatεk no longer have the above
properties. However, the following decomposition ofεk, which is derived from Theorem2 in Moulines
and Soulier (1999), shows that the log-periodogram regression at all Fourier frequencies is relevant in
the long-range dependence context. Under a Gaussianity of{Xt}t∈Z and a global smoothness condition
on f ∗ (corresponding to Assumption 2 in Section 3 below), there exists a constantC < ∞, such that for
all 1 ≤ k ≤ Kn,

εk = ηk + rk,

|rk| ≤ C log(1+ k)/k, w.p.1, (4)

|cov(ηk, ηl)| ≤ C log2(l) k−2|d| l2|d|−2, (5)

with ηk is distributed as log(12χ
2
2), andE(ηk) = ψ(1) and Var(ηk) = ψ′(1), whereψ(z) andψ′(z) denotes

thedigamma functionandtrigamma function, respectively.
Denotegk = g(ωk), h j,k = h j(ωk) andl∗p,k =

∑∞
j=p θ jh j,k. By the Fourier expansion (2), the regression

equation (3) is

Yk = dgk +

p−1∑
j=0

θ jh j,k + l∗p,k + εk = dgk + θ
′hp,k + l∗p,k + εk,

whereθ = (θ0, · · · , θp−1)′, hp,k = (h0,k, · · · ,hp−1,k)′ andθ′hp,k is the truncated Fourier expansion or
the FEXP of orderp. Since our estimation is semiparametric, the truncated orderp depends onn and
limn→∞ pn = ∞, which impliesl∗p,k is an asymptically neglligible term and we can write the rgression
equation as

Yk ≈ dgk + θ
′hp,k + εk. (6)

This shows that the log-periodogram is approximated by the FEXP at all Forier frequancies, and
Moulines and Soulier (1999) and Hurvich and Brodsky (2001) have independently proposed the least-
squares estimation of the parameter (d, θ′)′. The least-squares fitting is, however, regarded as assuming
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that{εk}1≤k≤Kn are indepedently and normally distributed with mean 0 and varianceψ′(1) in view of the
maximum likelihood estimation, which does not take into account the asymmetry of log(1

2χ
2
2). Since

this fact may imply the efficeiency loss of the estimators in the FEXP approach andηk is distributed
as log(12χ

2
2), we will construct the likelihood based estimation of these parameter by pretending that

{εk}1≤k≤Kn are indepedently andlog-gammadistributed, which has the probability density function (see,
e.g. Kotz and Nadarajah, 2000, p.48)

fε(x) = exp
{−exp(x) + x

}
.

Such approach has been introduced by Fan and Kreutzberger (1998) for spectral density estimation in
the short-range dependence context. For the spectral densityf (λ) in (1), the log-likelihood function
associated with the regression equation and thelog-gammapdf is given by

Ln(d, θ) =
1
Kn

Kn∑
k=1

{
Yk − dgk − θ′hp,k − exp

(
Yk − dgk − θ′hp,k

)}
. (7)

The maximum likelihood estimator (d̂n, θ̂
′
n)′ is obtained by maximizing the functionLn(d, θ). Since the

form of Ln(d, θ) is a non-linear but strictly concave function, the maximization ofLn(d, θ) is easily
implemented. The zero vector or the least-squares estimators work well as the initial estimators for the
non-linear optimization.

3 Consistency and asymptotic distribution of the estimator

We now precisely state our assumptions below, which are required to derive the asymptotic properties
of the estimator in the previous section.

Assumption 1.The process{Xt}t∈Z is Gaussian.
Assumption 2.The spectral densityf of the process{Xt}t∈Z satisfies

f (λ) =
∣∣∣1− eiλ

∣∣∣−2d
f ∗(λ) , λ ∈ [−π, π] ,

where 0≤ d < 1/2, and f ∗ is positive and differentiable on [−π, π] \ {0} with

∀ λ ∈ [−π, π] \ {0},
∣∣∣∣∣d f∗(λ)

dλ

∣∣∣∣∣ ≤ C
|λ| ,

for some finite constantC < ∞.
Assumption 3. l∗(λ) has a convergent Fourier expansion,

l∗(λ) =
∞∑
j=0

θ jh j(λ), λ ∈ [−π, π],

with
∑∞

j=0 jα|θ j | < ∞ for some realα > 1.
Assumption 4a. Suppose that{pn} is an increasing sequence of integers such that limn→∞ pn = ∞

and
lim
n→∞

pn

n
= 0.

Assumption 4b. Suppose that{pn} is an increasing sequence of integers such that limn→∞ pn = ∞
and

lim
n→∞

p2
n log2(n)

n
= 0, lim

n→∞
n

p2α
n
= 0.
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Assumption 5. Let the parameter spaceΘ be the set of points (d, θ′) = (d, θ0, θ1, · · · ), satisfying
d ∈ [0, 1

2] andD =
{
θ ∈ R∞ | ∀ j, |θ j | ≤ K j−δ

}
for some realδ > 1 and finite constantK < ∞. Suppose

that the true parameter (d0, θ
′
0) = (d0, θ0

0, θ
0
1, · · · ) is in the interior of the setΘ.

Let us give some comments on Assumptions. Gaussianity of the time series, as in Robinson (1995a)
and Moulines and Soulier (1999), removes the complexity to evaluate the high order moment of non-
linear transformation of the periodogram. Assumptions 1 and 2 are also necessary to derive (4) and (5).
Assumption 5 is required to ensure compactness of the infinitely dimensional parameter spaceΘ.

The consitency of our likelihood-based FEXP estimator of the long-memory parameterd is shown
by the following theorem and the proof is given in Section 6.

Theorem 1. Under Assumptions 1-3, 4a, 5, for the estimatord̂n that maximizes the log-likelihood
function (7),

d̂n
p
−→ d0 as n→ ∞.

Next, we state the asymptotic normality of our likelihood-based FEXP estimator of the long-memory
parameterd.

Theorem 2. Under Assumptions 1-3, 4b, 5,√
n
pn

(
d̂n − d0

) d−→ N
(
0, 1

)
as n→ ∞.

The proof is given in Section 6. It should be noted that our estimator is asymptotically more efficient
than that of Moulines and Soulier (1999), though the asymptotic variance of these authors isJψ′(J),
whereJ is a pooling number, andJψ′(J) → 1 asJ → ∞. Since our likelihood-based FEXP estimator
attains the asymptotic variance 1 without pooling, it is not necessary for our approach. Also, our estima-
tior achieves the same asymptotic variance as Bhansali et al. (2006), though they did not assume that the
process is Gaussian. Our likelihood-based FEXP approach may possibly be extended to non-Gaussian
case, by applying the same argument in Hurvich et al. (2002) which has established the asymptotic
theory of the FEXP approach for a linear process by using the method in Fay and Soulier (2001). How-
ever, in this paper, we do not pursue the theoretical extension but the empirical demonstrations for
non-Gaussian cases in the next section.

By the virtue of Theorem 2, we can constructLM statistic for the testing problem that

H0 : d = 0 against H1 : d > 0. (8)

Let β = (d, θ′)′ and define

Sn(β̃) =
∂Ln(β)
∂β

∣∣∣∣∣∣
H0

, Ωn(β̃) =
∂2Ln(β)
∂β∂β′

∣∣∣∣∣∣
H0

.

Then the standardizedLM statistic for the one-sided testing problem is given by

tLM =
√

Kn
Sn,1(β̃)√[
Ωn(β̃)

]
11

,

whereSn,1(β̃) is the first element ofSn(β̃), and [Ωn(β̃)]11 is the (1,1)th element ofΩn(β̃) .
Corollary. Under the null hypothesisH0,

tLM
d−→ N

(
0, 1

)
as n→ ∞.

