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Abstract

This paper develops a model of North-South trade and economic development to an-
alyze how an increase in the growth rate of population affects the growth rate of real
income per capita. We assume that the North is characterized by an increasing-returns-
to-scale technology while the South is characterized by a decreasing-returns-to-scale
technology. The main results are as follows: (i) an increase in the growth rate of popu-
lation in the South decreases the growth rate of its own income per capita; (ii) a rise in
the growth rate of population in the North either increases or decreases the growth rate
of its own income per capita depending on conditions; (iii) population growth in one
country raises the growth rate of income per capita in the other country; and (iv) even
the decreasing-returns South can experience a positive growth rate of income per capita
if a continuous improvement in the terms of trade is larger than a threshold value.
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1 Introduction

This paper attempts to give a probable explanation to what is called the population puzzle
by combining a traditional model of North-South trade and economic development with a
modern model of endogenous growth.1) The word “the population puzzle” is termed by
Goodfriend and McDermott (1995), who point out that conclusions obtained from non-scale
growth models, a class of endogenous growth models, are not consistent with empirical
findings. Let us explain this issue below.

First, with respect to empirical findings, Goodfriend and McDermott (1995) refer to re-
sults of Kuznets (1973). Using postwar cross-country data for 63 countries, Kuznets (1973)
shows that there is a statistically significant negative relationship between the growth rate of
population and that of output per capita. Kuznets also shows that if the sample is divided
into developed and developing countries, the correlation between the two growth rates be-
comes statistically insignificant. That is, the relationship between the growth of population
and that of output per capita is not so unambiguous.

Second, we explain non-scale growth models. Since Jones (1995) challenged the scale
effects of the endogenous growth model, non-scale growth models have gained attention in
this field. In the scale-growth model, the growth rate of output per capita along the balanced
growth path depends positively on the size of population. That is, the larger the size of popu-
lation, the faster a country grows, which, however, seems counterfactual. Then, Jones (1995)
attempts to remove the scale-effects and presents a non-scale growth model, from which the
following conclusion is obtained: the growth rate of output per capita depends positively
on the rate of population growth, and not on the size of population. That is, the higher the
growth rate of population, the faster a country grows.2) However, this conclusion also seems
inconsistent with the findings of Kuznets (1973) aside from the period considered. In this
sense, Goodfriend and McDermott (1995) point out that population-driven models of growth
must confront the population puzzle.

Existing non-scale growth models are built under a closed economy setting. However,
the real world is an open economy, and accordingly conclusions obtained from closed econ-
omy models would not be applicable to the real world as they are. Therefore, we need an
open economy model to apply the implication to the real world. In this respect, Christiaans

1) Traditional North-South models here mean a model that considers some asymmetries between developed
and developing countries. See, for instance, Findlay (1980), Taylor (1981), Molana and Vines (1989), Darity
(1990), and Sarkar (1997, 2001). Chui, Levine, Murshed, and Pearlman (2002) comprehensively survey the
literature that combines growth and trade into models of North-South interaction. They deal with a combination
of new trade and new (endogenous) growth models.

2) For a systematic exposition concerning scale effects and non-scale growth, see Jones (1999) and Christi-
aans (2004).
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(2003) develops a small open economy model of non-scale growth that considers imported
intermediate goods and exogenous export demand.3) The conclusion is that the relation-
ship between the growth rate of population and that of output per capita differs depending
on whether export goods of a country is price elastic or not. This model can be termed as
the modified non-scale growth model in the sense that the unconditional positive correlation
between the growth rate of population and that of output per capita is modified.4)

A model presented in this paper belongs to the class of modified non-scale growth mod-
els and is constructed under an open economy setting. Unlike Christiaans (2003), however,
the model is a two-country model: two large countries engage in trade with each other.
It is not appropriate that we apply the same specification to the developed and developing
countries that have different structures. Thus, we develop a model of North-South trade and
economic development that takes into account various asymmetries between the developed
North and the developing South. Using it, we examine how the growth rate of population in
each country affects the growth rates of income per capita in both countries.

Our model is based on Conway and Darity (1991), who develop a model of North-South
trade and economic development along the lines of Kaldor’s idea. Specifically, they model
a situation where the North is characterized by increasing returns to scale while the South
is characterized by decreasing returns to scale. Then, they analyze what consequences the
asymmetry in returns to scale has for the growth rate of capital in each country, the terms of
trade, and so forth. In this paper, we extend Conway and Darity’s model in some respects.
First, we assume that the Northern imports from the South are used for both consumption
and intermediate inputs while the Southern imports from the North are used for both con-
sumption and investment. In Conway and Darity’s model, the Northern imports from the
South are devoted only to consumption, which leads to the conclusion that the growth rate
of capital stock in the North depends only on the Northern factors while the growth rate of
capital stock in the South depends on both Northern and Southern factors.5) That is, there
is no interdependence between the two growth rates. In our model, on the other hand, the
North-South interdependence arises because the Southern good is used as input in the pro-
duction of the Northern good. This idea is based on Dutt (1996). Second, we employ a

3) Christiaans (2003) introduces a learning-by-doing effect into Bardhan and Lewis’s (1970) model to endo-
genize the rate of economic growth.