The proof is given in Section 6. Corollary enables us to test the statistical hypothesis for the long-
range dependence, which will be extended to the testing offractional unit rootsin a frequency domain,
such as Lobato and Robinson (1998).
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Remark. Theorem 1, 2 and Corollary are only established in the cases of the long-range depen-
dence, 0< d < 1/2 and the short-range dependence,d = 0, while Moulines and Soulier (1999) have
established the asymptotic theory of the FEXP estimator for−1/2 < d < 1/2. However, we can prove
these theorems for the antipersistence,−1/2 < d < 0, in the same way, by considering the parameter
spaced ∈ [−1

2, 0] instead ofd ∈ [0, 1
2].

4 Empirical studies

This section investigates the finite sample behavior of our estimator and compares that with the existing
semiparametric estimators of Robinson (1995b) and Moulines and Soulier (1999) in a Monte-Carlo
simulation, and moreover we show a simple application for real data analysis. Note that the proposed
estimator in this paper is denoted asd̂MLE.

4.1 Simulation

We now introduce two other semiparametric estimators for comparison purposes. One is the FEXP
estimator based on the least-squares fitting of a FEXP model, as referred in Section 2, and the estimator
of d is given by

d̂LS E = arg min
d,θ0,··· ,θp−1

Kn∑
k=1

{
Yk − dgk − θ′hp,k

}2

.

The other is a Gaussian semiparametric estimator (GSE) and the estimator ofd is defined by Robinson
(1995b) as

d̂GS E= arg min
d∈(−1/2,1/2)

log

 1
m

m∑
k=1

ω2d
k In(ωk)

 − 2d
m

m∑
k=1

logωk

 ,
wherem is a bandwidth or trimming parameter for local methods. Robinson (1995b) suggests thatd̂GS E

can be identified with the most efficient semiparametric estimator ofd in local methods, and sôdGS E is
the benchmark in local methods for comparison purposes. It is noted that since pooling is also irrelevant
for d̂GS E that is based on the Whittle likelihood, pooling is not considered in the simulation below.

The design of data generating process (DGP) for our Monte-Carlo simulation is based on, such as
Diebold and Rudebusch (1991), the Choleski decomposition of the autocovariance function offraction-
ally integrated noise, defined as (

1− B
)dXt = εt,

where B is the backward shift operator. By using the above, we generate two cases of a
ARFIMA(1, 0.3, 1) process{Xt}t∈Z as follows:(

1− ϕB
)(

1− B
)0.3Xt =

(
1+ θB

)
εt,

where{εt} are designed to be independent (i) standard normaland (ii ) Uniform
[−√3,

√
3
]
. The uniform

distribution is selected as a typical example of non-Gaussian distribution to examine whetherd̂MLE is
empirically robust in the comparison witĥdLS E, as in Velasco (2000). The values for

(
ϕ, θ

)
are

(
0.4,0

)
and

(
0.2, 0.6

)
. The length of the series isT = 501 and 1000 independent replications of each time series

are generated. We consider the following cases for the truncated orderp and the bandwidth parameter
masp = 1, · · · , 6 andm=

[
Tδ] with δ = 0.3, · · · ,0.8, respectively.
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Tables 1 and 2 report the results of our Monte Carlo simulation in Gaussian case, whereBias, Std.dev
andMSEdenote the bias, the standard deviation and the mean squared error of the estimators, calculated
across replications, respectively. Also,SizeandPowerare each calculated as the empirical size when
d = 0 and the power whend = 0.3 at the nominal 5% significant level for one-sidedLM statistic and
t-statistic corresponding to (8). Our estimatord̂MLE is the least bias in comparison with the two other
estimators in all the cases when bothp andδ are chosen at the minimum of bias. Similarly, in the view
of MSE, d̂MLE is less thand̂LS E in all the cases and less thand̂GS E for (ϕ, θ) = (0.4, 0.0), whereaŝdGS E

has lessMSEfor (ϕ, θ) = (0.2, 0.6), when the optimalp andδ are chosen, respectively. As forSizeand
Power, the same tendency as the above is indicated and it is obvious that our one-sidedLM statistic with
d̂MLE is more powerful than that oft-statistic withd̂LS E.

Thus, our estimator̂dMLE is clearly more desirable than̂dLS E, as established by the asymptotic
properties in Section 3, and moreover the performance ofd̂MLE is not inferior tod̂GS E at the optimalp
andδ. However, it should be noted that the optimalp or δ based on the minimum of MSE is not always
appropriate with respect toBiasor Size, which implies that the optimal choice ofp or δ are critical for
these semiparametric estimators but a considerably complicated problem.

Tables 3 and 4 indicate that replacing Gaussian innovations with non-Gaussian ones that are uni-
formly distributed does not essentially affect the performance of the estimators. Although there is no
theoretical results of the likelihood-based FEXP estimation with non-Gaussian innovations, these results

Table 1. (ϕ, θ) = (0.4, 0.0) with Gaussianinnovations.
d̂MLE

p Bias Std.dev MSE Size Power

1 0.32379 0.04143 0.10655 1.000 1.000
2 0.08839 0.06450 0.01197 0.380 1.000
3 0.02384 0.08397 0.00762 0.078 0.983
4 -0.00032 0.10202 0.01041 0.033 0.899
5 -0.00864 0.11936 0.01432 0.035 0.800
6 -0.01748 0.13642 0.01892 0.033 0.699

d̂LS E

p Bias Std.dev MSE Size Power

1 0.29438 0.04522 0.08871 1.000 1.000
2 0.09439 0.07823 0.01503 0.339 0.997
3 0.03534 0.10169 0.01159 0.090 0.948
4 0.01723 0.12463 0.01583 0.055 0.806
5 0.01112 0.14610 0.02147 0.049 0.685
6 0.00468 0.16746 0.02807 0.046 0.587

d̂GS E

δ Bias Std.dev MSE Size Power

0.3 -0.05391 0.39440 0.15846 0.005 0.043
0.4 -0.02549 0.21025 0.04486 0.009 0.272
0.5 0.00258 0.13550 0.01837 0.027 0.659
0.6 0.03250 0.08997 0.00915 0.073 0.956
0.7 0.09594 0.06556 0.01350 0.394 1.000
0.8 0.19827 0.04726 0.04154 0.992 1.000
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suggest that our approach will be also effective in non-Gaussian cases and give a robust estimator.
The question about the optimal choice of the truncated orderp has been solved, in view ofmodel

selection, for the FEXP approach by Moulines and Soulier (2000) based on Mallow’sCp criterion and
Hurvich (2001) based on Mallow’sCL criterion. These criterion, however, were constructed forlinear-
regression modelsand cannot apply for our likelihood-based FEXP approach. Instead, we empirically
propose a data-driven selection ofp based onAkaike Information Criterion(AIC, Akaike (1973)), which
is the model selection criterion constructed from thelog-likelihood. Our proposed method is to choose
so as to minimize

AIC(p) = −2
{
KnLn(d̂, θ̂) − (p+ 1)

}
,

whereLn(d̂, θ̂) is the estimated log-likelihood function (7), over the set of all examined values forp.
We do not pursue the theoretical validity of this criterion in our context but show the numerical results
by the simulation below.