4) For modified non-scale growth models, see also Christiaans (2008) and Sasaki (2008). These papers deal
with the relationship between trade specialization processes and industrialization under a small open economy
setting.

5) Conway and Darity (1991) conclude that the growth rate of output in the North (South) is determined only
by factors in the North (South). Note, however, that their definition of the long-run equilibrium is not correct
and if the definition is corrected, our statement above is obtained. They define the long-run equilibrium as
a situation in which capital-output ratio will be constant. However, when defining capital-output ratio in the
South, they do not consider the terms-of-trade, which leads to the incorrect definition of capital-output ratio.
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dynamic optimization technique to solve the model. In Conway and Darity’s model, wage
income is entirely consumed and profit income is entirely invested. In this paper, we do not
differentiate workers from capitalists and treat the choice between consumption and saving
as a dynamic optimization problem of a representative agent. Finally, we refer to other dif-
ferences between Conway and Darity’s and our models. In Conway and Darity’s model, real
wages in the short run are fixed both in the North and in the South. In the North, firms set the
price with a mark-up on unit labor costs while in the South employment is determined by the
equalization of the value of marginal products of labor and the nominal wage. In the long
run of Conway and Darity’s model, full employment is assumed and the real wages in both
countries are adjusted so as to maintain full employment. In our model, in contrast, goods
and factors markets in both countries are perfectly competitive and the marginal principle
prevails both in the short run and in the long run.6)

The paper not only gives a probable explanation to the population puzzle, but also con-
tributes to some issues in this field.

First, we contribute to the issue of the relationship between the terms of trade movement
and economic development. Using a North-South model of endogenous growth, Felbermayr
(2007) shows that even if the South specializes in a technologically stagnant sector, it can
achieve a sustainable growth owing to endogenous, continuous improvements in the term-
of-trade. Álvarez-Albelo and Perera-Tallo (2008) also reach a similar result using a different
two-country endogenous growth model.7) As will be explained later, our model shows that
if the rate of endogenous improvement in the Southern terms of trade is large, the growth
rate of real income per capita in the South can be positive even if the Southern production is
described by a decreasing-returns-to-scale technology. As a practical matter, there is an em-
pirical observation that developing countries face a continuous improvement of their terms
of trade. Felbermayr (2007), stated above, provides the following two observations: exports
of developing countries to OECD countries are heavily biased toward consumption goods
while their imports from OECD countries are mainly made up by investment goods; and the
price of investment goods relative to consumption goods has been falling over time. Com-
bining these two observations, we reach the conclusion that the terms of trade of developing
countries continuously improves relative to developed countries.8)

Second, we contribute to the issue of two-country endogenous growth models. A large

6) The assumption that both agricultural and industrial markets are competitive and producers act as a price-
taker is also adopted by Dutt (1992).

7) In their model, not a final good but a intermediate good is traded. One country is characterized by a Lucas-
Rebelo type model while the other country is characterized by the neoclassical growth model. The terms of
trade of the latter country permanently improves along the balanced growth path.

8) This phenomenon seems to contradict the Prebisch-Singer hypothesis. However, results of existing studies
on this hypothesis are so diverse that the hypothesis is not necessarily an established proposition.
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literature on two-country endogenous growth models focuses its attention on the balanced
growth path and does not examine the dynamic stability. Ben-David and Loewy (2000), for
example, develop a two-country endogenous growth model that considers knowledge as a
factor of production and international spillovers of knowledge. In their model, each coun-
try specializes in production of a single good. They focus their analysis on the balanced
growth path and do not examine the transitional dynamics. Felbermayr (2007) also confines
the analysis to the balanced growth path equilibrium. Osang and Pereira (1997) present a
two-country model of endogenous growth based on the Uzawa-Lucas human capital model.
In this model as well as our model, the terms of trade between two countries continuously
changes along the balanced growth path. However, they do not consider the dynamic stabil-
ity. In contrast to these studies, we examine the dynamic stability and show the saddle-path
stability of the model using a numerical method.

The remainder of the paper consists of the following five sections. Section 2 presents the
basic framework of our model. Section 3 obtains the growth rates of endogenous variables
on the balanced growth path. Section 4 derives the growth rate of income per capita in each
country and investigates the relationship between population growth and income growth.
Section 5 numerically shows the saddle-path stability of the long-run equilibrium. Section
6 concludes the paper.

2 The model

Consider a world that consists of the North, a developed country, and the South, a developing
country. Each country completely specializes in production of a single good. The Northern
good is used for consumption and investment in both countries. The Southern good, in
contrast, is used for consumption in both countries and for intermediate input in the North.
That is, we assume that the North exports a final consumption-cum-investment good to the
South while the South exports a final consumption-cum-intermediate good to the North.
Note that in the North value of total production differs from total value added due to the
existence of imported intermediate input.

In this paper we focus on a competitive equilibrium path. As will be explained below,
in the North, there exist externalities arising from capital accumulation. Therefore, a com-
petitive equilibrium path diverges from an optimal path in which a social planner internal-
izes externalities. Steady states values of scale-adjusted variables are larger in the centrally
planned case than in the decentralized case. However, growth rates on the balanced growth
path are equal in both cases.

5



2.1 Firms

The North produces the N good according to the following Cobb-Douglas production func-
tion:

XN = AN K1−α−β
N LαN Mβ, 0 < α < 1, 0 < β < 1, α + β < 1, (1)

where XN is total production, AN external effects, KN capital stock, LN employment, and
M imported intermediate goods. If AN is regarded as an exogenous variable, the Northern
production is constant returns to scale. Externalities due to capital accumulation are given
by as follows:

AN = Kα
N . (2)

We assume Marshallian externality in the following analysis. Accordingly, profit maximiz-
ing firms regard AN as given exogenously. Substituting equation (2) into equation (1), we
can rewrite the production function as follows:

XN = K1−β
N LαN Mβ, (3)

which shows increasing returns to scale in KN , LN , and M.
The South produces the S good according to the following constant-returns-to-scale

Cobb-Douglas production function:

YS = K1−a−b
S La

S T b, 0 < a < 1, 0 < b < 1, a + b < 1, (4)

where YS is output, KS capital stock, LS employment, and T land input. Suppose that supply
of land is fixed. Then, we can normalized it to T = 1. From this, equation (4) can be
rewritten as follows:

YS = K1−a−b
S La

S , (5)

which shows decreasing returns to scale in KS and LS .
Let p ≡ pS /pN be the Southern terms of trade relative to the North with the N good

being the numéraire. Then, profits of firms in the North and South are respectively given by
ΠN = XN−rN KN−wN LN− pM and ΠS = pYS −rS KS −wS LS −qT , where wi denotes wage in
country i, ri rental rate of capital, and q rental rate of land: all prices are measured in terms
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of the N good. From profit maximizing conditions, we obtain the following relations:

North : wN =
αXN

LN
, p =

βXN

M
, rN =

(1 − α − β)XN

KN
,

South : wS =
paYS

LS
, rS =

p(1 − a − b)YS

KS
, q =

pbYS

T
.

Note that in the derivation above, AN is treated as an exogenous variable by firms in the
North.

2.2 Consumers

Consumers in both countries choose the flow of consumption to maximize the present dis-
counted value of life time utility. We assume that instantaneous utility is given by the log-
linear function.

UN =

∫ ∞

0
[γ ln CS

N + (1 − γ) ln CN
N ] exp(−ρNt) dt, (6)

US =

∫ ∞

0
[γ ln CS

S + (1 − γ) ln CN
S ] exp(−ρS t) dt, (7)

where CS
N , for instance, denotes the consumption of the S good in the North, γ a parameter

governing an expenditure share for the S good, and ρi the rate of time preference, which can
take a different value in each country.

The budget constraints are as follows.9)

K̇N = rN KN + wN LN −CN
N − pCS

N , (8)

K̇S = rS KS + wS LS + qT −CN
S − pCS

S . (9)

A dot over a variable denotes the time derivative of the variable: for example, K̇N =

dKN(t)/dt. For simplicity t is omitted unless it is needed. Since the total income in the North
is given by wN LN + rN KN = (1− β)XN and that in the South is given by wS LS + rS KS + qT =

pYS , equations of motion for capital stock respectively lead to

K̇N = (1 − β)XN −CN
N − pCS

N , (10)

K̇S = pYS −CN
S − pCS

S . (11)

9) We assume that a domestic asset market in each country is competitive but an international asset market
does not exist. Therefore, in each country, the rental rate of capital and the rate of interest are equalized through
asset arbitrage.
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From equations (6), (7), (8), and (9), current-value Hamiltonian functions for the North
and the South are respectively given by

HN = γ ln CS
N + (1 − γ) ln CN

N + λN(rN KN + wN LN −CN
N − pCS

N), (12)

HS = γ ln CS
S + (1 − γ) ln CN

S + λS (rS KS + wS LS + qT −CN
S − pCS

S ), (13)

where λi is the co-state variable. The first-order necessary conditions are given by as follows:

γ

CS
N

− pλN = 0, (14)

1 − γ
CN

N

− λN = 0, (15)

λNrN = ρNλN − λ̇N , (16)
γ

CS
S

− pλS = 0, (17)

1 − γ
CN

S

− λS = 0, (18)

λS rS = ρSλS − λ̇S . (19)

In addition, we need the transversality condition.

lim
t→+∞

λi(t)Ki(t) exp(−ρit) = 0, i = N, S . (20)

From equations (16) and (19), we have λ̇i(t)/λi(t) = ρi − ri, and consequently λi(t) =

λi(0) exp
[∫ t

0
{ρi − ri(τ)} dτ

]
, which is substituted into equation (20).

lim
t→+∞

λi(0)Ki(t) exp
[
−

∫ t

0
ri(τ) dτ

]
= 0. (21)

2.3 Market clearing conditions

Let us describe market clearing conditions for both goods. Taking into account the fact
that investment in the South depends entirely on imports from the North while intermediate
input in the North depends entirely on imports from the South, we can write market clearing
conditions for both goods as follows:

XN = CN
N + CN

S + IN + IS , (22)

YS = CS
N + CS

S + M. (23)
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The trade balance condition is given by

pCS
N + pM = CN

S + IS . (24)

3 Balanced growth path

This section derives the balanced growth path (BGP). The BGP in the present paper is a
situation where all variables grow at constant rates, which are not necessarily the same.