Table 5 reports the rate ofp in the same DGP, length of series and replications as the above with
Gaussian innovations and the examined values ofp are p = 1, · · · ,10. In the case (ϕ, θ) = (0.4,0.0),
although the optimalp is p = 3 or p = 4 from Table 1, Table 5 indicates that about half of the replications
selectp = 2, which suggests that the selectedp based onAIC(p) will be somewhat biased downward in
this case. As for the case (ϕ, θ) = (0.2,0.6), the selectedp is a little dispersive but gather aroundp = 3

Table 2. (ϕ, θ) = (0.2, 0.6) with Gaussianinnovations.
d̂MLE

p Bias Std.dev MSE Size Power

1 0.52428 0.05024 0.27740 1.000 1.000
2 -0.10474 0.06445 0.01513 0.000 0.933
3 0.05477 0.08429 0.01010 0.145 0.993
4 -0.03638 0.10212 0.01175 0.013 0.835
5 0.00134 0.11943 0.01427 0.042 0.823
6 -0.02552 0.13650 0.01928 0.026 0.679

d̂LS E

p Bias Std.dev MSE Size Power

1 0.48299 0.04553 0.23535 1.000 1.000
2 -0.10060 0.07877 0.01633 0.000 0.811
3 0.06504 0.10177 0.01459 0.152 0.967
4 -0.01796 0.12474 0.01588 0.018 0.731
5 0.02061 0.14625 0.02181 0.056 0.713
6 -0.00316 0.16772 0.02814 0.042 0.577

d̂GS E

δ Bias Std.dev MSE Size Power

0.3 -0.05477 0.39472 0.15880 0.006 0.042
0.4 -0.02787 0.21027 0.04499 0.009 0.271
0.5 -0.00392 0.13547 0.01837 0.023 0.644
0.6 0.01456 0.08988 0.00829 0.049 0.947
0.7 0.05950 0.06522 0.00779 0.217 0.999
0.8 0.18166 0.04746 0.03525 0.971 1.000
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or p = 4 and, in fact, around 80 percent of the replications is within 3, 4 and 5, whereBiasandMSE
of d̂MLE are comparatively less than that of the otherp. From these results, the choice ofp based on
AIC(p) will be empirically considered as useful for the optimal selection, though suchp can be slightly
smaller than the optimalp in some cases.

4.2 Application

This section shows the simple application of semiparametric estimation of the long-range dependence
to financial time series, which is the long-range dependence in volatility. We now introduce the return
series{rt} from a financial asset at timet as follows:

rt = log
(
pt
) − log

(
pt−1

)
,

wherept is the price for a financial asset at timet. To investigate the long-range dependence in volatility,
the most simple approach is to semiparametrically estimate the long-memory parameterd by using
squared return series{r2

t }. We study such point with our likelihood-based FEXP and the FEXP approach
for the returns from stock and foreign exchange rates, respectively.

The data studied is daily series of Dow Jones Industrial average (DJI) obtained fromyahoo finance
for stock market and of Euro/Dollar rate for exchange rates obtained fromBank of Japan, respectively.

Table 3. (ϕ, θ) = (0.4,0.0) with Uniform innovations.
d̂MLE

p Bias Std.dev MSE Size Power

1 0.32434 0.04248 0.10700 1.000 1.000
2 0.08929 0.06629 0.01237 0.391 1.000
3 0.02346 0.08636 0.00801 0.071 0.981
4 -0.00124 0.10303 0.01062 0.044 0.895
5 -0.00973 0.11746 0.01389 0.033 0.800
6 -0.01407 0.13556 0.01858 0.029 0.703

d̂LS E

p Bias Std.dev MSE Size Power

1 0.29452 0.04772 0.08902 1.000 1.000
2 0.09083 0.08046 0.01473 0.306 0.998
3 0.03309 0.10836 0.01284 0.092 0.936
4 0.01177 0.13005 0.01705 0.060 0.796
5 0.00509 0.15038 0.02264 0.053 0.684
6 0.00392 0.17237 0.02973 0.044 0.568

d̂GS E

δ Bias Std.dev MSE Size Power

0.3 -0.05317 0.40499 0.16684 0.002 0.047
0.4 -0.02573 0.22048 0.04928 0.015 0.312
0.5 0.00228 0.14167 0.02008 0.027 0.652
0.6 0.03140 0.09237 0.00952 0.068 0.952
0.7 0.09539 0.06751 0.01366 0.384 1.000
0.8 0.19977 0.04874 0.04228 0.989 1.000
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Table 6 reports the semiparametric estimators ofd and the values in the parenthesis below are one-sided
LM-statistic andt-statistic for testing the hypothesis of (8), respectively. We also present the each es-
timators of the return seriesrt for comparison purposes.̂dMLE andLM-statistic tend to take the larger
values thand̂LS E and t-statistic, which implies that our approach is more powerful. The long-range

Table 4. (ϕ, θ) = (0.2,0.6) with Uniform innovations.
d̂MLE

p Bias Std.dev MSE Size Power

1 0.52539 0.05130 0.27867 1.000 1.000
2 -0.10350 0.06543 0.01500 0.046 0.998
3 0.05407 0.08697 0.01049 0.043 0.965
4 -0.03694 0.10282 0.01194 0.033 0.883
5 0.00003 0.11757 0.01382 0.030 0.797
6 -0.02221 0.13548 0.01885 0.027 0.700

d̂LS E

p Bias Std.dev MSE Size Power

1 0.48265 0.04802 0.23526 1.000 1.000
2 -0.10352 0.08041 0.01718 0.000 0.796
3 0.06203 0.10852 0.01562 0.142 0.957
4 -0.02304 0.13012 0.01746 0.030 0.711
5 0.01443 0.15060 0.02289 0.058 0.701
6 -0.00375 0.17183 0.02954 0.037 0.559

d̂GS E

δ Bias Std.dev MSE Size Power

0.3 -0.05399 0.40493 0.16689 0.002 0.047
0.4 -0.02809 0.22045 0.04939 0.015 0.309
0.5 -0.00423 0.14160 0.02007 0.027 0.636
0.6 0.01340 0.09224 0.00869 0.052 0.939
0.7 0.05901 0.06698 0.00797 0.212 1.000
0.8 0.18306 0.04884 0.03590 0.973 1.000

Table 5. Rates of selectedp with Gaussianinnovations in 1000 replications.

p (ϕ, θ) = (0.4, 0.0) (ϕ, θ) = (0.2, 0.6)

1 2 0
2 507 21
3 269 342
4 94 344
5 41 121
6 26 63
7 15 29
8 18 37
9 16 23
10 12 20
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Table 6. Estimators of the long-memory parameter in return and squared return series.

DJI average (T=900) d̂MLE d̂LS E

rt -0.0697 -0.11077
(-2.7338) (-3.0330)

r2
t 0.48005 0.423883

(7.0329) (4.6328)

Euro/Dollar rate (T=817) d̂MLE d̂LS E

rt 0.01349 0.05671
(0.47397) (1.4705)

r2
t 0.23781 0.154632

(5.1394) (2.6555)

dependence is detected only in the squared series, which suggests that the volatility of both series has
the long-range dependence. Note that it is necessary for estimation of the long-memory parameter
in volatility to consider a more elaborate model such as along-memory stochastic volatility(LMSV)
or a fractionally integrated exponential generalized autoregressive conditional heteroskedasticity(FIE-
GARCH) model, and more specifically see, e.g. Deo and Hurvich (2003), Hurvich et al. (2005) and the
references therein.

5 Concluding remarks

In this paper, we have proposed the broadband semiparametric estimator of the long-memory parameter
of a long-range dependent time series using the likelihood-based FEXP approach and established the
asymptotic properties of the estimator. We have also shown that the likelihood-based FEXP approach
gives the more efficient semiparametric estimator than that of the FEXP approach, which achieves the
same asymptotic variance as Bhansali et al. (2006) without pooling the preriodogram.

The simulation studies have supported the validity of the theoretical results of our estimator and
shown thatAIC(p) is effective for the data-driven selection of the truncated orderp. Moreover the
likelihood-based FEXP approach is not only useful and preferable in Gaussian case but also empirically
robust in non-Gaussian case, though there is no theoretical results of our estimator in non-Gaussian
processes.

The asymptotic theory of our estimator in Theorem 1 and 2 depends on the assumption that the
processes are Gaussian. We have not pursued the non-Gaussian extension in this paper, so that an
important task remained open is to prove without the Gaussian assumption. The theoretical validity of
the model selection based onAIC(p) for the likelihood-based FEXP approach have not been established,
which is also left to the future study.