Using equations (15), (16), (18) and (19), we obtain two Euler equations for consump-
tion. From equations (10) and (11), we obtain two equations of motion for capital stock.
These four equations are presented below.10)

ĊN
N

CN
N

= (1 − α − β)
XN

KN
− ρN , (25)

ĊN
S

CN
S

= (1 − a − b)
pYS

KS
− ρS , (26)

K̇N

KN
= (1 − β)

XN

KN
− 1

1 − γ
CN

N

KN
, (27)

K̇S

KS
=

pYS

KS
− 1

1 − γ
CN

S

KS
. (28)

With these equations, let us derive the BGP growth rates of variables. In what follows we
denote the growth rate of variable z as gz ≡ ż(t)/z(t).

To begin with, for consumption to grow at a constant rate, we need gXN = gKN and
gp + gYS = gKS from equations (25) and (26). When gXN = gKN , the output-capital ratio in
the North, XN/KN , becomes constant. Substituting M = βXN/p into the production function
(1), we can rewrite the output-capital ratio as follows:

XN

KN
= β

β
1−β L

α
1−β
N p−

β
1−β . (29)

Along the BGP, the right-hand side of equation (29) will be constant, that is, the rate of
change in the right-hand side will be zero. Therefore, along the BGP, the following relation
is obtained.

g∗p =
α

β
nN > 0. (30)

10) Euler equations for CS
N and CS

S are not needed directly because these two equations can be derived from
the Euler equations for CS

N and CN
S with given p.
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An asterisk (∗) denotes the BGP value of a variable. Equation (30) implies that the terms of
trade of the South (the North) improve (deteriorate) continuously along the BGP. In short,
our model describes a situation where technical progress occurs in the North whereas does
not occur in the South. Technical progress in the North decreases the relative price of the
Northern good, so that the Southern terms of trade improve over time. Note that g∗p is
determined only by the parameters of the North and that the larger the population growth of
the North, the higher the improvement rate of the South becomes. Let us focus on β. The
parameter β corresponds to the ratio of imports of intermediate input to total production.
Therefore, a large β implies a high degree of the Northern dependence on the Southern
intermediate good. As the Northern dependence gets larger, the rate of improvement in the
Southern terms of trade becomes smaller.

Next, for capital stock to grow at a constant rate, we require gCN
N

= gKN and gCN
S

= gKS

from equations (27) and (28) provided that the output-capital ratios in both countries are
constant. In this case, CN

N and CN
S must grow at the same rate; otherwise, world consumption

for the N good does not grow at a constant rate. From this observation we have gCN
N

= gCN
S
,

so that gKN = gKS , that is, along the BGP capital stocks in both countries grow at the same
rate. Applying gKS = gKN = gXN to gp + gYS = gKS , we obtain g∗p + g∗YS

= g∗XN
along the BGP.

Using these results for the production functions in both countries, we finally get the growth
rate of capital stock in each country as follows:

g∗KN
= g∗KS

= φnN + ψnS , where φ ≡ α

β(a + b)
, ψ ≡ a

a + b
. (31)

These growth rates depend on the growth rates of population and the parameters of the pro-
duction functions. Using (31), we can obtain the growth rates of other endogenous variables.

Finally, let us demonstrate that the transversality condition (21) holds. As has been
shown above, along the BGP, g∗KN

= g∗KS
= φnN + ψnS holds. After some calculations, the

BGP rental rates of capital in both countries are given by r∗N = ρN + φnN + ψnS and r∗S =

ρS +φnN +ψnS . From these observations we obtain r∗N−g∗KN
= ρN > 0 and r∗S −g∗KS

= ρS > 0.
Applying these results to equation (21), we can see that the transversality condition holds.

4 Population growth and the growth of income per capita

We here focus on the BGP growth rate of real income per capita, g∗yi
(i = N, S ). For this pur-

pose we have to obtain real national income, which in turn requires an appropriate definition
of the consumption price index.

Let pC denote the price index that is consistent with the expenditure minimizing problem.
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Then, the price index is given by pC = γ−γ(1 − γ)−(1−γ) p1−γ
N pγS = γ−γ(1 − γ)−(1−γ) pγ. Since

both countries face the common relative price, p, and preferences are same, the price index
is also same in both countries. Note that the relation gpC = γgp holds between the price
index and the terms of trade.

From the analysis above, nominal national incomes in the North and the South are XN −
pM and pYS , respectively. Both are measured in terms of the N good. Accordingly, real
national incomes in the North and the South are respectively given by (XN − pM)/pC and
pYS /pC. Using these real national incomes, we can compute the growth rates of real incomes
per capita along the BGP as follows:

g∗yN
=
α[1 − γ(a + b)] − β(a + b)

β(a + b)
nN +

a
a + b

nS , (32)

g∗yS
=
α[1 − γ(a + b)]

β(a + b)
nN − b

a + b
nS . (33)

Note that when nN = nS , we have g∗yN
= g∗yS

, which suggests that the difference between g∗yN

and g∗yS
arises from the difference between nN and nS . Therefore, the growth rates of real

national incomes are identical.11) From equations (32) and (33), we obtain the following
propositions:12)

Proposition 1

(i) A rise in the rate of population growth in the North increases or decreases the BGP
growth rate of its own real income per capita according as α

β
≷ a+b

1−γ(a+b) .

(ii) A rise in the rate of population growth in the South decreases the BGP growth rate of
its own real income per capita.

(iii) A rise in the rate of population growth in one country leads to a rise in the BGP growth
rate of real income per capita in the other country.

(iv) Provided that the BGP rate of improvement in the Southern terms of trade is large,
the BGP growth rate of real income per capita in the South can be positive even if the
Southern production is described by a decreasing-returns-to-scale technology.

11) Note that the growth rate of real national income is equal to that of aggregate consumption. Aggregate
consumption is defined as CN ≡ (CN

N )1−γ(CS
N)γ in the North and CS ≡ (CN

S )1−γ(CS
S )γ in the South. Let EN and

ES be the nominal expenditure in the North and that in the South, respectively. Then, we have EN = pCCN

and ES = pCCS .
12) It is possible that the growth rate of real income per capita in the North becomes negative depending
on parametric conditions. As will be shown in section 5.2, however, our numerical examples show that we
probably have g∗yN

> 0.
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(v) Even if a country’s own rate of population growth is zero, the BGP growth rate of real
income per capita of the country can be positive.

Propositions 1-(ii) and 1-(iii) are easily checked by observing the coefficients of nN and nS

in equations (32) and (33).
On Proposition 1-(i): The coefficient of nN in g∗yN

is positive or negative according as
α[1−γ(a+b)]−β(a+b) ≷ 0, which is equivalent to the condition in Proposition 1-(i). Given
the parameters of the South, the larger α and/or the smaller β, the larger α/β becomes, so
that the coefficient of nN in g∗yN

is likely to become positive. As has been stated above, α
measures the degree of externalities due to capital accumulation and β measures the degree
of the Northern dependence on the Southern intermediate good.

On Proposition 1-(iv): Rearranging the condition g∗yS
≷ 0 and using g∗p = α

β
nN along the

BGP, we obtain the following relation:

g∗p ≷
bnS

1 − γ(a + b)
. (34)

This means that if the rate of improvement in the Southern terms of trade is larger than the
right-hand side, then the growth rate of real income per capita is positive.

On Proposition 1-(v): Substituting nN = 0 and nS = 0 into g∗yN
and g∗yS

, respectively, we
have

g∗yN
=

a
a + b

nS > 0, (35)

g∗yS
=
α[1 − γ(a + b)]

β(a + b)
nN > 0. (36)

In this case, the Northern growth rate is determined only by the Southern factors while the
Southern growth rate is determined only by the Northern factors. In existing nons-scale
growth models for closed economy, the growth rate of real income per capita will be zero
when population growth is zero. In our model, however, the growth rate of income per capita
is positive in each country due to the presence of international trade.

Here, referring to the existing literature, we add an explanation to the real national in-
come used in the present paper. Temple (2005) points out that in calculating real national
income in an open economy setting, there is an important distinction between a GDP price
index and a cost-of-living index because the structure of consumption and that of production
can be different. When measuring economic welfare, we have to use the cost-of-living in-
dex, which is nothing less than the price index pC in our model. This distinction corresponds
to the difference between real GDP (gross domestic product) and real GDI (gross domestic
income) in the National Accounts. Real GDI is equal to real GDP plus the trading gains
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(or less trading losses) resulting from changes in the terms of trade. The importance of this
distinction is emphasized by Álvarez-Albelo and Perera-Tallo (2007) and Kohli (2004). Let
us consider this issue in our model.

First, national income measured in terms of the N good is given by (1 − β)XN , pYS , and
the growth rate of the national income becomes gXN , gp + gYS . Second, national income
measured in terms of the good produced in each country is given by (1 − β)XN , YS , and
the growth rate of the national income becomes gXN , gYS . Third, national income measured
in terms of the cost-of-living index, that is, our real national income (real GDI) is given
by (1 − β)XN/pC, pYS /pC, and the growth rate of the national income becomes g∗XN

− γg∗p,
g∗YS

+ (1 − γ)g∗p.
In the first measure, the growth rates of both countries are equal because g∗XN

= g∗p + g∗YS

along the BGP. In the second measure, with g∗p > 0, we have g∗XN
> g∗YS

. In the third
measure, the growth rates of both countries are equal because g∗XN

= g∗p + g∗YS
. From this we

can see that the first measure, compared with the third measure, overestimates the growth
rates of both countries by γg∗p and that the second measure, compared with the third measure,
overestimates the growth rate of the North by γg∗p and underestimates the growth rate of the
South by (1 − γ)g∗p.