6 Appendix

This section proves Theorem 1, 2 and Corollary, where Lemmas employed in the proofs are given in
Section 6.2. Throughout this section,C,C∗,C1,C2, · · · , are a positive generic constant term, but not
always the same one in each context.
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6.1 Proofs of Theorem 1, 2 and Corollary

Proof of Theorem 1. To prove Theorem 1, we shall follow Lemma 2 in Walker (1964) adapted to the
infinitely dimensional compact parameter space.

Throughout the proofs, let the parameter spaceΘ be a metric space with the metric defined as

∥(d, θ′)∥ = |d| +
∞∑
j=0

|θ j |,

which is induced byl1-norm. It follows from Assumption 5 that the metric spaceΘ equipped withl1-
norm istotally boundedandcomplete. Therefore, it is compact (see, e.g. Kolmogorov and Fomin, 1970,
p.100).

Let (d0, θ
′
0) = (d0, θ0

0, θ
0
1, · · · , θ

0
p−1, · · · ) be the true parameter values, and (d, θ′) =

(d, θ0, θ1, · · · , θp−1,0,0, · · · ) be any admissible values of the truncated orderp. By equation (6), the
log-likelihood function (7) rewrite,

Ln(d, θ) =
1
Kn

Kn∑
k=1

{(
d0 − d

)
gk +

(
θ0,p − θp

)′hp,k + l∗(0),p,k + ηk + rk

− exp
((

d0 − d
)
gk +

(
θ0,p − θp

)′hp,k + l∗(0),p,k + ηk + rk

)}
. (9)

whereθ0,p = (θ0
0, θ

0
1, · · · , θ

0
p−1)′, θp = (θ0, θ1, · · · , θp−1)′ andl∗(0),p,k =

∑∞
j=p θ

0
j h j,k.

We must first show that these terms satisfy the following properties: asn→ ∞,

Ln(d, θ)
p
−→ L∞(d, θ),

where

L∞(d, θ) =
1
2π

∫ π

−π

{
(d0 − d)g(λ) + l∗(0)(λ) − l∗(λ) − exp

(
(d0 − d)g(λ) + l∗(0)(λ) − l∗(λ)

)
+ ψ(1)

}
dλ,

with l∗(0)(λ) =
∑∞

j=0 θ
0
j h j(λ). By Lemma 3 and the square integrability ofg(λ), the expectation ofLn(d, θ)

is evaluated as

E
(
Ln(d, θ)

)
=

1
Kn

Kn∑
k=1

{(
d0 − d

)
gk +

(
θ0,p − θp

)′hp,k + l∗(0),p,k + ψ(1)

− exp
((

d0 − d
)
gk +

(
θ0,p − θp

)′hp,k + l∗(0),p,k

)}
+

1
Kn

Kn∑
k=1

O

(
log(1+ k)

k

)
− 1

Kn

Kn∑
k=1

O


(
2 sin

(
ωk

2

))−2µ
 O

(
log(1+ k)

k

)

=
1
Kn

Kn∑
k=1

{(
d0 − d

)
gk +

(
θ0,p − θp

)′hp,k +O
(
p−α

)
+ ψ(1)

+ exp
((

d0 − d
)
gk +

(
θ0,p − θp

)′hp,k+
)}
+O

(
log2(n)

n

)
−O

(
n2µ

)
·O

(
log2(n)

n

)
=

1
Kn

Kn∑
k=1

{(
d0 − d

)
gk +

(
θ0,p − θp

)′hp,k

− exp
((

d0 − d
)
gk +

(
θ0,p − θp

)′hp,k

)
+ ψ(1)

}
+O

(
p−α

)
+O

(
log2(n)
n1−2µ

)
, (10)
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where|d0 − d| < µ < 1/2, because|d| < 1/2 andd has the same sign asd0, so that 0< 1 − 2µ < 1.
The second equality of the expectation follows from limx→0 sin(x)/x = 1, Assumption 3 that yields
l∗(0),p,k = O(p−α) , and Taylor’s expansion of exp

(
O(p−α)

)
. In addition to the previous Lemma, by

Lemma 2, 4, 5 and Cauchy-Schwarz inequality, the variance ofLn(d, θ) is evaluated as

Var
(
Ln(d, θ)

)
= E

 1
Kn

Kn∑
k=1

(
ηk − E(ηk)

)
2

+ E

 1
Kn

Kn∑
k=1

(
rk − E(rk)

)
2

+ E

 1
Kn

Kn∑
k=1

exp
((

d0 − d
)
gk +

(
θ0,p − θp

)′hp,k + l∗(0),p,k

)
×

(
exp(ηk) − E

(
exp(ηk)

))(
1+O

(
log(1+ k)

k

))}2

+Cross terms

≤ 1

K2
n
·O(

n
)
+

1

K2
n
·O

(
log4(n)

)
+

1
Kn
·O

(
n2µ

)
· 1

Kn

Kn∑
k=1

O


(
2 sin

(
ωk

2

))−2µ
 + 1

K2
n
·O

{(
n2µ

)2
· log3(n)

}
= O

(
1
n

)
+O

(
log4(n)

n2

)
+O

(
1

n1−2µ

)
+O

(
log3(n)
n2−4µ

)
= O

(
log3(n)
n2−4µ

)
, (11)

The second equality follows from the integrability of sinν(x) for ν > −1 on
(
0, π/2

)
(see, e.g. Gradshteyn

and Ryzhik, 1965, p.369). By the condition ofµ and Assumption 4a, (10) and (11) yieldLn(d, θ)
p
−→

L∞(d, θ), as n→ ∞.
Next, let (d1, θ

′
1) , (d0, θ

′
0). Substituting these parameter for (9), respectively, asn → ∞,

Ln(d0, θ0)
p
−→ L∞(d0, θ0), whereL∞(d0, θ0) = ψ(1)− 1, andLn(d1, θ1)

p
−→ L∞(d1, θ1), where

L∞(d1, θ1) =
1
2π

∫ π

−π

{
(d0 − d1)g(λ) + l∗(0)(λ) − l∗(1)(λ) − exp

(
(d0 − d1)g(λ) + l∗(0)(λ) − l∗(1)(λ)

)
+ ψ(1)

}
dλ.

Since{h0(λ),h1(λ), · · · } is an orthogonal system inL2, the identifiability condition of the parameter
(d, θ′) is satisfied, which yields

L∞(d0, θ0) − L∞(d1, θ1) =
1
2π

∫ π

−π

{
exp

(
(d0 − d1)g(λ) + l∗(0)(λ) − l∗(1)(λ)

)
−

(
(d0 − d1)g(λ) + l∗(0)(λ) − l∗(1)(λ)

)
− 1

}
dλ

> 0.

It follows that, for any positive constantG
[
(d0, θ0), (d1, θ1)

]
less thanL∞(d0, θ0) − L∞(d1, θ1),

lim
n→∞

P
{
Ln(d1, θ1) − Ln(d0, θ0) < −G

[
(d0, θ0), (d1, θ1)

]}
= 1.

For anyδ > 0, there existsHn,δ such that, for any (d1, θ
′
1) and (d2, θ

′
2) that satisfies∥ (d1, θ

′
1)− (d2, θ

′
2) ∥<

δ, ∣∣∣Ln(d1, θ1) − Ln(d2, θ2)
∣∣∣ < Hn,δ,

whereHn,δ is defined as

Hn,δ :=
1
Kn

Kn∑
k=1

{∣∣∣∣(d2 − d1
)
gk

∣∣∣∣ + ∣∣∣∣(θ2,p − θ1,p)′hp,k

∣∣∣∣
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+ In(ωk)
∣∣∣∣exp

(
−d2gk − θ′2,php,k

)
− exp

(
−d1gk − θ′1,php,k

)∣∣∣∣},
and has the following two properties:

lim
δ→0

E
(
Hn,δ

)
= 0, (12)

because, by Lemma 3 and Taylor’s expansion,

E
(
Hn,δ

)
=

1
Kn

Kn∑
k=1

{∣∣∣∣(d2 − d1
)
gk

∣∣∣∣ + ∣∣∣∣(θ2,p − θ1,p)′hp,k

∣∣∣∣}

+
1
Kn

Kn∑
k=1

(
1+O

(
log(1+ k)

k

))(
1+O

(
p−α

))
× exp

(
d0gk + θ

′
0,php,k

)∣∣∣∣exp
(
−d2gk − θ′2,php,k

)
− exp

(
−d1gk − θ′1,php,k

)∣∣∣∣
≤ 1

Kn

Kn∑
k=1

∣∣∣d2 − d1

∣∣∣∣∣∣gk

∣∣∣ + 1
Kn

Kn∑
k=1

∣∣∣θ2,p − θ1,p∣∣∣′∣∣∣hp,k

∣∣∣
+

C1

Kn

Kn∑
k=1

∣∣∣∣(d1 − d2
)
gk

∣∣∣∣ exp
((

d0 − d∗
)
gk +

(
θ0,p − θ2,p

)′hp,k

)
+

C2

Kn

Kn∑
k=1

∣∣∣∣(θ2,p − θ1,p)′hp,k

∣∣∣∣ exp
((

d0 − d1
)
gk +

(
θ0,p − θ∗p

)′hp,k

)
≤

∣∣∣d1 − d2

∣∣∣ ·C1 +
∣∣∣d1 − d2

∣∣∣ · C2

Kn

Kn∑
k=1

exp
((

d0 − d∗
)
gk

)∣∣∣gk

∣∣∣ + ∥∥∥θ1 − θ2∥∥∥ · C3

Kn

Kn∑
k=1

exp
((

d0 − d∗
)
gk

)
≤

∣∣∣d1 − d2

∣∣∣ ·C1 +
∥∥∥θ1 − θ2∥∥∥ ·C2,

whered∗ or θ∗p lie betweend1 and d2 or θ1,p and θ2,p, respectively. The second inequality follows
from the square integrability ofg(λ) and the last one follows from the integrability of sinν(x) and
sinν(x) log

(
sin(x)

)
for ν > −1 on

(
0, π/2

)
, respectively (see, e.g. Gradshteyn and Ryzhik, 1965, p.369

and p.588). And the other property is given by

lim
n→∞

Var
(
Hn,δ

)
= 0, (13)

because, by the same argument of (11),

Var
(
Hn,δ

) ≤ C1

K2
n

E

 Kn∑
k=1

exp
((

d0 − d1
)
gk +

(
θ0,p − θ1,p

)′hp,k

)(
exp(ηk) − E

(
exp(ηk)

))
2

+
C2

K2
n

E

 Kn∑
k=1

exp
((

d0 − d2
)
gk +

(
θ0,p − θ2,p

)′hp,k

)(
exp(ηk) − E

(
exp(ηk)

))
2

+Cross term

= O

(
log3(n)
n2−4µ

)
.

Now, (12) and (13) correspond to (16) and (17) in Walker (1964), respectively, which implies that there
existsδ > 0 such that

lim
n→∞

P
{
Hn,δ < G

[
(d0, θ0), (d1, θ1)

]}
= 1.
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Then, since the parameter spaceΘ is compact inR∞ by Assumption 5, Theorem 1 follows from Lemma
2 in Walker (1964). �

Proof of Theorem 2. Denotingβ = (d, θ0, θ1, · · · , θp−1), by the mean value theorem,

0 =
∂Ln(β0)
∂β

+
∂2Ln(β∗)
∂β∂β′

(
β̂n − β0

)
,

whereβ∗ lies betweenβ0 and β̂n with β0 = (d0, θ0
0, θ

0
1, · · · , θ

0
p−1) and β̂n = (d̂n, θ̂0, θ̂1, · · · , θ̂p−1). We

obtain √
Kn

p
(
β̂n − β0

)
= Ω−1

n (β∗)Λn(β0),

with

Λn(β0) =

√
Kn

p
∂Ln(β0)
∂β

, Ωn(β∗) = −∂
2Ln(β∗)
∂β∂β′

.

Now, by Theorem 1 and Lemma 6,

Ω−1
n (β∗)Λn(β0) = Γ−1

n (p)Λn(β0) +Op

(
p−α +

log(n)

n1/2

)
, (14)

where

Γn(p) =
1
Kn

Kn∑
k=1

(
gk

hp,k

) (
gk

hp,k

)′
,

with hp(λ) = (h0(λ), · · · ,hp−1(λ))′ . To prove Theorem 2, we only need the first element of
Ω−1

n (β∗)Λn(β0) because that corresponds to the long-memory parameterd. Let γn(p) denotes the first
row of Γ−1

n (p), then by the equation (14)√
Kn

p
(
d̂n − d0

)
= γ′n(p)Λn(β0) +Op

(
p1−α +

p log(n)

n1/2

)
. (15)

It should be noted that Assumption 4b andα > 1 ensures thatOp( · ) in equation (14) and (15) are
asymptotically negligible, respectively.

DefineZk as a zero-mean process thatZk = exp(ηk) − 1. It follows fromLn(d, θ) and Lemma 3 that

γ′n(p)Λn(β0) =
1
√

pKn

Kn∑
k=1

{
exp

(
l∗p,k + ηk + rk

)
− 1

}
γ′n(p)

(
gk

hp,k

)

=
1
√

pKn

Kn∑
k=1

exp(l∗p,k)Zkγ
′
n(p)

(
gk

hp,k

)
+

1
√

pKn

Kn∑
k=1

(
exp(l∗p,k) − 1

)
γ′n(p)

(
gk

hp,k

)

+
1
√

pKn

Kn∑
k=1

exp(l∗p,k) exp(ηk)O

(
log(1+ k)

k

)
γ′n(p)

(
gk

hp,k

)

=
(
1+O

(
p−α

)) 1
√

pKn

Kn∑
k=1

Zkγ
′
n(p)

(
gk

hp,k

)
+O

(
p−α

) 1
√

pKn

Kn∑
k=1

γ′n(p)

(
gk

hp,k

)

+
(
1+O

(
p−α

)) 1
√

pKn

Kn∑
k=1

exp(ηk)O

(
log(1+ k)

k

)
γ′n(p)

(
gk

hp,k

)
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=:
(
1+O

(
p−α

))
Υ1 + Υ2 +

(
1+O

(
p−α

))
Υ3,

say. The second equality follows from Taylor’s expansion of exp(l∗p,k). Now we derive the asymptotic
property of these three terms. Using the fact that the vector (gk,h′p,k)

′ is deterministic sequence, Lemma
7(i) and Cauchy-Schwarz inequality,

Υ2 =

√
Kn

p
·O(

p−α
) · 1

Kn

Kn∑
k=1

γ′n(p)

(
gk

hp,k

)

≤ O

( √
n

p1/2+α

)
·

√
p
2
+O

(
1
p2

)
= O

( √
n

pα

)
,

so that Assumption 4b ensures thatΥ2 = o(1) when p tends to infinity. By Lemma 1(ii), 7(ii) and
|h j,k| ≤ 1, the expectation ofΥ3 is evaluated as

E
(
Υ3

)
=

1
√

pKn

Kn∑
k=1

O

(
log(1+ k)

k

)
γ′n(p)

(
gk

hp,k

)

=
1
√

pn
·O

(
p log(n)

)
·

Kn∑
k=1

O

(
log(1+ k)

k

)
= O

(
p1/2 log3(n)

n1/2

)
,

and moreover, by Lemma 5(iv),

Var
(
Υ3

)
=

1
pKn

E

 Kn∑
k=1

(
exp(ηk) − E

(
exp(ηk)

))
O

(
log(1+ k)

k

)
γ′n(p)

(
gk

hp,k

)
2

=
1
pn

{
O
(
p log(n)

)}2

E

 Kn∑
k=1

(
exp(ηk) − E

(
exp(ηk)

))
O

(
log(1+ k)

k

)
2

= O

(
p log2(n)

n

)
.