5 Existence and stability of the long-run equilibrium

This section investigates the existence and the local stability of a steady state. Unless there
exists a path converging to the steady state, analysis along the BGP will lose its impor-
tance. However, little literature on two-country endogenous growth models has dealt with
this issue. Farmer and Lahiri (2005), for instance, investigate multiple equilibria and in-
determinacy using a two-country endogenous growth model. In their model, however, a
homogeneous good is produced in both countries, which implies that the terms of trade be-
tween two countries are always unity. A lot of existing studies confine their analysis to the
BGP. In the first place, there exists little literature that investigates the dynamic stability of
two-country neoclassical growth models. Brecher, Chen, and Choudhri (2005) is one of the
few studies that exist. The main reason for this is that in the two-country setting, we have
a lot of endogenous variables, so that we have to analyze a system of differential equations
of high order. From our model we obtain a system of four differential equations. Analytical
treatment of the system is troublesome, and accordingly numerical simulation is used.13)

13) Arnold (2006) analytically proves that there exists a unique path converging to a steady state (saddle-path
stability) in Jones’s (1995) model, which produces a system of four differential equations.
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5.1 Existence of the equilibrium

Because KN , KS , CN
N , and CN

S keep on growing along the BGP, we cannot investigate the
dynamic stability of the system without modifications. For this reason, we introduce the
following scale-adjusted variables with consideration for the BGP growth rates of the above-
mentioned variables and the terms of trade:14)

π ≡ p

L
α
β

N

, kN ≡ KN

LφN LψS
, kS ≡ KS

LφN LψS
, cN

N ≡
CN

N

LφN LψS
, cN

S ≡
CN

S

LφN LψS
. (37)

[Figure 1 to be inserted here]

Here, we show that the newly defined terms of trade, π, can be expressed as a function
of the other scale-adjusted variables. Expressing the market clearing condition for the S
good (23) by the scale-adjusted variables, we obtain the following modified market clearing
condition:

πk1−a−b
S − γ

1 − γ (cN
N + cN

S ) = β
1

1−βπ−
β

1−β kN , (38)

where cS
N and cS

S are transformed into cN
N and cN

S , respectively, with the use of equations (14),
(15), (17), and (18). In equation (38), the left-hand side (LHS) and right-hand side (RHS)
can be regarded as functions of π, which are drawn in Figure 1. As Figure 1 shows, the
intersection of LHS and RHS uniquely determines π. Therefore, the scale-adjusted terms of
trade π lead to a function of the other scale-adjusted variables.

π = π(kN
+

, kS
−
, cN

N
+

, cN
S
+

), (39)

where a sign below a variable show the sign of the corresponding partial derivative of the
variable.15)

14) See Eicher and Turnovsky (1999, 2001) for a technique based on scale-adjusted variables.
15) Specifically, each partial derivative is given by as follows:

∂π

∂kN
=
β

1
1−β π−

β
1−β

∆
> 0,

∂π

∂kS
= − (1 − a − b)πk−a−b

S

∆
< 0,

∂π

∂cN
N

=
∂π

∂cN
S

=

γ
1−γ
∆

> 0,

where

∆ ≡ k1−a−b
S +

β
2−β
1−β

1 − β π
− 1

1−β kN > 0.
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Substituting equation (37) into equations (25)–(28), we obtain the following differential
equations for the scale-adjusted variables:

k̇N = kN ·
[
(1 − β)β

β
1−βπ−

β
1−β − γ

1 − γ
cN

N

kN
− φnN − ψnS

]
, (40)

k̇S = kS ·
[
πk−a−b

S − γ

1 − γ
cN

S

kS
− φnN − ψnS

]
, (41)

ċN
N = cN

N ·
[
(1 − α − β)β

β
1−βπ−

β
1−β − ρN − φnN − ψnS

]
, (42)

ċN
S = cN

S ·
[
(1 − a − b)πk−a−b

S − ρS − φnN − ψnS

]
. (43)

The steady state to the above system is a situation where k̇N = k̇S = ċN
N = ċN

S = 0, from
which the following steady state values are uniquely determined:

π∗ = β

(
ρN + φnN + ψnS

1 − α − β
)− 1−β

β

, (44)

k∗S =

[
ρS + φnN + ψnS

(1 − a − b)π∗

]− 1
a+b

, (45)

cN∗
S =

1 − γ
γ
· ρS + (a + b)(φnN + ψnS )

1 − a − b
· k∗S , (46)

k∗N =
(1 − α − β)(φnN + ψnS )
ρN + (α + β)(φnN + ψnS )

· k∗S , (47)

cN∗
N =

1 − γ
γ
· (1 − β)ρN + α(φnN + ψnS )

1 − α − β · k∗N . (48)

Since 1 − α − β > 0 and 1 − a − b > 0, all steady state values are positive.

5.2 Stability of the equilibrium

In our system of differential equations, cN
N and cN

S are jump variables while kN and kS are
predetermined variables. Therefore, if the Jacobian matrix corresponding to the system
of differential equations has two positive eigenvalues and two negative eigenvalues, then
the steady state obtained above is saddle-path stable.16) Here, we refer to both positive
(negative) real eigenvalues and complex eigenvalues with positive (negative) real parts as
positive (negative) eigenvalues. To know signs of eigenvalues analytically is very difficult,

16) If the number of jump variables are equal to that of positive eigenvalues, a system of differential equations
is saddle-path stable. If the number of positive eigenvalues exceeds that of jump variables, the system is
unstable. If, in contrast, the number of jump variables exceeds that of positive eigenvalues, the system is in
indeterminacy.
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and consequently we resort to a numerical simulation.17) Let J be the Jacobian matrix of our
system. Then, J is a 4 × 4 matrix, and each element is presented in Appendix A.