Thus, under Assumption 4b, we haveΥ3 = op(1).
Next, to derive the asymptotic property ofΥ1, lettingξp,k be a normalized process that

ξp,k =
1
√

Kn

(
γ′n(p)Γn(p)γn(p)

)−1/2
{
γ′n(p)

(
gk

hp,k

)}
,

Υ1 rewrites

Υ1 =
1
√

p

(
γ′n(p)Γn(p)γn(p)

)1/2
Kn∑
k=1

ξp,kZk.

The definition ofξp,k shows
∑Kn

k=1 ξ
2
p,k = 1 and, by Lemma 1(ii) and 7(ii),

max
1≤k≤Kn

|ξp,k| =
1
√

Kn
· 1
√

p
·O

(
p log(n)

)
= O

(
p1/2 log(n)

n1/2

)
,
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so that, under Assumption 4b,

lim
n→∞

max
1≤k≤Kn

|ξp,k| = 0.

Suppose that there exists a non-decreasing sequence of integersvn < Kn such that limn→∞ vn = ∞ and

lim
n→∞

vn

n
= 0, lim

n→∞

√
n log(n)

vn
= 0.

Then, by Lemma 1(ii) and 7(ii),

vn∑
k=1

ξ2
p,k =

1
Kn

vn∑
k=1

{
O
(
p2 log2(n)

)}−1{
O
(
p2 log2(n)

)}
= O

(vn

n

)
,

and, by Cauchy-Schwarz inequality,

Kn∑
k=vn+1

|ξp,k| log(vn)

vn
≤
√

n log(vn)
vn

·
(
γ′n(p)Γn(p)γn(p)

)−1/2(
γ′n(p)Γn(p)γn(p)

)1/2
=

√
n log(vn)

vn
.

It follows from the condition ofvn that

lim
n→∞

vn∑
k=1

ξ2
p,k = 0, (16)

lim
n→∞

Kn∑
k=vn+1

|ξp,k| log(vn)

vn
= 0. (17)

(16) and (17) correspond to (4.3) and (4.4) in Soulier (2001), respectively, andZk is a function with
Var(Zk) = 1 andHermite rankat least 1 becauseE(Zk) = 0, which yields

Kn∑
k=1

ξp,kZk
d−→ N

(
0, 1

)
as n→ ∞,

by applying Theorem 4.1 in Soulier (2001). It is easily seen from Lemma 7(i) that

1
√

p

(
γ′n(p)Γn(p)γn(p)

)1/2
→ 1
√

2
as n→ ∞.

Therefore, we have

Υ1
d−→ N

(
0, 1

2

)
as n→ ∞. �

Proof of Corollary. Under the null hypothesis, by Theorem 1, Lemma 6 and Assumption 4b,tLM

rewrites

tLM =
√

Kn

[
Ω

1/2
n (β̃)Ω−1

n (β̃)Sn(β̃)
]
11
=

√
Kn

[
Γ̃

1/2
n (p)Γ̃−1

n (p)Sn(β̃)
]
11
+ op(1)

=

[
Γ̃

1/2
n (p)

{
Γ̃−1

n (p)Γ̃n(p)Γ̃−1
n (p)

}1/2]
11

(
γ̃n
′(p)Γ̃−1

n (p)γ̃n(p)
)−1/2 √

KnSn(β̃) + op(1),

whereΓ̃(p) andγ̃(p) correspond toΓ(p) andγ(p), respectively. It is easily seen that[
Γ̃

1/2
n (p)

{
Γ̃−1

n (p)Γ̃n(p)Γ̃−1
n (p)

}1/2]
11
= 1,

and
√

KnSn(β̃) corresponds to
∑Kn

k=1 ξp,kZk, so that the proof of Corollary immediately follows from that
of Theorem 2. �
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6.2 Lemmas

Lemma1.
(i) Let g∗p,k =

∑∞
j=p+1 2h j,k/ j, for all 1 ≤ k ≤ Kn. Under Assumption 2,

∣∣∣g∗p,k∣∣∣ ≤ 4Kn

p(2k− 1)
.

(ii) Under Assumption 2,

max
1≤k≤Kn

|gk| = O
(
log(n)

)
.

Proof of Lemma 1(i).It is well known thatg(λ) =
∑∞

j=1 2h j(λ)/ j and the proof immediately follows
from that of equation (17) in Moulines and Soulier (2000).

Proof of Lemma 1(ii).Settingp = Kn in Lemma1(i), for all 1 ≤ k ≤ Kn,∣∣∣g∗Kn,k

∣∣∣ ≤ 4
2k− 1

.

Then,

|gk| =

∣∣∣∣∣∣∣∣
Kn∑
j=1

2h j,k

j
+

∞∑
j=Kn+1

2h j,k

j

∣∣∣∣∣∣∣∣ ≤
Kn∑
j=1

2
j
+

4
2k− 1

,

and we have

max
1≤k≤Kn

|gk| =
Kn∑
j=1

2
j
+ 4 = O

 Kn∑
j=1

1
j

 ,
which leads toLemma1(ii ) by approximation of sums by integrals.�

Lemma2. Under Assumption 1 and 2, for any sequences of realsφk,

Kn∑
k=1

Kn∑
l=k+1

|φk||φl ||cov(ηk, ηl)| = O
(
φ2
∗ log3(n)

)
,

whereφ∗ = max1≤k≤Kn |φk|. Note that this lemma is the same as (3.6) in Moulines and Soulier (1999).
Proof of Lemma 2.(5) and approximation of sums by integrals yield

Kn∑
k=1

Kn∑
l=k+1

|φk||φl ||cov(ηk, ηl)| ≤ C
Kn∑
k=1

Kn∑
l=k+1

φ2
∗ log2(l) k−2|d| l2|d|−2

≤
Kn∑
k=1

φ2
∗ k−2|d|O

(
log2(k)

k1−2|d|

)
= O

(
φ2
∗ log3(n)

)
,

because integration by parts yields

Kn∑
l=k+1

log2(l) l2|d|−2 ≤
∫ n

k+1
log2(x) x2|d|−2dx

=

[
1

2|d| − 1
x2|d|−1 log2(x)

]n

k+1

− o

(∫ n

k+1
log2(x) x2|d|−2dx

)
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= O

(
log2(k)

k1−2|d|

)
,

with 2|d| − 1 < 0. �
Lemma3. Under Assumption 1 and 2, for all 1≤ k ≤ Kn,

exp(rk) = 1+O

(
log(1+ k)

k

)
, w.p.1 .

Proof of Lemma 3.By Lemma 1-3 in Moulines and Soulier (1999),rk is given by

rk = log(1+ ζ1) + log(1+ ζ2) + log(1+ ζ3),

where

|ζ1| ≤
C1 log(1+ k)

k
, |ζ2| ≤

C2 log(1+ k)
k

, |ζ3| ≤
C3 log(1+ k)

k
,

w.p.1, for all 1≤ k ≤ Kn. Taking exponential on both sides, which yields

exp(rk) = (1+ ζ1)(1+ ζ2)(1+ ζ3)

≤
(
1+

C1 log(1+ k)
k

) (
1+

C2 log(1+ k)
k

) (
1+

C3 log(1+ k)
k

)
≤

(
1+

C∗ log(1+ k)
k

)3

= 1+O

(
log(1+ k)

k

)
+ o

(
log(1+ k)

k

)
,

because log(1+ k)/k < 1 for k ∈ N. �
Lemma4. Under Assumption 1 and 2, there exists a constantC∗ < ∞, such that for all 1≤ k <

l ≤ Kn, ∣∣∣cov
(
exp(ηk),exp(ηl)

)∣∣∣≤ C∗ log2(l) k−2|d| l2|d|−2.