We confine our numerical analysis to the following four cases: Cases 1, 2, 3, and 4.
These four cases are chosen to produce Proposition 1 obtained above and shown in Table
1: g∗yN

> 0 (mentioned in footnote 12), g∗yS
≷ 0 (Proposition 1-(iv)), and ∂g∗yN

/∂nN ≷ 0
(Proposition 1-(i)). In what follows, we present combinations of parameters corresponding
to these four cases, and confirm whether there exists a unique path converging to the steady
state. Table 2 shows a combination of parameters.

[Tables 1 and 2 to be inserted here]

Table 3 presents results of numerical analysis based on the values of the parameters in
Table 2. Here, χ1, . . . , χ4 denote eigenvalues. In every case we have two positive eigenvalues
and two negative eigenvalues. Therefore, the steady state is characterized by saddle-path
stability.

[Table 3 to be inserted here]

Let us demonstrate how the scale-adjusted capital stock in each country converges to
the steady state value with an initial value being given. To this end, we need to solve the
system of differential equations using the eigenvalues and eigenvectors thus obtained. This
procedure is shown in Appendix B. For simplicity, let the initial values be KN(0) = KS (0) =

1 and LN(0) = LS (0) = 1. Then, the initial values of scale-adjusted capital stock are also
kN(0) = kS (0) = 1. Case 2 is adopted for example. Figures 2 and 3 show the dynamics of
kN and kS , respectively: the horizontal axis measures t while the vertical axis denotes kN ,
kS . Both figures show that starting from the initial value the scale-adjusted capital stock
converges to the steady state value. In Case 2, we have k∗N = 16.2936 and k∗S = 64.8417,
which might be counterintuitive because the capital stock in the developed North is smaller
than that in the developing South. However, kN and kS are scale-adjusted capital stock, and
not capital stock per capita. When, for example, t = 1000, the capital stock per capita in the
North and that in the South are given by KN/LN = 9.86 × 1027 and KS /LS = 1.78 × 1024,
respectively, which clearly shows that KN/LN > KS /LS .

[Figures 2 and 3 to be inserted here]

17) For numerical calculations, we use Mathematica 4 of Wolfram Research Inc.
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6 Concluding remarks

In this paper we have united a traditional model of North-South trade and economic devel-
opment and a modern model of endogenous growth. Using the model, we have investigated
how a rise in the growth rate of population affects the growth rate of real income per capita
in each country. The following are the main results: (i) an increase in the growth rate
of population in the South decreases the growth rate of its own income per capita; (ii) a
rise in the growth rate of population in the North either increases or decreases the growth
rate of its own income per capita depending on conditions; (iii) population growth in one
country raises the growth rate of income per capita in the other country; and (iv) even the
decreasing-returns South can experience a positive growth rate of income per capita if a
continuous improvement in the terms of trade is larger than a threshold value. As these re-
sults show, in developed countries the correlation between the growth rate of population and
that of income per capita can be either positive or negative while in developing countries
the correlation is negative. Therefore, empirical analysis lumping developed and developing
countries together will yield an ambiguous correlation between the two growth rates.

Let us add an explanation to the fourth result. It is true that the South can experience a
sustainable growth in per capita income depending on conditions. Even in this case, how-
ever, the growth rate of income per capita in the South is necessarily lower than that in the
North if the growth rate of population in the South is higher than that in the North. For this
reason, if the initial level of income per capita in the South is lower than that in the North, the
South cannot catch up with the North in its income level. Therefore, uneven development
still remains though the Southern terms of trade continue to improve.

Our model does not consider international capital mobility. Along the BGP, if the rates
of time preference are equal in both countries, the rental rates of capital are equalized, that
is, r∗N = r∗S , so that capital does not move between the two countries. Off the BGP, however,
we have r∗N , r∗S even if ρN = ρS , and consequently capital can move between the countries
in search of higher returns. The rental rates of capital off the BGP depend on the scale-
adjusted terms of trade, π(t). Therefore, in order to investigate capital movement, we have
to examine the dynamics of π(t) in detail. Analytical treatment of the capital movement will
be very difficult because the dynamics of π(t) are implicitly determined by the dynamics of
the other variables, kN , kS , cN

N , and cN
S . In this case, numerical simulation will be useful.
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Appendix A

The following are elements of the Jacobian matrix evaluated the BGP:

J11 =
∂k̇N

∂kN
= kN

[
−β 1

1−βπ−
1

1−β
∂π

∂kN
+

γ

1 − γ
cN

N

k2
N

]
, (49)

J12 =
∂k̇N

∂kS
= kN

[
−β 1

1−βπ−
1

1−β
∂π

∂kS

]
> 0, (50)

J13 =
∂k̇N

∂cN
N

= kN

[
−β 1

1−βπ−
1

1−β
∂π

∂cN
N

− γ

1 − γ
1
kN

]
< 0, (51)

J14 =
∂k̇N

∂cN
S

= kN

[
−β 1

1−βπ−
1

1−β
∂π

∂cN
S

]
< 0, (52)

J21 =
∂k̇S

∂kN
= kS

[
k−a−b

S
∂π

∂kN

]
> 0, (53)