Proof of Lemma 4.Using the same argument as the proof of Theorem 2 in Moulines and Soulier
(1999), we can defineηk asηk = log(W′kWk) − log(2), whereWk is a standard 2-dimensional Gaussian
vector. Then,

exp(ηk) − E
(
exp(ηk)

)
=

1
2

W′kWk − 1.

Define a functionϕ : R2→ R as

ϕ(X) =
1
2

X′X − 1, X ∈ R2,

and which implies that for all 1≤ k ≤ Kn,

E
(
ϕ(Wk)

)
= E

(
exp(ηk) − E(exp(ηk))

)
= 0,

E
(
ϕ2(Wk)

)
= Var

(
exp(ηk)

)
= 1.

Sinceϕ(·) is an even function andE(ϕ(Wk)) = 0 , theHermite rankof ϕ(·) is 2.
Next, by applying Corollary 2.1 in Soulier (2001) or Theorem 4 in Moulines and Soulier (1999),

there exists a constantC∗ such that∣∣∣∣∣∣E
( 2∏

i=1

ϕ(Xi)

)∣∣∣∣∣∣ ≤ C∗
2∏

i=1

(
E(ϕ2(Xi))

)1/2
ρτ,

whereXi = (Xi,1,Xi,2)′ is a standard 2-dimensional Gaussian vector andτ is Hermite rankof a function
ϕ(·), and

ρ = max
1≤i,i′≤2,1≤ j, j′≤2

∣∣∣E(Xi, jXi′, j′)
∣∣∣.
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It follows from E(ϕ2(Wk)) = 1 and Lemma 4 in Moulines and Soulier (1999) that

C∗
2∏

i=1

(
E(ϕ2(Xi))

)1/2
ρ2 ≤ C∗

(
log(l)k−|d|l |d|−1

)2
,

for all 1 ≤ k < l ≤ Kn. �
Lemma5. Under Assumption 1 and 2, for any non-decreasing sequence of integerswn ≤ Kn,

(i) E

 wn∑
k=1

(
ηk − E(ηk)

)2

= O (wn) .

(ii) E

 wn∑
k=1

(
rk − E(rk)

)2

= O
(
log4(wn)

)
.

(iii) E

 wn∑
k=1

(
exp(ηk) − E

(
exp(ηk)

))2

= O (wn) .

(iv) E

 wn∑
k=1

(
exp(ηk) − E

(
exp(ηk)

))
O

(
log(1+ k)

k

)2

= O (1) .

Proof of Lemma 5(i).By Lemma 2,

E

 wn∑
k=1

(
ηk − E(ηk)

)2

=

wn∑
k=1

E
(
ηk − E(ηk)

)2
+ 2

wn∑
k=1

wn∑
l=k+1

E
(
ηk − E(ηk)

)(
ηl − E(ηl)

)
≤

wn∑
k=1

Var
(
ηk

)
+ 2

wn∑
k=1

wn∑
l=k+1

∣∣∣cov(ηk, ηl)
∣∣∣

= O
(
wn

)
+O

(
log3(wn)

)
. �

Proof of Lemma 5(ii).It follows from (4),

E

 wn∑
k=1

(
rk − E(rk)

)2

=

wn∑
k=1

E
(
rk − E(rk)

)2
+ 2

wn∑
k=1

wn∑
l=k+1

E
(
rk − E(rk)

)(
r l − E(r l)

)
≤ C1

wn∑
k=1

log2(1+ k)
k2

+C2

wn∑
k=1

wn∑
l=1

(
log(1+ k)

k

) (
log(1+ l)

l

)
= O (1) +O

(
log2(wn)

)
·O

(
log2(wn)

)
= O

(
log4(wn)

)
,

because
∑

log2(1+ k)/k2 is convergent series. �
Proof of Lemma 5(iii).It follows from Lemma 2 and 4 that

E

 wn∑
k=1

(
exp(ηk) − E

(
exp(ηk)

))2

=

wn∑
k=1

Var
(
exp(ηk)

)
+ 2

wn∑
k=1

wn∑
l=k+1

cov
(
exp(ηk),exp(ηl)

)
≤ wn +C∗

wn∑
k=1

wn∑
l=k+1

log2(l) k−2|d| l2|d|−2

= O (wn) +O
(
log3(wn)

)
. �
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Proof of Lemma 5(iv).By Lemma 4,

E

 wn∑
k=1

(
exp(ηk) − E

(
exp(ηk)

))
O

(
log(1+ k)

k

)2

=

wn∑
k=1

Var
(
exp(ηk)

){
O

(
log(1+ k)

k

)}2

+ 2
wn∑
k=1

wn∑
l=k+1

cov
(
exp(ηk), exp(ηl)

)
O

(
log(1+ k)

k

)
O

(
log(1+ l)

l

)

≤ C∗
wn∑
k=1

log2(1+ k)
k2

,

because, by Cauchy-Schwarz inequality twice,

wn∑
k=1

wn∑
l=k+1

C∗ log2(l) k−2|d| l2|d|−2O

(
log(1+ k)

k

)
O

(
log(1+ l)

l

)

≤
wn∑
k=1

k−2|d|O

(
log(1+ k)

k

)  wn∑
l=1

O

(
log2(1+ l)

l2

)1/2  wn∑
l=k+1

log4(l)l4|d|−4

1/2

≤
 wn∑

k=1

O

(
log2(1+ k)

k2

)1/2  wn∑
l=1

O

(
log2(1+ l)

l2

)1/2  wn∑
k=1

 wn∑
l=k+1

log4(l)l4|d|−4




1/2

≤
 wn∑

k=1

O

(
log2(1+ k)

k2

)
 wn∑

l=1

log4(l)l4|d|−3

1/2

,

where
∑

log4(l) l4|d|−3 with |d| < 1/2 is convergent series. �
Lemma6. Under Assumption 1-3,

Ωn(β0) = Γn(p) +Op

(
p−α +

log(n)

n1/2

)
,

where

Ωn(β0) = −∂
2Ln(β0)
∂β∂β′

, Γn(p) =
1
Kn

Kn∑
k=1

(
gk

hp,k

) (
gk

hp,k

)′
,

with hp(λ) = (h0(λ), · · · , hp−1(λ))′.
Proof of Lemma 6.By Lemma 3 and Taylor’s expansion of exp(l∗p,k),

Ωn(β0) =
1
Kn

Kn∑
k=1

{
exp

(
l∗p,k + ηk + rk

)} (
gk

hp,k

) (
gk

hp,k

)′

=
(
1+O

(
p−α

)) 1
Kn

Kn∑
k=1

exp(ηk)

(
gk

hp,k

) (
gk

hp,k

)′

+
(
1+O

(
p−α

)) 1
Kn

Kn∑
k=1

exp(ηk)O

(
log(1+ k)

k

) (
gk

hp,k

) (
gk

hp,k

)′
.
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Now using the fact that by Lemma 1(ii),

(
gk

hp,k

) (
gk

hp,k

)′
= O


log2(n) log(n) . . . log(n)
log(n) 1 . . . 1
...

...
. . .

...

log(n) 1 . . . 1

 , (18)

the expectation of the second term is given by

1
Kn

Kn∑
k=1

O

(
log(1+ k)

k

) (
gk

hp,k

) (
gk

hp,k

)′
= O


log4(n)

n
log3(n)

n . . .
log3(n)

n
log3(n)

n
log2(n)

n . . .
log2(n)

n
...

...
. . .

...
log3(n)

n
log2(n)

n . . .
log2(n)

n


.