J22 =
∂k̇S

∂kS
= kS

[
(−a − b)k−a−b−1

S π + k−a−b
S

∂π

∂kS
+

γ

1 − γ
cN

S

k2
S

]
, (54)

J23 =
∂k̇S

∂cN
N

= kS

[
k−a−b

S
∂π

∂cN
N

]
> 0, (55)

J24 =
∂k̇S

∂cN
S

= kS

[
k−a−b

S
∂π

∂cN
S

− γ

1 − γ
1
kS

]
, (56)

J31 =
∂ċN

N

∂kN
= cN

N

[
(1 − α − β)β

β
1−β

(
− β

1 − β
)
π

β−2
1−β

∂π

∂kN

]
< 0, (57)

J32 =
∂ċN

N

∂kS
= cN

N

[
(1 − α − β)β

β
1−β

(
− β

1 − β
)
π

β−2
1−β

∂π

∂kS

]
> 0, (58)

J33 =
∂ċN

N

∂cN
N

= cN
N

[
(1 − α − β)β

β
1−β

(
− β

1 − β
)
π

β−2
1−β

∂π

∂cN
N

]
< 0, (59)

J34 =
∂ċN

N

∂cN
S

= cN
N

[
(1 − α − β)β

β
1−β

(
− β

1 − β
)
π

β−2
1−β

∂π

∂cN
S

]
< 0, (60)

J41 =
∂ċN

S

∂kN
= cN

S

[
(1 − a − b)k−a−b

S
∂π

∂kN

]
> 0, (61)

J42 =
∂ċN

S

∂kS
= cN

S

[
(−a − b)(1 − a − b)πk−a−b−1

S + (1 − a − b)k−a−b
S

∂π

∂kS

]
< 0, (62)

J43 =
∂ċN

S

∂cN
N

= cN
S

[
(1 − a − b)k−a−b

S
∂π

∂cN
N

]
> 0, (63)

J44 =
∂ċN

S

∂cN
S

= cN
S

[
(1 − a − b)k−a−b

S
∂π

∂cN
S

]
> 0. (64)
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Appendix B

We solve the system of differential equations:



kN(t) − k∗N
kS (t) − k∗S
cN

N(t) − cN∗
N

cN
S (t) − cN∗

S


= B1eχ1t



b11

b21

b31

b41


+ B2eχ2t



b12

b22

b32

b42


, (65)

where χ1 and χ2 denote negative eigenvalues, b11, . . . , b41 eigenvectors corresponding to χ1,
and b12, . . . , b42 eigenvectors corresponding to χ2. B1 and B2 are constants which should be
determined by initial conditions.

In our model, the initial values of kN and kS are historically given but those of cN
N and cN

S

are determined so that they will be located on the saddle path. Let us show the procedure in
the following. At t = 0, the following relations hold:



kN(0) − k∗N
kS (0) − k∗S
cN

N(0) − cN∗
N

cN
S (0) − cN∗

S


= B1



b11

b21

b31

b41


+ B2



b12

b22

b32

b42


. (66)

Here, kN(0) and kS (0) are given exogenously and k∗N , k∗S , b11, b12, b21, and b22 are also known
to us. From this, the two upper equations in equation (66) constitute a system of equations
with respect to B1 and B2:

kN(0) − k∗N = B1b11 + B2b12, (67)

kS (0) − k∗S = B1b21 + B2b22. (68)

Solving the equations above, we can determine B1 and B2.
Substituting B1 and B2 obtained now into the two lower equations in equation (66) and

considering that cN∗
N , cN∗

S , b31, b32, b41, and b42 are already known, we obtain the system of
equations with respect to cN

N(0) and cN
S (0):

cN
N(0) − cN∗

N = B1b31 + B2b32, (69)

cN
S (0) − cN∗

S = B1b41 + B2b42 (70)

From this, cN
N(0) and cN

S (0) are determined.
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Figures and Tables
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Figure 1: Determination of the scale-adjusted terms of trade
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Figure 2: Dynamics of kN
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Figure 3: Dynamics of kS
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Table 1: Four possible combinations of g∗yN
, g∗yS

, and ∂g∗yN
/∂nN

g∗yN
g∗yS

∂g∗yN
/∂nN

Case 1 + − −
Case 2 + + +

Case 3 + + −
Case 4 + − +

Table 2: Numerical values of the parameters

γ = 2/5, ρN = 1/50, ρS = 1/25, nN = 1/50, nS = 3/100
Case 1 a = 1/3, b = 1/3, α = 1/3, β = 1/2
Case 2 a = 1/3, b = 1/3, α = 1/2, β = 1/4

γ = 1/5, ρN = 1/50, ρS = 1/25, nN = 1/100, nS = 1/50
Case 3 a = 1/2, b = 1/4, α = 1/4, β = 1/3
Case 4 a = 1/4, b = 1/2, α = 1/3, β = 1/3

Table 3: Eigenvalues of the Jacobian matrix in Cases 1–4

χ1 χ2 χ3 χ4

Case 1 −0.024 − 0.014i −0.024 + 0.014i 0.064 0.13
Case 2 −0.074 −0.0047 0.089 0.21
Case 3 −0.023 −0.00058 0.036 0.066
Case 4 −0.020 −0.00069 0.045 0.069
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