We therefore have

E
(
Ωn(β0)

)
=

(
1+O

(
p−α

))
Γn(p) +O

(
log4(n)

n

)
1p+11′p+1,

where1p+1 is a column vector of (p+ 1) ones.
Next, the variance ofΩn(β0) is decomposed into the two terms as follows:

Var
(
Ωn(β0)

)
=

(
1+O

(
p−α

))2 1

K2
n

E

 Kn∑
k=1

(
exp(ηk) exp(rk) − E

(
exp(ηk) exp(rk)

)) ( gk

hp,k

) (
gk

hp,k

)′
2

≤ 1

K2
n

E

 Kn∑
k=1

2

(
exp(ηk) − E

(
exp(ηk)

)) ( gk

hp,k

) (
gk

hp,k

)′
2

=
2

K2
n

Kn∑
k=1

Var
(
exp(ηk)

) {( gk

hp,k

) (
gk

hp,k

)′}2

+
4

K2
n

Kn∑
k=1

Kn∑
l=k+1

cov
(
exp(ηk),exp(ηl)

) {( gk

hp,k

) (
gk

hp,k

)′}{(
gl

hp,l

) (
gl

hp,l

)′}
=: 2Φ1 + 4Φ2,

say. The inequality follows from Lemma 3 and log(1+ k)/k < 1 for k ∈ N. By (18) and the same
argument over the proof of Lemma 7(i) below,

Φ1 =
1
n
·O


log2(n) log(n) . . . log(n)
log(n) 1 . . . 1
...

...
. . .

...

log(n) 1 . . . 1

 ×
1
Kn

Kn∑
k=1

(
gk

hp,k

) (
gk

hp,k

)′

= O


log2(n)

n
log(n)

n . . .
log(n)

n
log(n)

n
1
n . . . 1

n
...

...
. . .

...
log(n)

n
1
n . . . 1

n


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×



O(1)+O
(

log2(n)
n

)
O
(

log(n)
n

)
1+O

(
log(n)

n

)
. . . 1

p−1 +O
(

log(n)
n

)
O
(

log(n)
n

)
1 0 . . . 0

1+O
(

log(n)
n

)
0 1 . . . 0

...
...

...
. . .

...
1

p−1 +O
(

log(n)
n

)
0 0 . . . 1



= O



log2(n)
n +

log(n) log(p)
n

log3(n)
n2 +

log(n)
n

log2(n)
n +

log(n)
n . . .

log2(n)
(p−1)n +

log(n)
n

log(n)
n +

log(p)
n

log2(n)
n + 1

n
log(n)

n + 1
n . . .

log(n)
(p−1)n +

1
n

...
...

...
. . .

...
log(n)

n +
log(p)

n
log2(n)

n + 1
n

log(n)
n + 1

n . . .
log(n)
(p−1)n +

1
n


.

By the same way of (18),

{(
gk

hp,k

) (
gk

hp,k

)′}2

= O


log4(n) + p log2(n) log3(n) + p log(n) . . . log3(n) + p log(n)
log3(n) + p log(n) log2(n) + p . . . log2(n) + p

...
...

. . .
...

log3(n) + p log(n) log2(n) + p . . . log2(n) + p

 ,
so that, by Lemma 2 and 4,

Φ2 = O

(
log3(n)

n2

)
·O


log4(n) + p log2(n) log3(n) + p log(n) . . . log3(n) + p log(n)
log3(n) + p log(n) log2(n) + p . . . log2(n) + p

...
...

. . .
...

log3(n) + p log(n) log2(n) + p . . . log2(n) + p



= O



log7(n)
n2 +

p log5(n)
n2

log6(n)
n2 +

p log4(n)
n2 . . .

log6(n)
n2 +

p log4(n)
n2

log6(n)
n2 +

p log4(n)
n2

log5(n)
n2 +

p log3

n2 . . .
log5(n)

n2 +
p log3

n2

...
...

. . .
...

log6(n)
n2 +

p log4(n)
n2

log5(n)
n2 +

p log3

n2 . . .
log5(n)

n2 +
p log3

n2


.

Therefore, the variance ofΩn(β0) is evaluated as

Var
(
Ωn(β0)

)
= O

(
log2(n)

n

)
1p+11′p+1. �

Lemma7.
(i) Let [Γ−1

n (p)]11 denote the (1, 1)th element inΓ−1
n (p). Under Assumption 3, [Γ−1

n (p)]11 is evalu-
ated as [

Γ−1
n (p)

]
11
=

p
2
+O

(
1
p2

)
+O

(
p log2(n)

n2

)
+O

(
log2(n)

n

)
.

(ii) Let γn(p) denote the first row ofΓ−1
n (p). Under Assumption 3,γn(p) is evaluated as

γn(p) =
[
Γ−1

n (p)
]
11 ·

(
1 O

(
log(n)

n

)
−1+O

(
log(n)

n

)
−1

2 +O
(

log(n)
n

)
· · · − 1

p−1 +O
(

log(n)
n

))′
.
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Proof of Lemma 7(i).Since{h0(λ), h1(λ), · · · } is an orthogonal system inL2 and, by construction,
gk = g2Kn−k+1 andh j,k = h j,2Kn−k+1, Γn(p) is given by

Γn(p) =
1
2


1

Kn

∑2Kn
k=1 g2

k
1

Kn

∑2Kn
k=1 gk h0,k . . . 1

Kn

∑2Kn
k=1 gk hp−1,k

1
Kn

∑2Kn
k=1 h0,k gk 1 . . . 0
...

...
. . .

...
1

Kn

∑2Kn
k=1 hp−1,k gk 0 . . . 1


=:

1
2

(
γ11 γ′p1

γp1 Ip,p

)
,

say, whereIp,p is the (p× p) identity matrix. Then inverse of a partitioned matrix yields[
Γ−1

n (p)
]
11
= 2

(
γ11− γ′p1γp1

)−1
.

Now by Lemma 1(i) and approximation of sums by integrals,γ11 is evaluated as

γ11 ≤
1
Kn

2Kn∑
k=1

2Kn∑
i=1

2 cos(iωk)
i

+
4

2k− 1


2

=
1
Kn

2Kn∑
k=1

2Kn∑
i=1

2 cos(iωk)
i


2Kn∑

l=1

2 cos(iωk)
l


+

1
Kn

2Kn∑
k=1

8
2k− 1

2Kn∑
i=1

2 cos(iωk)
i

+
1
Kn

2Kn∑
k=1

(
4

2k− 1

)2

≤ 1
Kn

2Kn∑
i=1

4
i2

2Kn∑
k=1

cos2(iωk) +
2
Kn

2Kn∑
i=1

2Kn∑
l=1

4
il

2Kn∑
k=1

cos(iωk) cos(lωk)

+
1
Kn

2Kn∑
k=1

8
2k− 1


2Kn∑

i=1

1
i

 + C
Kn

2Kn∑
k=1

1
k2

= 4
2Kn∑
i=1

1
i2
+O

(
log2(n)

n

)
+O

(
1
n

)
=

2
3
π2 +O

(
log2(n)

n

)
.

By the same argument,

γ′p1γp1 =

p−1∑
j=0

 1
Kn

2Kn∑
k=1
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(
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(
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(
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Consequently we have[
Γ−1

n (p)
]
11
=

p
2
+O

(
1
p2

)
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(
p log2(n)
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Proof of Lemma 7(ii).By inverse of a partitioned matrix,

γn(p) =
([
Γ−1

n (p)
]
11 −

[
Γ−1

n (p)
]
11γ
′
p1I−1

p,p

)′
,

whereγp1 andIp,p are the same notation as the proof of Lemma 7(i), respectively. It is easily seen from
the proof of Lemma 7(i) that

γ′p1I−1
p,p =

(
O
(

log(n)
n

)
1+O

(
log(n)

n

)
1
2 +O

(
log(n)

n

)
· · · 1

p−1 +O
(

log(n)
n
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. �
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